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ABSTRACT 
This research paper is concerned with the thermomechanical interactions of ultra-laser heat source with the piezo-
electric microstretch thermoelastic material. The medium is subjected to mechanical and thermal boundary conditions. 
Integral transform technique has been applied to the basis equations to solve the problem.  
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1. INTRODUCTION 
 
Now a days, the smart materials have a great importance in engineering, technology and sciences. The important 
features of smart materials are due to their internal molecular structures known as smart structure for example sensors, 
actuators etc. One of the smart materials currently under research applications are piezo-electric materials. The piezo-
electric substance are those which generate electricity (known as piezo-electricity) in response to mechanical stress. 
Such type of materials are used in actuators and sensors due to their direct and converse piezo-electric effects. To 
ensure that the piezo-electric appliances are functional in extreme temperature conditions, the thermal effects are to be 
considered in mathematical model development. So, a result of these electrical-thermal-mechanical coupling 
thermoelastic theories of piezo-electric materials have been developed. First of all a theory of piezo-electricity was 
developed by Mindlin (1961). Mindlin (1974) write the basic governing relations for piezo-electric thermoelastic solid. 
Later Nowacki (1978) deduced the physical laws and theorems for thermo piezo-electric substances. Later 
Chandrasekharaiah (1984) extended this theory also including the finite speed of thermal disturbances. The 
thermoelastic theory of piezo-electric materials was applied to composite plate by Tauchert (1992). Recently some 
more problems related to piezo-electric thermoelastic materials have been investigated by Othman & Ahmed (2016) 
and Vashishth & Sukhija (2017). 
 
Eringen (1999) presented micropolar piezoelectricity and magnetoelasticity. Eringen (2003) introduced the 
electromagnetic theory of microstretch thermoelasticity. The various applications of this theory are in porous elastic 
bodies, animal bones, synthetic materials having microscopic components etc. The special cases of this theory are the 
theory of piezoelectricity and the theory of magnetoelasticity. The materials having linear coupling between 
mechanical and electric field are known as piezoelectric materials. There are wide use of these materials in intelligent 
structure systems, ultrasonic transducers, piezoelectric composite structures, loudspeakers etc. Iesan (2006) developed 
the linear theory of microstretch piezoelectricity and established uniqueness theorem and reciprocity relation. 
 
Eringen (1999) developed the theory and basic equations of microstretch thermoelastic solids. Microstretch continuum 
is a model for Bravais lattice having basis on the atomic level and two phase dipolar substance having core on 
macroscopic level. Examples of microstretch thermoelastic materials are composite materials filled with chopped 
elastic fibers, porous elastic fluids whose pores have gases or inviscid liquids, or other elastic inclusions and liquid-
solid crystal. 
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Laser technologies have a lot of utilities in medical science, industries, metallurgies and nondestructive testing and 
evolution. High rated thermal processes are interesting in the development of theories of thermoelasticity, due to 
thermal- mechanical coupling. The thermal shock creates very fast movements in the internal molecular particles, 
which causes rise in very significant inertial forces, and in vibration. The ultra-short lasers have pulse durations ranging 
from nanoseconds to femto seconds. In irradiation of ultra-short pulsed laser, the high intensity energy flux and ultra-
short duration lead to a very large thermal gradients. So, in these cases, Fourier law of heating is no longer valid. Rose 
(1984) developed an analytical mathematical basis for point laser source. Scruby et al. (1990) studied the point source 
ultrasonic generation by lasers.  A new laser generation model was presented by Spicer (1990) and McDonald (1990). 
Various other authors Kim (1997), Chen (2002), Al-Huniti and Al-Nimr (2004) studied many problems related to laser 
ultrasound in thermoelastic materials. Thermoelastic behavior in metal plates due to laser interactions using fractional 
theory of thermoelasticity was studied by Ezzat et al. (2012). Comparison in context of four theories of thermoelasticity 
was presented by Youssef et al. (2014). A generalized thermoelastic diffusion problem for a thick plate irradiated by 
thermal laser was discussed by Elhagary (2014). Kumar, Kumar and Singh (2015) recently studied the thermo 
mechanical interactions of an ultra-laser pulse with microstretch thermoelastic medium.  
 
This present research is devoted to the two-dimensional interactions of input ultra-laser heat source in a piezo-electric 
microstretch thermoelastic medium. The integral transform technique has been applied to derive the expressions for the 
displacement components, couple stress, temperature and microstress distribution under various sources. Some special 
cases have been deduced from the present investigation.  
 
Basic equations: 
 
Following Iesan (2006), Iesan & Quintanilla (2007) and Al-Qahtani and Dutta (2008), the field equations and 
constitutive relations for a homogeneous, isotropic piezoelectric thermo-microstretch solid are: 

(𝜆 + 𝜇)∇(∇.𝒖) + (𝜇 + 𝐾)∇2𝒖 + 𝐾∇ × 𝝓 + 𝜆0∇𝜙∗ − 𝛽0∇𝜏 = 𝜌�̈�,                                                                      (1.1) 
(𝛾∇2 − 2𝐾)𝝓 + (𝛼 + 𝛽)∇(∇.𝝓) + 𝐾∇ × 𝒖 = 𝜌𝑗�̈�,                                                                                             (1.2) 
(𝛼0∇2 − λ3)𝜙∗ − 𝜆2∇2𝜓 + 𝜈1∇2𝜏 − 𝜆0∇.𝒖 + 𝑐0

𝜕
𝜕𝑡
𝜏 = 𝜌𝑗0

2
𝜙∗̈ ,                                                                            (1.3) 

�𝑛1𝐾∗ + 𝑛2
𝐾1
𝑇0
� ∇2𝜏 − 𝛽0(∇. �̇� − 𝑄) − 𝑎�̈� − 𝑐0�̇�∗ + 𝜈1∇2𝜙∗ − 𝜈3∇2𝜓 = 0,                                                        (1.4) 

