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ABSTRACT 
The aim of this paper is to introduce the notion of pre-generalized c*-open sets in topological spaces and study their 
basic properties. Further the notion of pre-generalized c*-open maps are introduced and their basic properties are 
discussed.  
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1. INTRODUCTION 
 
In 1963, Norman Levine introduced semi-open sets in topological spaces. Also in 1970, he introduced the concept of 
generalized closed sets. Bhattacharya and Lahiri introduced and study semi-generalized closed (briefly, sg-closed) sets 
in 1987. Palaniappan and Rao introduced regular generalized closed (briefly, rg-closed) sets in 1993. In the year 1996, 
Andrijevic introduced and studied b-open sets. Gnanambal introduced generalized pre-regular closed (briefly gpr-
closed) sets in 1997. In this paper we introduce pre-generalized c*-open sets and pre-generalized c*-open maps in 
topological spaces and study their basic properties.  
 
Section 2 deals with the preliminary concepts. In section 3, pre-generalized c*-open sets are introduced and their basic 
properties are discussed. The pre-generalized c*-open maps in topological spaces are introduced in section 4.   
 
2. PRELIMINARIES 
 
Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, 
cl(A) denotes the closure of A, int(A) denotes the interior of A, pcl(A) denotes the pre-closure of A and bcl(A) denotes 
the b-closure of A. Further X∖A denotes the complement of A in X. The following definitions are very useful in the 
subsequent sections.  
 
Definition 2.1: A subset A of a topological space X is called 

i. a  semi-open  set [8]  if  A⊆cl(int(A))  and  a  semi-closed  set  if  int(cl(A))⊆A. 
ii. a  pre-open  set [16]  if  A⊆int(cl(A))  and  a  pre-closed  set  if  cl(int(A))⊆A. 

iii. a  regular-open  set [18]  if  A=int(cl(A))  and  a  regular-closed  set  if A=cl(int(A)). 
iv. A γ-open set [10] (b-open set[1]) if A⊆cl(int(A))∪int(cl(A)) and a γ-closed set (b-closed set) if  

int(cl(A))∩cl(int(A))⊆A. 
v. a π-open set [22] if A is the finite union of regular-open sets and the complement of  π-open set is said to be 

π-closed. 
 
Definition 2.2: [12] A subset A of a topological space X is said to be a c*-open set if int(cl(A))⊆A⊆cl(int(A)). 
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Definition 2.3: A subset A of a topological space X is called  

i. a generalized closed set (briefly, g-closed) [9] if cl(A)⊆H whenever A⊆H and H is open in X. 
ii. a regular-generalized closed set (briefly, rg-closed) [17] if cl(A)⊆H whenever A⊆H and H is  regular-open in 

X.    
iii. a generalized pre-regular closed set (briefly, gpr-closed) [6] if pcl(A)⊆H whenever A⊆H and H is regular-

open in X. 
iv. a regular generalized b-closed set (briefly, rgb-closed) [15] if bcl(A)⊆H whenever A⊆H and H is regular-open 

in X. 
v. a regular weakly generalized closed set (briefly, rwg-closed) [20] if cl(int(A))⊆H whenever A⊆H and H is 

regular-open in X. 
vi. a semi-generalized b-closed set (briefly, sgb-closed) [7] if bcl(A)⊆H whenever A⊆H and H is semi-open in X. 

vii. a weakly closed (briefly, w-closed) set [19] (equivalently, ĝ-closed set [21]) if cl(A)⊆H whenever A⊆H and H 
is  semi-open in X.  

viii. a semi-generalized closed set (briefly, sg-closed) [3] if scl(A)⊆H whenever A⊆H and H is semi-open in X.   
ix. a generalized semi-closed (briefly, gs-closed) set [2] if scl(A)⊆H whenever A⊆H and H is open in X.  
x. a (gs)*-closed set [5] if cl(A)⊆H whenever A⊆H and H is gs-open in X. 

 
The  complements  of  the  above  mentioned  closed  sets  are  their  respectively open sets. 
 
Definition 2.4: [12] A subset A of a topological space X is said to be a generalized c*-closed set (briefly, gc*-closed 
set) if cl(A)⊆H whenever A⊆H and H is c*-open. The complement of the gc*-closed set is gc*-open [13]. 
 
Definition 2.5: A function f: X → Y is said to be 

i. a g-open map [11] if f(U) is g-open in Y for every open set U of X. 
ii. a semi-generalized open (briefly, sg-open) [4] map if f(U) is sg-open in Y for every open set U of X. 

iii. a ĝ-open map [21] if f(U) is ĝ-open in Y for every open set U of X. 
iv. gc*-open map [13] if f(U) is gc*-open in Y for every open set U of X. 

