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ABSTRACT
In this paper, we prove two common coupled fixed point theorems for four mappings in dislocated quasi b-metric
spaces and provide two examples to support our theorems. Our results generalize some existing results in the
literature.
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1. INTRODUCTION

Hitzler [7] and Hitzler and Seda [6] introduced the notion of dislocated metric spaces and generalized the celebrated
Banach contraction principle in such spaces.

Zeyada et.al [15] initiated the concept of dislocated quasi metric spaces and generalized the results of Hitzler and Seda
[6] in dislocated quasi metric spaces.

The notion of b-metric space was introduced by Czerwic [3] in connection with some problems concerning with the
convergence of non measurable functions with respect to measure.

Recently Klin-eam and Suanoom [8] introduced the concept of dislocated quasi b-metric spaces and which generalize
b-metric spaces [3] and quasi b-metric spaces [13] and proved some fixed point theorems in it by using cyclic
contractions.

The authors [1,5,8,10,11,12,14] etc. obtained fixed, common fixed points and common coupled fixed point theorems in
dislocated quasi b-metric spaces using various contraction conditions for single and two maps.

In this note, we prove two common coupled fixed point theorems for four maps in dislocated quasi b-metric spaces and
we also give examples to support our theorems.

Bhaskar and Lakshmi kantham [4] developed some coupled fixed point theorems in partially ordered metric spaces.
Lakshmi kantham and Ciric [9] defined common coupled fixed points for a pair of mappings. Abbas et al. [2]
introduced w-compatible mappings and proved some common coupled fixed point theorems in cone metric spaces.
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First we recall some known definitions and lemmas.

Definition 1.1: let X be a non-empty set, s > 1 (a fixed real number) and d: X x X — [0, «) be a function. Consider the
following condition on d.
(1.1.1) d(x,x) =0,vxeX
112) dx,y)=dy,x)=0=>x=y,Vx,yeX
(1.1.3) d(x,y) =d(y,x), Vx,yeX
(1.1.4) d(x,y) <d(x,z) +d(z,y),Vx,y,zeX
(1.1.5) d(x,y) <sl[d(x,z) +d(z,v)],Vx,y,z eX
(i) If d satisfies (1.1.2), (1.1.3) and (1.1.4) then d is called a dislocated metric and (X, d) is called a dislocated
metric space.
(ii) If d satisfies (1.1.1), (1.1.2) and (1.1.4) then d is called a quasi metric and (X, d) is called a quasi metric space.
(iii) If d satisfies (1.1.2) and (1.1.4) then d is called a dislocated quasi metric or dg-metric and (X, d) is called a
dislocated quasi metric space.
(iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space.
(v) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called a b-metric and (X, d) is called a b-metric
space.
(vi) If d satisfies (1.1.2) and (1.1.5) then d is called a dislocated quasi b-metric and (X, d) is called a dislocated
quasi b-metric space or dqg b-metric space.

Definition 1.2: Let (X, d) be a dq b-metric space. A sequence {x,,} in (X, d) is said to be
(i) dg b-convergent if there exists some point xeX such that lim,_,. d(x,,x) = 0 = lim,,_,,, d(x,x,).In this
case x is called a dq b-limit of {x,,} and we write x,, > x asn - oo.
(i) Cauchy sequence if lim,, ;00 d(Xp, X)) = 0 =1imy, 100, d (X, X).
The space (X, d) is called complete if every Cauchy sequence in X is dq b-convergent.

One can prove easily the following Lemma.

Lemma 1.3: Let (X, d) be a dg b-metric space and {x,,} be dg b-convergent to x in X and yeX be arbitrary.Then
1
;d(x, y) < liminf d(x,,y) < limsupd(x,,y) < sd(x,y)
n—-oo n—oo,
%d(y, x) < lim,_, infd(y, x,) <lim,_, supd(y, x,) < sd(y, x).

Definition 1.4([4]): Let X be a non-empty set .An element (x,y)eX x X is called a coupled fixed point of a mapping
F: XxX->Xifx=F(x,y) andy = F(y,x).