𝜆2∇2𝜙∗ + 𝜒∇2𝜓 + 𝜈3∇2𝜏 = 0,                                                                                                                               (1.5) 
𝐸𝑖 = −𝜓,𝑖,                                                                                                                                                               (1.6) 
𝑡𝑖𝑗 = �𝜆0𝜙∗ + 𝜆𝑢𝑟,𝑟�𝛿𝑖𝑗 + 𝜇�𝑢𝑖,𝑗 + 𝑢𝑗,𝑖� + 𝐾�𝑢𝑗,𝑖 − 𝜖𝑖𝑗𝑘𝜙𝑘� − 𝛽0𝛿𝑖𝑗𝑇,                                                                (1.7) 
𝑚𝑖𝑗 = 𝛼𝜙𝑟,𝑟𝛿𝑖𝑗 + 𝛽𝜙𝑖,𝑗 + 𝛾𝜙𝑗,𝑖 + 𝑏0𝜖𝑚𝑗𝑖𝜙,𝑚

∗ + 𝜆1𝜖𝑖𝑗𝑘𝐸𝑘 + 𝜈2𝜖𝑖𝑗𝑘𝜏,𝑘 ,                                                             (1.8) 
𝜆𝑖∗ = 𝛼0𝜙,𝑖

∗ + 𝑏0𝜖𝑖𝑗𝑚𝜙𝑗,𝑚 + 𝜆2𝐸𝑖 + 𝜈1𝜏,𝑖,                                                                                                               (1.9) 
𝐷𝑘 = 𝜆1𝜖𝑖𝑗𝑘𝜙𝑗,𝑖 − 𝜆2𝜙,𝑘

∗ − 𝜈3𝜏,𝑘 + 𝜒𝐸𝑘,                                                                                                              (1.10) 
𝜆, µ are Lame’s constants, 𝛼, 𝛽, 𝛾,  𝜆0,  𝛼0,  𝑏0 are Microstretch constants, 𝐾 is Thermal conductivity, 
𝜆1,  𝜆2, 𝜐1, 𝜐2, 𝜐3 are material constants, 𝒖 is Displacement vector,  𝝓 is microrotation vector, 𝜙∗ is Scalar 
microstretch, 𝑇 represents temperature and �̇� = 𝑇, 𝑇0 is reference temperature, 𝐾∗ is the coefficient of thermal 
conductivity, 𝑐∗ is specific heat at constant strain, 𝑗 is the microinertia, 𝑗0 is microinertia for the microelements, 
𝑚𝑖𝑗 are components of couple stress, 𝑡𝑖𝑗 are components of stress,  𝜆𝑖∗ is microstress tensor, 𝐷𝑘 is dielectric 
displacement vector, 𝛽0 is the relaxation time, 𝜓 is electric potential, 𝑛1,𝑛2 are piezo-electric parameters, 𝜒 
represents the dielectric susceptibility. 

 
The laser pulse irradiation in the medium can be written by the following mathematical expression:                                                                    

𝑄 = 𝐼0𝑓(𝑡)𝑔(𝑥1)ℎ(𝑥3)                                                                                                                                         (1.11)  

Here, 𝑓(𝑡) = 𝑡
𝑡0
2 𝑒

−� 𝑡𝑡0
�,𝑔(𝑥1) = 1

2𝜋𝑟2
𝑒
−�𝑥1

2

𝑟2
�
, ℎ(𝑥3) = 𝛾∗𝑒−𝛾∗𝑥3                                                                                                                                                                                                                                

And 𝐼0 is the energy absorbed, 𝑡0 is the pulse rise time and 𝑟 is the beam radius. 
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Figure-1: Temporal profile of 𝑓(𝑡)       Figure-2: Profile of 𝑔(𝑥1)                Figure-3: Profile of ℎ(𝑥3) 



Arvind Kumar*1, Devinder Singh Pathania2 /  
Dynamical Properties of Piezo-Electric Microstretch Solid Subjected to Laser and Ramp Type Heating… / IJMA- 8(12), Dec.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         73  

 
In the above equations symbol (“,”) followed by a suffix denotes differentiation with respect to spatial coordinates and 
a superposed dot (“   ̇”) denotes the derivative with respect to time respectively. 
 
2. FORMULATION OF THE PROBLEM 
 
A rectangular Cartesian coordinate system 𝑂𝑋1𝑋2𝑋3 having origin on 𝑥3-axis with 𝑥3-axis pointing vertically 
downward the medium is considered. A ramp type heating source is supposed to be acting on the origin of this 
rectangular Cartesian coordinate system. 
 
Further we consider the plane strain problem with all the field variables depending on (𝑥1, 𝑥3, 𝑡). For such two 
dimensional problems, we take:     

𝒖 = (𝑢1, 0,𝑢3), 𝝓 = (0,𝜙2, 0),  𝑬 = (𝐸1, 0,𝐸3)                                                                                                  (2.1) 
 

 
Figure- 4: Geometry of the problem 

 
Also, it is convenient to define in equations (1.1)-(1.6) the following dimensionless quantities: 
(𝑥1′ , 𝑥3′ ,𝑢1′ ,𝑢3′ ) = 1

𝐿0
(𝑥1, 𝑥3,𝑢1,𝑢3), 𝜙𝑖′ = 𝜌𝑐1

2

𝛽1𝑇0
𝜙𝑖,𝜙∗′ = 𝜌𝑐1

2

𝛽1𝑇0
𝜙∗, 𝜏′ = 𝑐1

𝐿0𝑇0
, 𝑡 ′ = 𝑐1

𝐿0
𝑡,  𝑡𝑖𝑗′ = 1

𝜌𝑐1
2 𝑡𝑖𝑗 , 𝑐12 = 𝜆+2𝜇+𝐾

𝜌
,                                                                                                                                                          

𝑚𝑖𝑗
∗ = 1

𝜌𝑐1
2𝐿0

𝑚𝑖𝑗   ,                                                                                                                                                           (2.2) 
 
