International Journal of Mathematical Archive-8(12), 2017, 95-100
@gmAvailable online through www.ijma.info 1SSN 2229 - 5046

RESULTS ON /3\s -NUMBER FOR THE GENERALIZED PETERSEN GRAPHS P (n , k)

B.JOHN*1, J. JOSELINE MANORAZ AND I. PAULRAJ JAYASIMMONS3

1Department of Mathematics,
A.].C. English School, Kumbakonam, Tamil Nadu, India.

2PG & Research Department of Mathematics,
T.B.M.L College, Porayar. Nagapattinam Dt, India.

3Department of Mathematics,
Amet University, Kanathur, Chennai, India.

(Received On: 02-11-17; Revised & Accepted On: 24-11-17)

ABSTRACT
A set S of vertices of a graph G is said to be a Majority Independent set(or MlI-set) if it induces a totally disconnected
subgraph with | N[S] |2’7§—| and| pn[v,S] |>| N[S ]|—|7§—| for everyveS. In this note, we investigate the

Majority Independence Number 3, (G) for Generalised Petersen graphs and also discussed whether itis /3, -excellent
or not.
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1. INTRODUCTION

We consider connected, undirected, finite graphs without loops. We follow the notations and terminology of Harary[2]
and Haynes et al. [3]. Let G =(V,E) be a graph with |V| =p and |E| =(. For every vertex VeV (G), the open
neighbourhood N (v)={u €V (G)/uveE(G)}and the closed neighbourhood N[v]=N(v)U{v}. Let S be a set
of vertices, and let u € S . The private neighbor set of U with respectto S is pn[u,S]={v/N[v]NS={u}}

In 2006, A subset S <V (G) of vertices in a graph G is called majority dominating set if at least half of the vertices of
V (G)are either in S or adjacent to the vertices of S .

ie., |N [S]| > [E—l . A majority dominating set S is minimal if no proper subset of S isa majority dominating set of

G. The majority domination number y,, (G) of a graph G is the minimum cardinality of a minimal majority

dominating set in G. The upper majority domination number l?(G) is the maximum cardinality of a minimal
majority dominating set of a graph G. This parameter has been studied by Swaminathan. V and Joseline Manora. J[8].
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In 2014, A set S of vertices of a graph G is said to be a Majority Independent set(or MI-set) if it induces a totally

disconnected subgraph with | N[S] |2(§—| and| pn[v,S]|>| N [S]|—[£—‘ for everyVeS . If any vertex setS’

2

properly containing S is not majority independent. Then S is called Maximal Majority Independent set. The minimum
cardinality of a maximal majority independent set is called lower majority independence number of G and it is also

called Independent Majority Domination number of G. It is denoted by i,\,I (G). The maximum cardinality of a
maximal majority independent set of G is called Majority Independence number of G and it is denoted by 5, (G). A

Py -set is a maximum cardinality of a maximal majority independent set of G. This parameter has been highly
developed by Joseline Manora. J and John. B[5].

Claude Berge in 1980, introduced B graphs. These are graphs in which every vertex in the graph is contained in a
maximum independent set of the graph. Fircke et al. [1] in 2002 made a beginning of the study of graphs which are
excellent with respect to various parameters. - -excellent trees and total domination excellent trees have been studied in

[1]. Also in 2006, N.Sridharan and Yamuna [7] made an extensive work in this area. In 2011, Swaminathan. V and
Pushpalatha. A.P have defined S -excellent graphs, just /3, -excellent graphs and very S -excellent graphs and they
have made a detailed study in this paper [7].

Definition: For each N>3 and O<k<n, P(n,k) denotes the Generalized Petersen graph with vertex set

V(G):{ul,uz,...,u % vz,...,vn} and the edge set E(G):{uiu

n! " 1!

uiVi ’ViVi+k(m0dn)}’ 1SIS n.

i+1(mod n) !

Definition: Let G=(V,E) be a simple graph. Let ueV(G). The vertex U is said to be f,, -good if U is
contained in a f,, -set of G. The vertex u is said to be S, -bad if there exists no f,, -set of G containingu. A

graph G is said to be [, -excellent if every vertex of G is /3, -good. This parameter has been studied by Joseline
Manora. J and John. B [4].

2. Exact 3, -number for G=P (n,k)

Theorem 2.1: Let G be a Generalization of Petersen graph P(n,k) with k=1, N>3. Then

p—‘ﬂ if n<6
4

L (G)= g) if n=7

-3 .
P=2 it n>8
| 4
Proof: Let G be a Generalized Petersen graph P(n,l) with |V (G)|=2n: P. The graph G consists of two
cycles Cl and C 2 such that the cycle Cl with vertex set {Vl,Vz ,...,Vn} is nested by the another cycle C2
with vertex set {ul,uz ,...,Un}and each Uj in C2 is joined to exactly one Vi in Cl and

d(vi)=d(ui)=3,1=12,...n.
Case-(i): When N < 6. The maximum majority independent sets are{Vi » U i+1 (modn) }, 1=12,...,6. Then
,BM(G):Z:P%A'}, ifnN<6.
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Case-(ii): When N=7. The maximum majority independent sets are {V

i Yi+2(modn) i=1’27---v7}'

Therefore By (G)=2= (Bj :
7

Case-(iii): When n28.LetD={U1,U2,..,Ut},t:Lp_gJand d(Ui,Uj)ZZ,iij.
4
t
Then [N[D1=S"(d(u:)+1) =4t =4 p__SJ_{EW.N f veD,
en| [ ]| IZ:;( (u|)+) [ 2 > 5 so, for every
|pn [V,D]| >|N[D]|_{£—l. Hence D isa S -setof G .
2

p-3
4

d (Vi Vi )22, 1# ] . But |pn [V,S]| §| N [S]|—{g—| forany VE S . Therefore S isnota

Therefore ﬁM(G)Z|D|={pT_3J. Suppose S ={V1,V2,..,Vr}, r:{ J+1 with

ﬂM -setof G . Hence IBM(G)<|S| = \‘pATBJH" = Bwu (G)SLPZSJ

Therefore ﬂM (G) = {p__?’J The maximal majority independent sets of G are
4

{Vi’ Uis1(modn)* Vi+2(modn): Yi+3(modn) }
{“i’ Vi+1(modn)’ Yi+2(modn)’ Vi+3(modn) } i=1,2,...,n.