 
Definition 2.6: [14] A subset A of a space X is said to be pre-generalized c*-closed (briefly, pgc*-closed) if pcl(A)⊆H 
whenever A⊆H and H is c*-open. 
 
3. Pre-generalized c*-open sets 
 
The complement of a pgc*-closed set need not be pgc*-closed. This leads to the definition of pgc*-open sets. In this 
section we introduce pre-generalized c*-open sets and study their basic properties. 
 
Definition 3.1: A subset A of a space X is said to be pre-generalized c*-open (briefly, pgc*-open) if its complement is 
pgc*-closed. 
 
Example 3.2: Let X={a, b, c} with topology τ={ϕ,{b},{c},{b, c}, X}. Then the pgc*-open sets are ϕ, {a}, {b}, {c},    
{b, c}, X. 
 
Proposition 3.3:  Let X be a topological space. Then  

1. Every w-open (resp. open, (gs)*-open, π-open, regular open, gc*-open) set is pgc*-open. 
2. Every pgc*-open set is gpr-open (resp. rgb-open).  

 
The converse of the Proposition 3.3 need not be true as seen from the following example. 
 
Example 3.4:  

1. Let X={a, b, c, d} with topology τ={ϕ,{a},{b},{a, b},{a, c},{a, b, c}, X}. Then the subset {a, b, d} is       
pgc*-open but not w-open (ĝ-open), (gs)*-open, open, π-open, regular-open and gc*-open.  

2. Let X={a, b, c, d, e} with topology τ={ϕ,{a},{d},{e},{a, d},{a, e},{d, e},{a, d, e}, X}. Then the subset         
{a, c, d} is gpr-open and rgb-open but not pgc*-open.    

 
Proposition 3.5: Let X be a topological space. Then for any element p ∈ X, the set {p} is either pgc*-open or c*-open. 
 
Proof: Suppose {p} is not a c*-open set. Then X∖ {p} is not a c*-open set. By Proposition 3.20 [14], X∖ {p} is pgc*-
closed. Hence {p} is a pgc*-open. 

  
The intersection of two pgc*-open subsets of a space X need not be pgc*-open. For example, let X={a, b, c, d, e} with 
topology τ={ϕ,{a, b},{c, d},{a, b, c, d},X}. Then the subsets {b, c, d, e} and {a, c, d, e} are pgc*-open but their 
intersection {c, d, e} is not a pgc*-open set. 
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The union of two pgc*-open subsets of a space X need not be pgc*-open. For example, let X={a, b, c, d, e} with 
topology τ={ϕ,{a, b},{c, d},{a, b, c, d}, X}. Then the subsets {a, d} and {a, e} are pgc*-open but their union {a, d, e}is 
not a pgc*-open set. 
 
Proposition 3.6: Let A be a subset of a space X. Then the following are equivalent. 

i. A is pgc*-open. 
ii. H⊆p-int(A) whenever H⊆A and H is c*-open.  

 
Proof: 
(i)⟹(ii): Assume that A is pgc*-open. Then X∖A is pgc*-closed. Let H be a c*-open set and H⊆A. Then X∖H is a    
c*-open set containing X∖A. Since X∖A is pgc*-closed, we have pcl(X∖A)⊆X∖H. This implies, X∖(pcl(X∖A))⊇H. 
That is, H⊆p-int(A).  
 
(ii)⟹(i): Assume that H is a c*-open set containing X∖A. Then X∖H is a c*-open set and A⊇X∖H. By hypothesis, 
X∖H ⊆p-int(A). This implies, X∖(p-int(A)) ⊆H. That is, pcl(X∖A)⊆H. Therefore, X∖A is pgc*-closed. Hence, A is 
pgc*-open. 
 
Proposition 3.7: Let X be a topological space. If A is a pgc*-open subset of X such that p-int(A)⊆B⊆A, then B is 
pgc*-open. 
 
Proof: Let A be a pgc*-open set and p-int(A)⊆B⊆A. Then X∖A is a pgc*-closed set and X∖A ⊆X∖B⊆pcl(X∖A). 
Therefore, by Proposition 3.22 [14], X∖B is pgc*-closed. Therefore, B is pgc*-open. 
 
Proposition 3.8: A subset A of X is pgc*-open if and only if for each H⊆A and H is c*-open, there exists a pre-open 
set G such that H⊆G⊆A.  
 