Making use of (2.1) in equations (1.1)-(1.6) and with the help of (2.2), we obtain: 

𝑎1∇2𝑢1 + (1 − 𝑎1) 𝜕
𝜕𝑥1

�𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢3
𝜕𝑥3

� − 𝑎2
𝜕𝜙2
𝜕𝑥3

+ 𝑎3
𝜕𝜙∗

𝜕𝑥1
− 𝑎4

𝜕𝜏
𝜕𝑥1

= 𝜕2𝑢1
𝜕𝑡2

 ,                                                              (2.3) 

𝑎1∇2𝑢3 + (1 − 𝑎1) 𝜕
𝜕𝑥3

�𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢3
𝜕𝑥3

� + 𝑎2
𝜕𝜙2
𝜕𝑥1

+ 𝑎3
𝜕𝜙∗

𝜕𝑥3
− 𝑎4

𝜕𝜏
𝜕𝑥3

= 𝜕2𝑢3
𝜕𝑡2

 ,                                                              (2.4) 

𝑎5∇2𝜙2 + 𝑎2 �
𝜕𝑢1
𝜕𝑥3

− 𝜕𝑢3
𝜕𝑥1

� − 2𝑎2𝜙2 = 𝑎6
𝜕2𝜙2
𝜕𝑡2

 ,                                                                                                     (2.5) 

(𝑎7∇2 − 𝑎8)𝜙∗ − 𝑎9∇2𝜓 + 𝑎10∇2𝜏 − 𝑎3 �
𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢3
𝜕𝑥3

� + 𝑎11
𝜕𝜏
𝜕𝑡

= 𝑎12�̈�∗,                                                             (2.6) 

�𝑛1𝐾1 + 𝑛2𝐾2
𝜕
𝜕𝑡
� ∇2𝜏 − 𝑎4

𝜕
𝜕𝑡
�𝜕𝑢1
𝜕𝑥1

+ 𝜕𝑢3
𝜕𝑥3

� − 𝑎13
𝜕2𝜏
𝜕𝑡2

− 𝑎11
𝜕𝜙∗

𝜕𝑡
+ 𝑎10∇2𝜙∗ − 𝑎14∇2𝜓 = 𝑄0𝑓∗(𝑥1, 𝑡)𝑒−𝛾∗𝑥3 ,     (2.7) 

𝑎9∇2𝜙∗ + 𝜐∇2𝜓 + 𝑎14∇2𝜏 = 0,                                                                                                                             (2.8) 
 
Here, 𝑎1 = 𝜆+𝜇

𝜌𝑐1
2 , 𝑎2 = 𝐾

𝜌𝑐1
2 , 𝑎3 = 𝜆0

𝜌𝑐1
2  , 𝑎4 = 𝛽0𝑇0

𝜌𝑐1
2 , 𝑎5 = 𝛾1

𝜌𝑐1
2𝐿0

2 , 𝑎6 = 𝐼1
𝜌𝐿0

2 , 𝑎7 = 𝑎0
𝜌𝑐1

2𝐿0
2 , 𝑎8 = 𝜆3

𝜌𝑐1
2 , 𝑎9 = 𝜆2𝜓0

𝜌𝑐1
2𝐿0

2 ,   

𝑎10 =
𝜐1𝑇0
𝜌𝑐13𝐿02

, 𝑎11 =
𝑐0𝑇0
𝜌𝑐12

, 𝑎12 =
𝑗0
𝜌𝐿02

, 𝑎13 =
𝑎𝑇02

𝜌𝑐12
, 𝑎14 =

𝜐3𝜓0𝑇0
𝜌𝑐13𝐿0

 ,𝐾1 =
𝐾∗𝑇02

𝜌𝑐14
,𝐾2 =

𝐾1𝑇0
𝜌𝑐13𝐿0

, 𝜈 =
𝜒𝜓02

𝜌𝑐12𝐿02
, 

𝑄0 =
𝜌𝑐14

𝛽1𝐾∗𝜔∗2 𝑄, 𝑓(𝑥1, 𝑡) = �𝑡 + 𝜖𝜏0 �1 −
𝑡
𝑡0
�� 𝑒

−�𝑥1
2

𝑟2+
𝑡
𝑡0
�
,∇2=

𝜕2

𝜕𝑥12
+

𝜕2

𝜕𝑥32
 

 
The relations connecting displacement components and microtemperature components to the potential functions in 
dimensionless form are: 

𝑢1 = 𝜕𝜓1
𝜕𝑥1

+ 𝜕𝜓2
𝜕𝑥3

, 𝑢3 = 𝜕𝜓1
𝜕𝑥3

− 𝜕𝜓2
𝜕𝑥1

,                                                                                                                          (19) 
 
Here, the primes have been suppressed. 
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Using the relations defined by (2.9) in equations (2.3) - (2.8) and rewriting, we obtain: 

�∇2 − 𝜕2

𝜕𝑡2
� 𝜓1 + 𝑎3𝜙∗ − 𝑎4

𝜕𝜏
𝜕𝑡

= 0,                                                                                                                          (20) 

�𝑎1∇2 −
𝜕2

𝜕𝑡2
�𝜓2 − 𝑎2𝜙2 = 0                                                                                                                                  (21) 

𝑎2∇2𝜓2 + �𝑎5∇2 − 2𝑎2 − 𝑎6
𝜕2

𝜕𝑡2
�𝜙2 = 0                                                                                                              (22) 