Proposition 2.2[4]: Let G be a Generalization of Petersen graph P(n,k) with k=l, N>3. Then
G =P(I’l ,1) is B\ -excellent.

Proof: In all the cases of the above theorem [2.1], all vertices of \Y (G) are contained in any one of the ,BM -sets of

G . Therefore all vertices are B\ -good vertices. Hence G = P( n, 1) is B\ -excellent.

Theorem 2.3: Let G be a Generalization of Petersen graph P(I"I,k) with k=2, N>3. Then

PW if n<11

8

[BJ if n>12
6

Proposition 2.4: Let G be a Generalization of Petersen graph P(n,k) with k=2, N>3. Then
GZP(H,Z) is B\ -excellent.

Bm(G)=
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Theorem 2.5: Let G be a Generalization of Petersen graph P(n,k) with K=3, N>3. Then

{p—‘ﬂ if n<10

ﬁM (G): 4
{p%]—l if n>11

Proof: Let G be a Generalized Petersen graph P(n,3) with IV (G)|=2n= P vertices. Then G consists of
two cycles Cl and C 2 such that the cycle Cl with vertex set {Vl,Vz ,...,Vn} is nested by the another cycle
C2 with vertex set {ul,uz,...,un} and each Uj in C2 is joined to exactly one Vj in Cl, i=1,2,...,n
and d (v;)=d(u;)=3.

Case-(i): When N <10. Let N=5,6,7.Then p=2n=10,11,12,13,14.

Let D:{ul,vz}. |N[D]|:7Z|V§—‘. Therefore |N[D]|_(§—l:2 orlorO.
|pn [Ui,D]|=3>|N[D]|—|Vg—‘, for VUiED,iZl,Z. Therefore D is a maximal majority
. p—2
independent setof G = S, (G)=2= et
Let N=8,9,10. Then p=2n=16,18,20 . Let D = {U,V,Us}. |N[D]|:102{§—‘.

Then ‘pn[ui, D]‘:4or3>|N [D]|—{g—l,for Vu,eD,i=1,3 and

[pnv,, D] =3>|N [D]|—[ﬂ, V,eD. Therefore £, (G)=2= [pT_ﬂ

Case-(ii): When N >11. Let DZ{Ul,UZ,.., Ut}, t=|rpT_4—‘—l

.. t
and d(U;,u j) >2,1#] . Then |N[D]|:(Zd(ui)J+l = 3t+12{g—‘.

i=1

Also, IN[D]| p|_J0 1 niseven d [pn[u;, D]|=4o0r 3or 2
o 2| 7|1 if nisoddg TP = '

Therefore ‘ pn[u;, D]‘ >| N [D]|—{§—‘ ,for V Uj€D . Therefore D is a maximal majority independent

setof G . Hence /3, (G)2|D|= [DT4—‘_1 :
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Suppose S ={V1,V2,..,Vr}, r:[pT_Ar—|—1+1 with d(Vi,Vj)ZZ,iij.

r
IN[S]|=| D d(v)) |[+1=3r+1 Z{ﬂ' But |pn[vi,S]|s|N[S]|—{gl, forany V; €S .
i=1

S isnota B -setof G . Therefore S, (G) < |S|: |7 p;4—‘ = By (G) S|V p;4—‘_l.

Hence S, (G) :|7pT_4—‘ -1

The maximal majority independent sets of G=P (n,3) are

{“i Vit 1modn) Vi+2(modn)Vi+3(modn)’ ':1’2’3""’”}’” n=11,12..

{”i VittmodnyYi+2(modnyVi+3(modn)’ Yi+4(modn)’ ':1’2’3"“’”}’
if N =13,14 ...

In general, the maximal majority independent sets of G are
{ui’Vi+1(modn)’ui+2(modn)’vi+3(modn); ':1'2’3""’”}'

when N =3k —1,3k,3k +3,3k +4,3k + 7,3k +8, ,..., if k=4.
when N =3k +1,3k+ 2,3k +5,3k + 6,3k +9,3k +10, ...,if k=4,

then the maximal majority independent sets of G are

{ui’Vi+1(modn)’ui+2(modn)’Vi+3(m0dn)’ui+4(modn) ;':1’2'3"“’”}'

Proposition 2.6: Let G be a Generalization of Petersen graph P(nk) with k=3,n>3. Then G = P(n,3)

is ﬂM -excellent.

Proof: All vertices of V (G) are contained in any one of the ,BM -sets of G by theorem (2.5). Therefore all

vertices of G = P(n ,3) are B\ -good vertices. Hence G = P(n ,3) is By -excellent.

CONCLUSION

In this paper we surveyed the ﬂM -number for the Generalised Petersen graphs GZP(n,k)Where

k=12,3, n>3 and also discussed ﬂM -excellent. Further we extend this idea to find ﬂM -excellent and ﬂM -

number for G =P(n,k)where K> 3, N >3 and also extend this idea for the some more interesting different

types of graphs.
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