Definition 1.5: Let X be anon-empty setand F: X X X = X, f: X — X be mappings .
i) ([9]). Anelement (x,y)eX x X is called a coupled coincidence point of Fand f if fx = F(x, y) and
fy = F(y.x).
(i) ([9])- An element (x,y)eX x X is called a common coupled fixed point of F and f if x = fx = F(x, y) and
y =fy =F(y.x).
(i) ([21). The pair (F, f) is called w-compatible if f(F(x,y)) = F(fx,fy) and f(F(y,x)) = F(fy, fx)
whenever there exist x,y €eX with fx = F(x,y) and fy = F(y, x).

2. MAIN RESULT
Before proving our main theorems, we state the following

Definition 2.1: For the integer s > 1, let ®; denote the set of all functions ¢: [0, ©) — [0, o) satisfying the following
(i) ¢ is monotonically non-decreasing,
(i) Yo, s (t) < oo forall t > 0, (iii) @(t) <t for t>0.

From (i) and (iii), it is clear that ¢(0) = 0.

Theorem 2.2: Let (X, d) be a complete dislocated quasi b- metric space with fixed integer s > 1and F,G: X X X - X
and S,T: X —» X be continuous mappings satisfying

(2.2.1) d(F(x, V), G (u, v)) < p(max{d(Sx,Tu),d(Sy,Tv)}) forall x,y,u, v € X, where ¢ € ®;,

(2.2.2) d(G(x, ), F(u, v)) < @(max{d(Tx,Su),d(Ty,Sv)}) forall x,y,u,v € X, where ¢ € ®s,

(223 FX xX) €TX),GX xX) cSX),

(2.2.4) FS = SF and GT =TG.

Then F, G, Sand T have a unique common coupled fixed pointin X x X.
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Proof: Let (xg, vo)e X X X.

From (2.2.3), there exist sequences {x, }, {y,.}, {z,,} and {w,,} in X such that
F(x2n, Yan) = TXons1 = Zon,
F(Van X2n) = TY2n41 = Wan,
G(2n+1) Yone1) = SXaniz = Zons1s
G(¥an+1 X2n+1) = SYant2 = Wopgg m=0,1,2, ...

Case-(i): Suppose max {d(Zay, Zon-1), A(Zan—1, Z2n), A(Wapn, Won 1), d(Wap_1, Wo, )} = 0 for some n.
Then zy,_1 = Zy, and wy,_; = w,, from (1.1.2). Now from (2.2.1),

A(Zyn) Zons1) = d(F(XZn'yZn)'G(x2n+1'y2n+1))
< p(max{d(z3n-1, Z20), A(Wan—1, Wpn)}). (1)

From (2.2.2) we have
A(Zyn41)Zan) = d(G(x2n+1ry2n+1)' F(x2nry2n))
< (p(max{d(ZZn' ZZn—l)' d(WZn' WZn—l)})- (2)

From (2.2.1) and (2.2.2), we have
d(Wan, Wany1) = d(F(yZn' xZn):G(y2n+1ﬁx2n+1))

d < (p(max{d(WZn—lt WZn)' d(ZZn—lﬁ ZZn)})- (3)
an
d(Wan+1, Wan) = d(G(J’zn+1' Xan+1), F(Van, xZn))

< p(max{d(Wapn, Won—1), d(Z2n, Zzn-1)})- (4)

Since ¢ is monotonically non-decreasing, we have
d(Z2n Z2n+1)) A(Zans1, Z2n), } ( { d(Zan-1,Z2n), A(Z2n) Zan-1), })
max < @ |max 5
{d(WZn' Wans1), @(Want1, Wan) (p( ) d(Wan_1, Wan), d(Wan, Wan_1) ©)
=@(0) =0.

Thus z,,, = Zype1and Wy, = Wanq from (1.1.2).

Continuing in this way, we have z,,_1 = Zyp = Zapyq = = aNAd Wy 1 = Woyy = Wopyq =

Hence {z,} and {w, } are constant Cauchy sequences in X.