�𝑎10∇2 − 𝑎11
𝜕
𝜕𝑡
�𝜙∗ −  𝑎14∇2𝜓 − 𝑎4

𝜕
𝜕𝑡
∇2𝜓1 + ��𝑛1𝐾1 + 𝑛2𝐾2

𝜕
𝜕𝑡
� ∇2 − 𝑎13

𝜕2

𝜕𝑡2
� 𝜏 = 0                                      (23) 

�𝑎7∇2 − 𝑎8 − 𝑎12
𝜕2

𝜕𝑡2
�𝜙∗ + �𝑎10∇2 + 𝑎11

𝜕
𝜕𝑡
� 𝜏 − 𝑎9∇2𝜓 − 𝑎3∇2𝜓1 = 0                                                            (24) 

𝑎9∇2𝜙∗ + 𝜈∇2𝜓 + 𝑎14∇2𝜏 = 0                                                                                                                               (25) 
 
3. SOLUTION OF THE PROBLEM 
 
Laplace transform and Fourier transform respectively are defined by the following relations:  

𝑓(̅𝑠, 𝑥1, 𝑥3) = ∫ 𝑓(𝑡, 𝑥1, 𝑥3)𝑒−𝑠𝑡𝑑𝑡∞
0 ,                                                                                                                      (3.2) 

𝑓(𝑥3, 𝜉, 𝑠) = ∫ 𝑓(̅𝑠, 𝑥1, 𝑥3)𝑒𝜄𝜉𝑥1𝑑𝑥1
∞
−∞ ,                                                                                                                   (3.3) 

 
applying Laplace transform and Fourier transform defined by (3.2) & (3.3) on resulting equations, yield: 

(𝐷2 − 𝜉11)𝜓�1 − 𝑎4�̂� + 𝑎3𝜙∗� = 0                                                                                                                           (3.4) 
[−𝑛11(𝐷2−𝜉2) + 𝑎13𝑠2]�̂� + 𝑎4𝑠(𝐷2−𝜉2)𝜓�1 + [𝑎10𝐷2 − 𝑎11]𝜙∗� − 𝑎14(𝐷2−𝑘2)𝜓� = 𝑄1𝑒−𝛾

∗𝑥3                        (3.5) 
[𝑎7(𝐷2−𝜉2) − 𝑎8 − 𝑎12𝑠2]𝜙∗� + [𝑎10(𝐷2−𝜉2) + 𝑠𝑎11]�̂� − (𝐷2−𝜉2)�𝑎3𝜓�1 + 𝑎9𝜓�� = 0                                   (3.6) 
𝑎9(𝐷2−𝜉2)𝜙∗� + 𝜐(𝐷2−𝜉2)𝜓� + 𝑎14(𝐷2−𝜉2)�̂� = 0                                                                                              (3.7) 
[𝑎1(𝐷2 − 𝜉2) − 𝑠2]𝜓�2 − 𝑎2𝜙�2 = 0                                                                                                                       (3.8) 
𝑎2(𝐷2 − 𝜉2)𝜓�2 + (𝑎5(𝐷2 − 𝜉2) − 2𝑎2 + 𝑎6𝑠2)𝜙2� = 0                                                                                       (3.9) 
𝜉11 = 𝜉2 − 𝑠2,𝑛11 = 𝑛1𝑘1 + 𝑠𝑛2𝑘2 , 𝑎15 = 𝑎1𝜉2 + 𝑠2, 𝑎16 = 𝑎5𝜉2 + 𝑎6𝑠2 + 2𝑎2 , 𝑎17 = 𝑎10𝜉2 + 𝑎11𝑠, 𝑎18 =
𝑎7𝜉2 + 𝑎12𝑠2 + 𝑎8, 𝑎16 = −𝑎10𝜉2 + 𝑎11𝑠 

 
Eliminating 𝜓�1,𝜙∗���� & �̂� , 𝜓�,𝜙∗���� & �̂� , 𝜓�,𝜓�1 & �̂� and,  𝜓�,𝜓�1,𝜙∗���� respectively from the equations (3.4)-(3.7), we obtain: 

[𝑫8 + 𝐴𝑫6 + 𝐵𝑫4 + 𝐶𝑫2 + 𝐸]𝜓� = 𝑓1𝑒−𝛾
∗𝑥3                                                 (3.10) 

[𝑫8 + 𝐴𝑫6 + 𝐵𝑫4 + 𝐶𝑫2 + 𝐸]𝜓�1 = 𝑓2𝑒−𝛾
∗𝑥3                                                               (3.11) 

[𝑫8 + 𝐴𝑫6 + 𝐵𝑫4 + 𝐶𝑫2 + 𝐸]𝜙∗� = 𝑓3𝑒−𝛾
∗𝑥3                                    (3.12) 

[𝑫8 + 𝐴𝑫6 + 𝐵𝑫4 + 𝐶𝑫2 + 𝐸]�̂� = 𝑓4𝑒−𝛾
∗𝑥3                              (3.13) 

 
Also eliminating 𝜙2 equations (3.8)-(3.9) yield 

[𝑫4 + 𝐹𝑫2 + 𝐺]𝜓2� = 0 ,                                                                                               (3.14) 
 
Here, 𝑫 = 𝑑

𝑑𝑥3
  and 𝐴,𝐵,𝐶,𝐸,𝐹,𝐺, 𝑓1, 𝑓2, 𝑓3, 𝑓4 & 𝑓5 are mentioned in Appendix A. 