Proof: Suppose that A is pgc*-open. Assume that H⊆A and H is c*-open. Then, by Proposition 3.6, H⊆p-int(A). If we 
put G = p-int(A), then H⊆G⊆A. Conversely, assume that H is a c*-open set contained in A. Then by hypothesis, there 
exists a pre-open set G such that H⊆G⊆A. Since  p-int(A) is the largest pre-open set contained in A, we have         
G⊆p-int(A). Also, since H⊆G, we have H⊆p-int(A). Therefore, by Proposition 3.6, A is pgc*-open.        
 
4. Pre-generalized c*-open maps 
 
In this section, we introduce pre-generalized c*-open maps in topological spaces. Also, we derive some of their basic 
properties.  
 
Definition 4.1: Let X and Y be two topological spaces. A function f : X → Y is said to be pre-generalized c*-open map 
(briefly, pgc*-open map) if f(U) is pgc*-open in Y  for every open set U in X. 
 
Example 4.2: Let X={a, b, c} with topology τ={ϕ, {a}, X} and Y={1, 2, 3} with topology σ={ϕ, {1},{1,2},Y}. 
Define  f : X → Y by f(a)=2, f(b)=3, f(c)=1. Then f is pgc*-open. 
 
Proposition 4.3: Let X, Y be two topological spaces. A function f: X → Y is a pgc*-open if and only if the image of 
each closed subset of X is pgc*-closed in Y. 
 
Proof: Assume that f: X → Y is a pgc*-open map. Let V be a closed set in X. Then X∖V is open in X. Therefore, by 
our assumption, f(X∖V) is pgc*-open in Y. This implies, Y∖f(V) is pgc*-open in Y. Hence, f(V) is pgc*-closed in Y. 
Conversely, assume that the image of each closed subset of X is pgc*-closed in Y. Let U be an open set in X. Then 
X∖U is closed in X. Therefore, by our assumption, f(X∖U) is pgc*-closed in Y. This implies, Y∖f(U) is pgc*-closed in 
Y. This implies, f(U) is pgc*-open in Y. Therefore, f is a pgc*-open map.  
 
Proposition 4.4: Let X, Y be two topological spaces. Then every open map is pgc*-open. 
 
Proof:  Let f : X → Y be an open map and U be an open set in X. Then f(U) is open in Y. By Proposition 3.3, f(U) is a 
pgc*-open set. Therefore, f is a pgc*-open map. 
 
The following example shows that the converse of the Proposition 4.4 is not true. 
 
Example 4.5: Let X={a, b, c} and Y={1, 2, 3}. Then, clearly τ={ϕ,{b},{c},{b, c}, X} is a topology on X and 
σ={ϕ,{1},{1,2},{1,3},Y} is a topology on Y. Define f : X → Y by f(a)=2, f(b)=3, f(c)=1. Clearly, f is a pgc* -open 
map. But f is not an open map, since the image of an open set {b} under f is {3}, which is not open in Y. 
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Proposition 4.6: Let X, Y be two topological spaces. Then every ĝ-open map is pgc*-open. 
 
Proof: Let f: X → Y be a ĝ-open map. Let U be an open set in X. Then f(U) is ĝ-open in Y. Therefore, by Proposition 
3.3, f(U) is a pgc*-open set. Therefore, f is a gc*-open map. 
 
The converse of the Proposition 4.6 need not be true, which can be verified from the following example. 
 
Example 4.7: Let X={a, b, c} and Y={1, 2, 3}. Then, clearly τ={ϕ,{b},{c},{b, c},X} is a topology on X and 
σ={ϕ,{1},{1,2},{1,3},Y} is a topology on Y. Define f : X → Y by f(a)=2, f(b)=3, f(c)=1. Then f is a pgc* -open map. 
Consider the open set {b} in X. Then f({b})={3}, which is not a ĝ-open set in Y. Therefore, f is not a ĝ-open map.  
 
The g-open and pgc*-open maps are independent. For example, let X={a, b, c, d} and Y={1,2,3,4,5}. Then, clearly 
τ={ϕ,{a},{b},{a, b},{a, c},{a, b, c},X} is a topology on X and σ={ϕ,{1},{4},{5},{1,4},{1,5},{4,5},{1,4,5}, Y} is a 
topology on Y. Define f : X → Y by f(a)=1, f(b)=2, f(c)=f(d)=3. Then f is a g-open map. Consider the open set {a, c} in 
X. Then f({a, c})= {1,3}, which is not a pgc*-open set in Y. Hence f is not a pgc*-open map. Define g : X → Y by 
g(a)=g(b)=2, g(c)=3, g(d)=5. Then g: X →  Y is a pgc* -open map. Consider the open set {a, c} in X. Then                
g({a, c})={2,3}, which is not a g-open set in Y. Therefore, f is not a g-open map.  
 