Case-(ii): Suppose max {d(z,_1, 2,,), d(Zy, Zpn_1)d(Wy_1, Wy,), d(w,, w,_,)} # 0 for n=1, 2, 3,.....As in
Case(i), we have from (5) that

d(Z2n Z2n+1)) A(Zans1, Z2n), } <o (max{ d(Zan-1,Z2n), A(Z2n) Zon-1), })

d(Wan, Wans1), d(Wap 41, Way) AdWan—1,W2p), d(Wap, Wap_1)
This is true for n=1, 2, 3,...

max {

Hence using the monotonically non-decreasing property of ¢, we get
d(Zn' Zn+1)’ d(zn+1' Zn)' } ( { d(Zn—lﬁ Zn)’ d(Zn' Zn—l)’ })
< ¢ |max
d(Wn' Wn+1)r d(Wn+1r Wn) ¢ d(Wn—l' Wn)' d(Wnr Wn—l)
d(zn—z' Zn—l)' d(Zn—lr Zn—z)' })

dWn—2, Wn_1),d(Wp_1,Wp_5)

max {

< ¢? (max {

<o (max{ d (20, 21), d(21, 2o), })

d(wo, wy), d(wy, wy)

(6)

Now for all positive integers n and p, consider, using (6),
d(zn' Zn+p) <s d(zn' Zn+1) + Szd(zn+1' Zn+2) +t Spd(zn+p—1' Zn+p)

d ) 'd ) )
< 5 @M(E) + S2PMHI(E) + -+ sPO™PTI(E), where ¢ = max{ (20, 21), d(24, 2o) }

d(wo, wy), d(wy, wy)
< s"@(t) + sV LMI(E) + - + sV PTL(E), since s> 1

=S T slol(0) S TR st 0! (1),

Since Y72, st @'(t) converges for all t > 0, its remainder after n terms tends to zero as n —oo.
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Hence, we have lim,,_, d(z,, z,4,) = 0. Also using (6), we have
d(zn+p'zn) <s d(Zn+p'Zn+1) + 5 d(Zp+1,20)
< s? d(zn+p'zn+2) + 5% d(Zps2) Zns1) + 5 d(Zn41, 2)
<s® d(zn+p'zn+3) + 5% d(Zp43) Zna) + 5 A(Zni2, Zni1) + 5 d(Zni1, 2y)

< st d(zn+p'Zn+p—1) +sP71 d(Zn+p_1,zn+p_2) + o +5? d(Znga) Zni1) + 5 A(Zns1, 20)

< sPTL MPTL(E) + sPT L PT2(E) 4 - +5% @L() + 5 @™ (t), where t is as in above

< sMPTL pMAPTL(t) f gNAPTZpNAP2() o 4L MFL(E) 4 ™ ™(t), since s> 1
PRI o

=Y st gl (e) S TR st ol(0).

As in above, we have lim,, o, d(2p1p,2,) = 0.
Similarly we can show that lim,,_,o d(Wp, Wy, ) = 0 and lim,,_, e d(Wy4p, wy) = 0.
Thus {z,} and {w,} are Cauchy sequences in X.

Since X is a complete dislocated quasi b- metric space, there exist z, w eX such that {z,} converges to z and {w,}
converges to w.

Since SF = FS and S and F are continuous, we have
Sz = limn—woS(ZZn) = liInn—wo S(F(xZn' yZn)) = limn—»ooF(SXZn' SyZn) = liInn—wo F(ZZn—ll W2n—1)
= F(limy,_ e Zopn—1, liMy 00 Won_1) = F(z,w).

Similarly we have Sw = F(w, z).

Since TG= GT and T and G are continuous, we have

Tz = limy, o T(GO2n41, Yan+1) = liMpeo G(TXon11, TV2n41)) = limy o, G(Zop, Wan)
= G(limy,_, 0 Z2p, limy,_, o W) = G (2, W).