 
The solutions of the equations (3.10)-(3.14) satisfying the radiation conditions that �𝜓�,𝜓�1, �̂�,𝜙2� ,𝜓2� ,𝜙∗�� → 0 as 
𝑥3 → ∞ are given by: 

�𝜓�,𝜓�1,𝜙∗� , �̂�� = ∑ (1,𝛼1𝑖,𝛼2𝑖 ,𝛼3𝑖)𝑐𝑖𝑒−𝑚𝑖𝑥34
𝑖=1 + �𝑓1

𝑓5
, 𝑓2
𝑓5

, 𝑓3
𝑓5

, 𝑓4
𝑓5
� 𝑒−𝛾∗𝑥3                                                              (3.15) 

�𝜓�2,𝜙2�� = ∑ (1,𝛼4𝑖)𝑐𝑖𝑒−𝑚𝑖𝑥36
𝑖=5                                                                                                                          (3.16) 

 
Here, 𝑚𝑖

2 (𝑖 = 1,2,3,4) are the roots of the characteristic equation given (3.10) and  𝑚𝑙
2(𝑙 = 5,6) are the roots of the 

characteristic equation of equation (3.14). 

 𝛼1𝑖 = −Δ2𝑖
Δ1𝑖

,  𝛼2𝑖 = Δ3𝑖
Δ1𝑖

,  𝛼3𝑖 = −Δ4𝑖
Δ1𝑖

,   𝑖 = 1,2,3,4 and  𝛼4𝑖 = 𝑎1𝑚𝑖
2+𝑎15
𝑎2

, 𝑖 = 5,6 
 
Here, Δ1𝑖 ,Δ2𝑖 ,Δ3𝑖 ,Δ4𝑖 are defined in Appendix B. 
 
4. BOUNDARY CONDITIONS 
 
We consider a thermal source at the boundary surface 𝑥3 = 0, mathematically, these can be written as: 

𝑡33 = 0, 𝑡31 = 0, 𝑚32 = 0, 𝜆3∗ = 0,𝑇 = 𝑅(𝑡)𝛿(𝑥1),𝐷3 = 0                                           (4.1) 
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APPLICATION:  
 
Thermal boundary conditions (Ramp type heating):          
 
Let us consider the boundary surface of piezo-electric microstretch thermoelastic medium is under the effect of ram 
type heating conditions as defined by Youssef and Al-Lehaibi []. So, the temperature distribution in the medium at 
𝑥3 = 0 depends on 𝑥1 & 𝑡 and is expressed in following manner: 

𝑇 = 𝑅(𝑡)𝛿(𝑥1)                                         (4.2) 
Here, 

𝑅(𝑡) = �

0                                  𝑡 ≤ 0

𝑇1
𝑡
𝑡0

                 0 < 𝑡 ≤ 𝑡0

𝑇1                              𝑡 > 𝑡0 

� 

And 𝛿(𝑥1) is Dirac delta function.                                                                       
 
Applying the Laplace transform on (4.2) followed by Fourier transform, we obtain the following: 

  𝑇�(𝜉, 𝑠) = 𝑇1 �
1−𝑒−𝑠𝑡0

𝑡0𝑠2
�                                                                                                                                           (4.3) 

 
Substituting the values of 𝜙� ,𝜙∗� ,𝑇,� 𝜓�,𝜙2�  from the equations (3.15)-(3.16) in the boundary condition (4.1) and using 
(1.7)-(1.10), (2.1)-(2.2), (3.1)-(3.3) and solving the resulting equations for 𝑐𝑖  by matrix method, we obtain: 

𝑡33� = ∑ 𝐺1𝑖𝑒−𝑚𝑖𝑥36
𝑖=1 + 𝑀1𝑒−𝛾

∗𝑥3                                 (4.2) 
𝑡31� = ∑ 𝐺2𝑖𝑒−𝑚𝑖𝑥36

𝑖=1 + 𝑀2𝑒−𝛾
∗𝑥3                                                   (4.3) 

𝑚32� = ∑ 𝐺3𝑖𝑒−𝑚𝑖𝑥36
𝑖=1 + 𝑀3𝑒−𝛾

∗𝑥3                                                              (4.4) 
𝜆3∗� = ∑ 𝐺4𝑖𝑒−𝑚𝑖𝑥3 + 𝑀4𝑒−𝛾

∗𝑥36
𝑖=1 ,                                              (4.5) 

𝑇� = ∑ 𝐺5𝑖𝑒−𝑚𝑖𝑥36
𝑖=1 + 𝑀5𝑒−𝛾

∗𝑥3 ,                                                                                               (4.6) 
𝐷3� = ∑ 𝐺6𝑖𝑒−𝑚𝑖𝑥36

𝑖=1 + 𝑀6𝑒−𝛾
∗𝑥3 ,                                                                                                                         (4.7) 

 
Here 𝐺𝑚𝑖 = 𝑔𝑚𝑖𝐶𝑖  , 𝑖 = 1,2, … ,6.      

𝐺𝑟𝑠 , (𝑟, 𝑠 = 1,2, … ,6) and 𝑀𝑟 , (𝑟 = 1,2,3, … ,6) are described in Appendix C. 
 
Inversion of the transform: 
The transformed displacements, stresses and temperature changes are functions of the parameters of Laplace and 
Fourier transforms 𝑠 and 𝜉 respectively and hence these are of the form 𝑓(𝑠, 𝜉, 𝑥3). To obtain the solution of the 
problem in the physical domain, we must invert the Laplace and Fourier transform by using the method applied by 
Kumar (2005).  