The sg-open and pgc*-open maps are independent. For example, let X={a, b, c, d} and Y={1,2,3,4,5}. Then, clearly 
τ={ϕ,{a},{b},{a, b},{a, c},{a, b, c}, X} is a topology on X and σ={ϕ,{1},{4},{5},{1,4},{1,5},{4,5},{1,4,5}, Y} is a 
topology on Y. Define f : X → Y by f(a)=1, f(b)=4, f(c)=f(d)=3. Then f is a sg -open map. Consider the open set {a, c}  
in X. Then f({a, c})= {1,3}, which is not a pgc*-open set in Y. Hence f is not a pgc*-open map. Define g : X → Y by 
g(a)=g(b)=2, g(c)=3, g(d)=5. Then g : X → Y is a pgc* -open map. Consider the open set {b} in X. Then g({b})={2}, 
which is not a sg-open set in Y. Therefore, g is not a sg-open map. 

 
Proposition 4.8: Let X, Y and Z be topological spaces. If f : X→ Y is an open map and g : Y→ Z  is a gc* -open map, 
then g∘f  is pgc*-open map. 
 
Proof: Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then g(f(U)) is a  gc*-open set in Z. That 
is, (g∘f)(U) is a gc*-open set in Z. Therefore, by Proposition 3.3, (g∘f)(U) pgc*-open set in Z. Therefore, g∘f is a pgc*-
open map.    
 
Proposition 4.9: Let X, Y and Z be topological spaces. If f : X → Y and g : Y → Z are open maps, then g∘f : X → Z is 
a pgc*-open map. 
 
Proof: Let U be an open set in X. Since f is an open map, f(U) is open in Y. Also, since g is an open map, g(f(U)) is 
open in Z. That is, (g∘f)(U) is a open set in Z. By Proposition 3.3, (g∘f)(U) is a  pgc*-open set in Z. Therefore, g∘f  is a 
pgc*-open map. 
 
Proposition 4.10: Let X, Y and Z be topological spaces. If f : X→Y is an open map and g : Y→Z  is a pgc*-open map, 
then g∘f  is pgc*-open map. 
 
Proof: Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then g(f(U)) is a pgc*-open set in Z. That 
is, (g∘f)(U) is a pgc*-open set in Z. Therefore, g∘f is a pgc*-open map.      
 
Proposition 4.11: Let X, Y and Z be topological spaces. If f: X→ Y is an open map and g: Y→ Z is a ĝ-open map, 
then g∘f : X → Z is a pgc*-open map. 
 
Proof: Let U be an open set in X. Since f is an open map, f(U) is open in Y. Then g(f(U)) is a ĝ-open set in Z. That is, 
(g∘f)(U) is a ĝ-open set in Z. Therefore, by Proposition 3.3, (g∘f)(U) is a pgc*-open set in Z. Hence g∘f : X → Z  is a 
pgc*-open map.     
  
Proposition 4.12: Let X, Y be two topological spaces. A surjective function f : X → Y is a pgc* -open map if and only 
if for each subset B of Y and for each closed set U containing f -1(B), there is a pgc*-closed set V of Y such that B⊂V 
and f -1(V)⊂U. 
 
Proof: Suppose f : X → Y is a surjective pgc*-open map and B is a subset of Y. Let U be a closed set in X such that    
f-1(B)⊂U. Then V=Y∖f(X∖U) is a pgc*-closed subset of Y containing B and f-1(V)⊂U. Conversely, suppose F is an 
open subset of X. Then X∖F is closed in X. Also, f-1(Y∖f(F))=X∖f-1(f(F))⊆X∖F. Therefore, by hypothesis, there exists 
a pgc*-closed set V of Y such that Y∖f(F)⊂V and f-1(V)⊂X∖F. This implies, F⊂X∖f-1(V).Therefore, f(F)⊂f(X∖f-1(V)) 
⊂ Y∖V. Also, Y∖V⊂f(F). This implies, f(F)=Y∖V, which is pgc*-open in Y. Therefore, f is a pgc*-open map. 
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CONCLUSION 
 
In this paper we have introduced pgc*-open sets and pgc*-open maps in topological spaces and studied some of their 
basic properties. Also, we have studied the relationship between pgc*-open sets with some generalized sets in 
topological spaces.               
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