Similarly we have Tw = G(w, 2).
d(Sz,Tz) = d(F(Z, w),G(z, W)) < @(max{d(Sz,Tz),d(Sw,Tw)}) from (2.2.1)
d(Sw,Tw) = d(F(W, z),G(w, Z)) < @(max{d(Sz,Tz),d(Sw,Tw)}) from (2.2.1)

Thus we have max{d(Sz,Tz),d(Sw,Tw)} < @(max{d(Sz,Tz),d(Sw,Tw)}),
which in turn yields that d(Sz,Tz) = 0 = d(Sw, Tw), since ¢(t) <t forallt > 0.

Similarly using (2.2.2), we can show that
d(Tz,5z) = 0 = d(Tw, Sw).

Hence by (1.1.2), we have Sz = Tz and Sw = Tw.
Letx= Sz=Tzand f = Sw =Tw.

Then Sa = $2z= S(F(z,w)) = F(Sz,Sw) = F(a,p),
Sp = S?w = S(F(w,2)) = F(Sw,Sz) = F(B,a),
Ta =T?2=T(G(z,w)) = G(Tz,Tw) = G(a,p),
TR =T*w= T(Gw,2)) = G(Tw,Tz) = G(B, a).

Now using (2.2.1) and (2.2.2), we have
d(Sa,a) = d(F(a,B),Tz) = d(F(a,p),G(z,w)) < ¢(max{d(Sa,a),d(SB,)}) .
d(a,Sa) = d(TZ,F(a, ,8)) = d(G(z, w),F(a,[)’)) < g(max{d(a,Sa),d(B,SB)}) .
d(SB,B) = d(F(B,a),Tw) = d(F(B,a),G(w,2)) < ¢(max{d(SB, B), d(Sa, a)}) ,
d(B,SB) = d(TW,F(ﬁ,a)) = d(G(w, z),F(B, a)) < p(max{d(a,Sa),d(B,SB)}).

Since ¢ is monotonically non-decreasing, we have

max{d(Sa, @), d(a,Sa),d(SB, B),d(B,SB)} < p(max{d(Sa, @), d(a,Sa),d(SB, B), d(B,SB)})

which in turn yields that Sa = a and SB = 8, since ¢(t) < t for t > 0 and from (1.1.2).
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Similarly we can show that Ta = a and T8 = B.

Thus F(a,B) =Sa=a=Ta= G(a,B)and F(B,a) =SB =B=TB = G(B,a).
Hence (a, B) is a common coupled fixed pointof F, G, Sand T.

UNIQUENESS:

Let (p, q) be another common coupled fixed point of F, G, S and T. Then F(p,q) =Sp=p=Tp = G(p,q) and
F(q,p) =Sq=q=Tq=G(q,p).

Consider d(a,p) = d(F(a,B),G(p,q)) < p(max{d(a,p),d(B, q)}) from (2.2.1),
d(p,a) = d(G(p,q),F(a,B)) < p(max{d(p,a),d(q,p)}) from (2.2.2),
d(B,q) = d(F(B,2),G(q,p)) < p(max{d(a,p),d(B,q)}) from (2.2.1),
d(q,B) = d(G(q,p), F(B, @) < p(max{d(p, a),d(q,)}) from (2.2.2).

Since ¢ is monotonically non-decreasing, we have
max{d(a,p),d(p,@),d(B,q),d(q,p)} < ¢ (max{d(a,p),d(p, @), d(B,q),d(q,£)})

which in turn yields that « = p and B = q, since @(t) < t for t > 0 and from (1.1.2).
Thus (a, B) is the unique common coupled fixed point of F, G, Sand T.

Example 2.3: Let X = [0,1] and d(x,y) =[x —y|*> + |x|. Let F, G: XXX > X and S,T:X —» X be defined by
F(x,y) = %,Sx = E,G(x,y) = % Tx = g Let ¢: [0,0) — [0, o) be defined by ¢(t) =£ .
(i) Clearly d(x,y) =d(y,x) =0=>x=y
(idy)=lx—ylP+Ixl=lx—z+z—-y|* + x|
2[lx = z* + 1z = yI?] + |x]
2[lx = z|* + |x| + |z = yI* + |z[]
sld(x,z) +d(z,y)] , wheres=2.