 
5. NUMERICAL RESULTS AND DISCUSSIONS 
 
In order to illustrate the theoretical results obtained in the previous sections, some numerical results are presented. For 
numerical computation, the values for relevant parameters are taken for Aluminum epoxy like material, the values of 
physical parameters are given below: 

𝜆 = 7.59 × 109 𝑁𝑚−2 𝜇 = 1.89 × 109 𝑁𝑚−2,𝐾 = 1.49 × 107 𝑁𝑚−2,   𝜌 = 2190 𝐾𝑔𝑚−3, 𝑗 = 0.2 × 10−19𝑚2, 
𝛾 = 2.63 × 103 𝑁, 𝜆1 = 0.5 × 1010 𝑁𝑚−2,𝑇0 = 298 𝐾, 𝐼 = 19.6 × 10−8𝑚2 
𝐾∗ = 1.7 × 106 𝐽𝑚−1𝑠−1𝐾−1, 𝑎 = 9.6 × 102𝑚2𝑠−2𝐾−1, 𝑏 = 32 × 102 𝐾𝑔−1𝑚5𝑠−2, 𝑗0 = 0.19 × 10−6𝑚2, 
𝛼0 = 0.9 × 103 𝑁,    𝑏0 = 9.1 × 102 𝑁,    𝜆0 = 0.5 × 109 𝑁𝑚−2, 𝜆1 = .5 × 109𝐶𝑚−1, 𝜆2 = 1.7 × 104𝐶𝑚−1, 
𝜆3 = 0.7 × 109𝑁𝑚−2 
𝜈1 = 0.3 × 106 𝑁𝑠−1, 𝜈2 = 0.457 × 109 𝑁𝐾−1𝑠−1, 𝜈3 = 2.4 × 103 𝐶𝑚−1𝑠−1,𝜒 = 318, 𝐿0 = 1𝑚,𝜓0 = 1𝑁𝑚𝐶−1 

A comparison of the dimensionless form of the field variables for the cases of piezo microstretch thermoelastic medium 
with a laser pulse (PZMTL), piezo microstretch thermoelastic medium without a laser pulse (PZMT) and microstretch 
thermoelastic with laser (MTL) subjected to ramp type heating source is presented in Figures 5-10. The values of all 
physical quantities for both cases are shown in the range 0 ≤ 𝑥1 ≤ 20. 
 
Solid lines, dash lines and lines with large dash corresponds to piezo microstretch thermoelastic medium with a laser 
pulse (PZMTL), piezo microstretch thermoelastic medium without a laser pulse (PZMT) and microstretch 
thermoelastic medium with laser (MTL) respectively. The computations were carried out in the absence and presence 
of laser pulse (𝐼0 = 105, 0) and on the surface of plane 𝑥3 = 1, 𝑡 = 0.1 
 
Fig. 5 shows the variation of normal stress 𝑡33 with the distance 𝑥1. It is noticed that for PZMTL and PZMT, the normal 
stress 𝑡33 show like behavior. Initially the value of normal stress for PZMT monotonically decreases as 𝑥1 increases 
also for PZMTL 𝑡33 decreases monotonically. The value of  𝑡33  exhibit this trend near the application of the source due 
to the heating effect by laser and then remain oscillating for all values of 𝑥1. 
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Fig. 6 displays the variation of tangential stress 𝑡31 with the distance 𝑥1. It is noticed that the behavior of 𝑡31 for 
PZMTL and PZMT show similar trend. Initially 𝑡31 decrease monotonically for MTL which is different from that of 
the behavior of PZMTL and PZMT.  
 
Fig. 7 shows the variation of couple stress 𝑚32 with distance 𝑥1. The behavior and variation of 𝑚32 for PZMTL and 
PZMT remain almost similar to each other for all values of 𝑥1 indicating that the effect of input laser heat source on 
couple tangential stress is not significant under normal source. However the opposite trend of variation of couple 
tangential stress 𝑚32 is observed in microstretch thermoelastic medium (MTL). 
 
Fig. 8 depicts the variation of micro stress 𝜆3∗  with distance 𝑥1. The initial trend and variation of 𝜆3∗  is similar to each 
other for PZMTL and PZMT and tends to zero away from the source. The curve representing the microstress in MTL is 
also similar but the magnitude of microstress in case of MTL is very small in comparison to PZMTL and PZMT. 
 
Fig. 9 depicts the variation of 𝐷3 with distance 𝑥1. The behavior and variation of 𝐷3 is similar to each other for PZMTL 
and PZMT. The initial trend of variation of 𝐷3is monotonically decreasing which approaches to the boundary surface 
away from the point of application of ramp type heating source. 
 
Fig. 10 displays the variation of temperature 𝑇 with distance 𝑥1. The values of temperature change for PZMTL show 
oscillatory trend while for PZMT the temperature change show a monotonically decreasing trend for initial values 
of 𝑥1. 
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Figure-5: Variation of normal stress                                 Figure-6: Variation of tangential stress 
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                      Figure-7: Variation of coupled tangential stress              Figure-8: Variation of microstress 
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Figure-9: Variation of 𝐷3                                             Figure-10: Variation of temperature 

                 
6. CONCLUSIONS 
 
In this problem we have investigated the displacement components, stress components, dielectric component and 
temperature change in a thermo piezo-electric microstretch medium. Laplace transform and Fourier transform 
technique has been used to solve the set of equations mathematically. Theoretically computed variables are also 
exemplified through a specific model to present the results in the transformed domain. 
 
This analysis of results obtained have some following conclusions: 

(1) It can be concluded from the figures 5-13 that all the physical variables have nonzero values only in the 
bounded region. This indicates that all the results obtained here are in agreement with the generalized theory 
of thermoelasticity. 

(2) It is clear from the results that the input laser heat source (value of 𝐼0) has a significant role in the variation of 
all field quantities.  

(3) If the piezo-electric parameters are absent and laser heat source is neglected then the results are obtained for 
generalized thermoelastic problem, then these results are in agreement with Elhagary [30].  

(4) The variation of various stress components differs significantly due to the presence of normal force and due to 
the presence of thermal source. 

(5) The temperature change is also affected due to input laser heat source as well as load/source applied. 
The new model is employed in a piezo-electric microstretch thermoelastic medium as a new concept in the field of 
thermoelasticity. The subject becomes more interesting due to presence of an ultra-short input laser heat source. The 
method of solution in this research can be applied to a large no. of problems in engineering and science. It is hoped that 
this model will serve as more realistic model and will motivate the other authors to solve piezo-electric 
thermoelasticity. 
 