A IA 1

x+y u+v) x+y u+ v)? | |
N 64

d(F(x,y),G(u, v)) = d(

64 ' 96 64 96
_|3x—2u+3y—2v|2 x+y
- 6 % 32 64 64
y
<———  2[I3x—2ul?+ |3y -2 4=
" 3632 %32 213x — 2ul® + 3y v|]+64+64
2 ea
16><32 |___ +___|] 61 62
[ u? y v2+x y]
~ 3211612 3 162 3 22
slb-3 B 33
—31 2
=33 [d(Sx, Tu) + d(Sy, Tv)]
1

< E max{d(Sx, Tu),d(Sy, Tv)}

—max{d(Sx, Tu),d(Sy, Tv)}
= @(max{d(Sx,Tu),d(Sy,Tv)}), since p(t) = i.

.p»—x

Similarly we can show that d(G (x, ), F(u, v)) < @(max{d(Tx,Su),d(Ty, Sv)}).

Also it is clear that F, G, S and T are continuous, FS =SF, GT =TGand F(X X X) € T(X),G(X xX) € S(X) . Thus
all conditions of Theorem 2.2 are satisfied. Clearly (0, 0) is the unique common coupled fixed point of F, G, Sand T in

X xX.

Now replacing the completeness of X, continuities of F, G, S and T and commutatively of pairs (F, S) and (G, T) by
w-compatible pairs (F, S) and (G, T) and completeness of one of S(X) and T(X), we prove a unique common coupled
fixed point theorem. In fact, we prove the following theorem.
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Theorem 2.4: Let (X, d) be a dislocated quasi b- metric space with fixed integer s> 1 and F,G: X X X - X and
S,T:X - X be mappings satisfying
(2.4.2) d(F(x, v),G(u, v)) <o (émax{ d(Sx,Tu),d(Sy, Tv) }) forall x,y,u,v € X, where @ € ®s and
¢ is continuous,
(2.4.2) d(G(x, ), F(u, v)) <o (émax{d(Tx,Su), d(Ty, Sv)}) forall x,y,u,v € X, where @ € ®; and

¢ s continuous ,
(243)F(X xX) STX),G(X xX) S SX),
(2.4.4) one of S(X) and T(X) is a complete sub space of X,
(2.4.5) the pairs (F,S) and (G, T) are w-compatible.
Then F, G, Sand T have a unique common coupled fixed point in X x X.

Proof: As in proof of Theorem (2.2), for x,,y, € X, the sequences {z,} and {w,} are Cauchy in X.
Suppose S(X) is a complete sub space of X.

Since zyn4q = Sxone, € S(X), there exist z, u € X such that z,,,; & z = Su and since w,,.1 = SYon42 € SX),
there exist w, v € X such that w,,,,; = w = Sv. Hence clearly z,,, - zand w,, - w.

By Lemma 1.3, we have
§ d(F(u' U),Z) = limn—wo ll’lfd(F(u, 'U), G(x2n+1' y2n+1))
< lim,_,, inf¢ (%max{d(Su, Tx3n41), d(SV, Ty2n+1)}), from (2.4.1)

= lim,,_,,, inf ¢ (ﬁ max{d(z, z5,), d(w, WZn)})
= ¢(0), since ¢ is continuous, z,, = zand w,, = w.
=0

Thus d(F(u,v),z) = 0.

Also by Lemma 1.3 and (2.4.2), we can prove that d(z, F(u,v)) = 0.
Hence Su = z = F (u, v).Similarly we can show that Sv = w = F(v, u).
Thus (u, v) is a coupled coincidence point of S and F.

Since the pair (F, S) is w-compatible, we have
Sz = S(Su) = S(F(u,v)) = F(Su,Sv) = F(z,w) and
Sw = S(Sv) = S(F(v,u)) = F(Sv,5u) = F(w, 2).

Now using Lemma 1.3, (2.4.1) and monotonically non-decreasing property of ¢, we have
§ d(Sz,2) = l d(F (z,w),2) < limy,_q, inf d(F (2, W), G (Xzns1, Vans1))
< lim,_,, inf¢ (i max{d(Sz, z,,), d(Sw, WZn)})
< (Zsizmax{s d(Sz,z),s d(Sw, W)})
< ¢ (2max{d(Sz,2), d(sw,w)}).