REFERENCES 
 

1. Al-Huniti N.S., Al-Nimr M.A., 2004, Thermoelastic behavior of a composite slab under a rapid dual-phase-lag 
heating, Journal of Thermal Stresses, 27, 607-623. 

2. Al-Qahtani M.H., Datta S.K., 2008, Laser-generated thermoelastic waves in an anisotropic infinite plate: 
Exact analysis, Journal of Thermal Stresses, 31, 569-583. 

3. Chandrasekharaiah, D.S., 1984, A temperature rate dependent theory of piezoelectricity. J. Therm. Stress. 7, 
293–306. 

4. Chen J.K., Beraun J.E., Tham C.L., 2002, Comparison of one-dimensional and two-dimensional axisymmetric 
approaches to the thermomechanical response caused by ultrashort laser heating, Journal of Optics, 4,         
650-661. 

5. Dubois M., Enguehard F., Bertrand L., Choquet M., Monchalin J.P., 1994, Modelling of laser thermoelastic 
generation of ultrasound in an orthotropic medium, Appl. Phys. Lett., 64, 554, 1994. 

6. Elhagary M.A., 2014, A two-dimensional generalized thermoelastic diffusion problem for a thick plate 
subjected to thermal loading due to laser pulse, Journal of thermal stresses, 37, 1416-1432. 

7. Eringen A.C., 1990, Theory of thermomicrostretch elastic solids, International Journal of Engineering Science, 
28, 12, 1291–1301. 

8. Eringen A.C., 2003, Continuum theory of micromorphic electromagnetic thermoelastic solids. International 
Journal of Engineering Science, 41, 653–665. 

 



Arvind Kumar*1, Devinder Singh Pathania2 /  
Dynamical Properties of Piezo-Electric Microstretch Solid Subjected to Laser and Ramp Type Heating… / IJMA- 8(12), Dec.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                         78  

 
9. A.C. Eringen, 1999, Microcontinuum field theories I: Foundations and Solids, Springer-Verleg, New York. 
10. Ezzat M.A., Karamany A. and Fayik M.A., 2012, Fractional ultrafast laser-induced thermo-elastic behavior in 

metal films, Journal of Thermal Stresses, 35, 637-651. 
11. Iesan D., 2006, On the microstretch piezoelectricity, International Journal of Engineering Science, 44,         

819-829. 
12. Iesan D., Quintanilla R., 2007, Some theorems in the theory of microstretch thermo piezoelectricity. 

International Journal of Engineering Sciences, 45, 1–16. 
13. Kim W.S., Hector L.G., Hetnarski R.B., 1997, Thermoelastic stresses in a bonded layer due to repetitively 

pulsed laser heating, Acta Mechanica, 125, 107-128. 
14. Kumar R., Rani L., 2005, Elastodynamic response of mechanical and thermal source in generalized 

thermoelastic half space with voids, Mechanics and Mechanical Engineering, 9, no. 2, 29-45. 
15. Kumar, R., Kumar, A., Singh, D., 2015, Thermomechanical interactions of Laser Pulse with Microstretch 

Thermoelastic Medium, Archives of Mechanics, 67(6), 439-456. 
16. McDonald F.A., 1990, On the Precursor in Laser-Generated Ultrasound Waveforms in Metals, Applied 

Physics Letters, 56, 3, 230-232.  
17. Mindlin, R.D., 1961, On the equations of motion of piezoelectric crystals, Problems of Continuum Mechanics 

(N. I. Muskhelishvili 70th Birthday Volume), 282. 
18. Mindlin, R.D., 1974, Equations of high frequency vibrations of thermo piezoelectric crystal plates. Int. J. 

Solids Struct. 10, 625–637. 
19. Nowacki, W., 1978, Some general theorems of thermo piezoelectricity. J. Therm. Stress. 1, 171–182. 
20. Othman, M.I.A. and Ahmed, E.A.A., 2016, Influence of the gravitational field on a piezo thermoelastic 

rotating medium with G-L theory, Eur. Phys. J. Plus, 131: 358. 
21. Rose L.R.F., 1984, Point-source representation for laser-generated ultrasound, Journal of the Acoustical 

Society of America, 75, 3, 723. 
22. Scruby C.B., Drain L.E., 1990, Laser Ultrasonics Techniques and Applications, Adam Hilger, Bristol, UK, 

1990. 
23. Spicer J. B., A. D. Mckie W., and Wagner J. W., 1990, Quantitative Theory for Laser Ultrasonic Waves in a 

Thin Plate, Appl. Phys. Lett., 57, 1882–1884. 
24. Tauchert, T.R., 1992, Piezo thermoelastic behavior of plate of crystal class 6mm a laminated plate. J. Therm. 

Stress. 15, 25–37. 
25. Vashishth, A.K., Sukhija, H., 2017, Inhomogeneous waves in porous piezo-thermoelastic solids, Acta Mech., 

DOI: 10.1007/s00707-017-1805-8. 
26. Youssef H.M., El-Bary A.A., 2014, Thermoelastic material response due to laser pulse heating in context of 

four theorems of thermoelasticity, Journal of thermal stresses, 37, 1379-89. 
 