Similarly, we have
i d(z,5z) = i d(z,F(z,w)) < lim,_o infd(G (Xn11, Yans1), F(z,W))

< lim,,_,o inf ¢ (%max{d(zzn,Sz). d(Wzn'SW)})
) (%’MX{S d(z,52),s d(w, SW)})
<o Gmax{d(z, Sz), d(W'SW)})’

~d(w,Sw) = = d(w, F(,2)) < 1imy 0 Infd(G Vzns1, Xznsr) FW, 2))
< lim,_,, inf¢ (Zsiz max{d Wy, SW), d(z5p, Sz)})
<g (i max{s d(w, Sw),s d(z, SZ)})
<¢ (l max{d(z,Sz), d(w, SW)}),
© 2017, IIMA. All Rights Reserved 106



K. P. R. Rao*, E. Taraka Ramudu** /
Common Coupled Fixed Point Theorems for Four Mappings in Dislocated Quasi B-Metric Spaces / IJMA- 8(12), Dec.-2017.

% d(Sw,w) = % d(F(w,2),w) < limy_q infd(F(W,2), G(an+1, X2n41))
< lim,,_,., inf (Zsizmax{d (Sw,wyy),d(Sz, ZZn)})
<g (ﬁmax{s d(Sw,w),s d(Sz, Z)})
< ¢ (2max{d(Sw,w), d(5z,2)}).

Since ¢ is monotonically non decreasing, we have
2 max{d(Sz,2),d(z,52), d(Sw,w), d(w, Sw)} < ¢ (l max{d(Sz, z), d(z,Sz), d(Sw,w),d(w, 5w)})

Since p(t) <t for all t > 0, we have
max{d(Sz,z),d(z,5z),d(Sw,w),d(w,Sw)} = 0 which in turn yields that Sz = z,Sw = w.
Thusz = Sz = F(z,w) and w = Sw = F(w, 2). Q)

Since F(X X X) € T(X), there exist <, B in X such that
Tx=F(zw)=Sz=zandTB =F(w,z) =Sw=w.

Since ¢ is monotonically non decreasing and s = 1, we have
d(T %,G(x, B)) = d(F(z,w),G(x, B))
) (%max{d(Sz, T «),d(Sw, Tﬁ)})
( 1 {s d(T «,G(x,8)) + s d(G(x, B), T oc),})
<o max
252 sd(TB,G(B,a)) + s d(G(B,a), TB)
< p(max{d(T «,G(x,B)),d(G(x,B),T «),d(TB,G(B,a)),d(G(B, ), TB)}),

d(G(ex, B),T «) = d(G(x,B),F(z,w))
<g (ﬁmax{d(T x,Sz), d(T,B,SW)})
( 1 {s d(T «,G(x,8)) + s d(G(ex, B), T oc),})
< @ |z max
sd(TB,G(B,a)) + s d(G(B, @), TB)
< p(max{d(T x,G(x,B)),d(G(x, B),T x),d(TB,G(B,a)),d(G(B, ), TB)}),

d(TB,G(B, @) = d(F(w,2),G(B, a))
<o (% max{d(Sw,TpR),d(Sx, Ta)})
( 1 {s d(TB,G(B, @) +s d(G(B, ), Tﬁ).})
<g max
2s? s d(Ta, G(a,ﬁ)) +sd(G(a,B),Ta)
< <p(max{d(T,8, G(B, a)), d(G(B,a), TB), d(Ta, G(a,ﬁ)), d(G(a,ﬁ),Ta)}),

d(G(B,),TB) = d(G(B, ), F(w,2))
< ¢ (S5 max{d(T, sw), d(Ta,52)})
1 sd(TB,G(B,a)) +s d(G(B,a), TR,
=9 (252 max {s d(Ta,G(a,p)) +sd(G(a, ), Ta) })
< p(max{d(T «,G(x, B)),d(G(x, B),T «),d(TB,G(B,a)),d(G(B,a), TB)}).