Appendix A: 
 

𝐴 = 𝐿𝐴2
𝐿𝐴1

,𝐵 = 𝐿𝐴3
𝐿𝐴1

,𝐶 = 𝐿𝐴4
𝐿𝐴1

,𝐸 = 𝐿𝐴5
𝐿𝐴1

  
𝐿𝐴1 = 𝑎17𝑎142 − 𝑎102 (𝑎14 + 𝜈) − 𝑎9𝑎10(𝑛11 + 𝑎14) − 𝑎7𝜈𝑛11  
𝐿𝐴2 = −𝜉2(𝑎17𝑎142 − 𝑎102 (𝑎14 + 𝜈) − 𝑎9𝑎10(𝑛11 + 𝑎14) − 𝑎7𝜈𝑛11)  
𝐿𝐴3 = 𝑎142 (𝑎32 − 𝑎18) + 𝑎10(𝑎9𝑎13 + 𝑎14𝑎17) − 𝑎9𝑎14𝑎19 + 𝜈𝑎7𝑎13 + 𝜈𝑎10(𝑎17 − 𝑎19) + 𝜈𝑎18𝑛11 − 𝑎7𝑎142 𝜉1 +
𝑎102 𝜉1(𝑎14 + 𝜈) − 𝜈𝑎32𝑛11 − 𝑎7𝑎142 𝜉2 + 𝑎102 𝑎14𝜉2 + 𝑎7𝜉2𝑛11𝜈 + 𝑎42(𝑎9𝑎10 + 𝑎7𝜈)𝑠2 + 𝑎9𝑎10(𝑎14 + 𝑛11)𝜉1 +
𝑎7𝜈𝑛11𝜉1 + 𝑎9𝑎10𝜉2(𝑎14 + 2𝑛11) + 𝑎3𝑎4𝑠(2𝑎10𝜈 + (𝑎9 + 𝑎10)𝑎14)  
𝐿𝐴4 = 𝜈(𝑎17𝑎19 − 𝑎13(𝑎18 + 𝑎32) − 𝑎18𝜉2𝑛11𝜈) + 𝑎142 �2𝑎32𝜉2 + 𝑎18(𝜉1 + 𝜉2)� + 𝜉1𝑎14𝜉2(𝑎7𝑎14 − 𝑎102 ) −
𝑎42𝑎18𝜈𝑠2 + 2𝑎32𝜉2𝜈𝑛11 − 𝑎9𝑎10𝑎13𝜉1 − 𝑎10𝑎17𝜉1(𝑎14 + 𝜈) + 𝑎19𝜉1(𝑎9𝑎14 + 𝑎10𝜈) − 𝜉1𝜈(𝑎7𝑎13 + 𝑎18𝑛11) −
𝑎10𝜉2(𝑎9𝑎13 + 𝑎17𝑎14) + 𝑎9(𝑎19𝑎14𝜉2 − 𝑎10𝜉4𝑛11) + 𝑎3𝑎4𝜈𝑠(𝑎19 − 𝑎17) − 𝑠2𝑎42𝜉2(2𝑎9𝑎10 + 𝑎7𝜈) −
𝑎9𝑎10𝜉1𝜉2(𝑎14 + 2𝑛11) − 𝑎7𝜉1𝜉2𝑛11𝜈 − 2𝑎3𝑎4𝜉2𝑠(𝑎9𝑎14 + 𝑎102 + 𝑎10𝜈)  
𝐿𝐴5 = 𝑎142 (𝑎32𝜉4 − 𝑎18𝜉1𝜉2) − 𝑎32𝜈(𝑎13𝜉2 + 𝜉4𝑛11) + 𝜉1𝜈(𝑎13𝑎18 − 𝑎17𝑎19) + 𝑎42𝑠2(𝑎9𝑎10𝜉4 + 𝑎18𝜉2𝜈) +

𝜉1𝜉2(𝑎9𝑎10𝑎3 + 𝑎14𝑎10𝑎17 − 𝑎14𝑎9𝑎19) + 𝑎10𝑎9𝜉1𝜉4𝑛11 + 𝑎18𝜉1𝜉2𝑛11𝜈 + 𝑎3𝑎4𝑠 �
(𝑎9 + 𝑎10)𝑎14𝜉4 + 𝑎14𝜉2𝜈

−𝑎19𝜉2𝜈
�, 

𝐹 = �𝑎2
2−𝑎1𝑎16−𝑎5𝑎15�

𝑎1𝑎5
,𝐺 = (𝑎15𝑎16 − 𝑎22𝜉2)/𝑎1𝑎5 

𝑓1 = �𝛾∗2 − 𝜉2�
2
�
𝑎4𝑠 𝑎10𝛾∗

2 − 𝑎17 −𝑛11�𝛾∗
2 − 𝜉2� + 𝑎13

−𝑎3 𝑎7𝛾∗
2 − 𝑎18 𝑎10𝛾∗

2 + 𝑎19
0 𝑎9 𝑎14

�’ 

 

𝑓2 = �𝛾∗2 − 𝜉2� �
−𝑎14 𝑎10𝛾∗

2 − 𝑎17 −𝑛11�𝛾∗
2 − 𝜉2� + 𝑎13

−𝑎10 𝑎7𝛾∗
2 − 𝑎18 𝑎10𝛾∗
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2 − 𝑎17
−𝑎10 −𝑎3 𝑎7𝛾∗

2 − 𝑎18
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−𝑎14 𝑎4𝑠 𝑎10𝑚𝑖
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𝜆
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𝜆0𝐿02
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, 𝑏4 =

𝛽0𝑇0
𝜌𝑐12

,𝑏5 =
𝜇 + 𝐾
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𝜇
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, 𝑏7 =
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𝛾
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𝑔4𝑖 = −𝑚𝑖𝑏12𝛼2𝑖 + 𝑚𝑖𝑏4 − 𝑚𝑖𝑏15𝛼3𝑖𝑠, 𝑔5𝑖 = 𝑠𝛼3𝑖 ,𝑔6𝑖 = 𝑏17𝑚𝑖𝛼2𝑖 + 𝑚𝑖𝑏18, for 𝑖 = 1, . .4 
and 𝑔1𝑖 = −𝜄𝜉𝑏2𝑚𝑖, 𝑔2𝑖 = (𝑏5𝑚𝑙

2 − 𝑏6𝜉2) − 𝑏5𝛼4𝑖, 𝑔3𝑖 = −𝑏8𝛼4𝑖𝑚𝑖, 
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