Thus we have
= {d(T «,G(x,B)),d(G(x,B),T oc)} (ma {d(T %, G(x,B)),d(G (e, B),T ), })
d(TB,G(B,)),d(G(B,a),TB) d(TB,G(B,@)),d(G(B,a),TR)

which in turn yields that T o= G (e, ) and TS = G (B, a). Since the pair (G, T) is w-compatible, we have
Tz =T(T ) =T(G(x,B)) = G(T «,TB) = G(z,w) and
Tw =T(TB) =T(G(B,)) = G(TB,Ta) = Gw,z) .

Now we have
d(z, G(z, W)) = d(F(Z, w),G(z, W))
< ¢ (5 max{d(Sz,Tz), d(Sw, Tw)})

=¢ (% max{d (z, G(z, W)), d (W: G(w, Z))D

< (p(max{d(z, G(z, W)), d(w, G(w, Z))}),
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d(G(z,w),z) = d(G (z,w),F(z, W))
< ¢ (5 max{d(Tz,52),d(Tw, Sw)})

(p( smax{d(G(z,w),z),d(G(w,z), W)})
<@ (max{d(G(z w), z),d(G(w,z),w)}),

d(w, G(w, Z)) = d(F(W, z), G(w, Z))
< ¢ (5 max{d(Sw, Tw), d(Sz,T2)})

=¢ (ﬁ max{d(w,G(w,z)),d(z,G(z W))})
< ¢ (max{d(w,G(w,2)),d(z,G(z,w))}),

d(Gw,z),w) = d(G(W, z),F(w,z))
< ¢ (S5 max{d(Tw,sw), d(Tz,52)})

= (p( _max{d(G(w,2),w),d(G(z,w), z)})
<g (max{d(G(w, z),w),d(G(z,w),2)}).
Thus we have
{d(z,G(z, W)),d(G(Z, w), Z),} ( {d(z G(z, W)) d(G(z,w),2), })
max < ¢ | max
d(W,G(W, Z)),d(G(W, z),w) d(W G(w, z)) d(G(w,z),w)
which in turn yields that z = G(z,w) and w = G(w, 2).
Thus z = G(z,w) =Tz,and w = G(w,z) = Tw. (2)

From (1) and (2), (z, w) is a common coupled fixed point of F,G,S and T. Uniqueness of common coupled fixed point
of F, G, Sand T follows as in Theorem 2.2.

Now we give an example to illustrate Theorem 2.4.

Example 2.6: Let X =[0,1] and define d(x y) =|x—y|*+|x|. Let F,G: XxX > X and S,T: X - X be defined
2
by F(x,y) = G(x,y) —x +y ,Sx = Tx—xr. Let ¢:[0,00) — [0,00) be defined by ¢(t) —i. As in

128
Example 2.3, d is a dislocated qua5| b metric Wlth s=

Consider

x2 +y? u? + v? |xz+y2 u? + v2)? x? +y?
d F ) ,G ) =d , = —
(FGu, 6w v) ( 128 '~ 256 ) | 128 256 128
_|2x2+2y2—u2—v2|2+ x? + y?
- 256 X 256 128 128

2 2
2||2x%-u?|" +|2y%—v? x2 2
< [ "+l ] y
256X256 128
2 2
X u

16 2
128 x 256 (| 2

_ 1
128%x16

11 [x?

64 |32

1

64

2 2 2
X y
l}+m+m

2 2 2
I A
]}+128+128
2 2
+x—+y—]
2 2
2

Yy

2 22

X u

2 4
2,2

y2 .UZ

2 4
2,22

X
2

1
32

x2

+7+

2 4
2
y2 172

x2
2

u
4
2
u?
4

= 6_14 [d(Sx, Tu) + d(Sy, Tv)]
< % max{d(Sx, Tu),d(Sy, Tv)}
=5 2max{d(Sx Tu),d(Sy,Tv)},since s=2
= (p( max{d(Sx, Tu), d(Sy, Tv)}) since @(t) =-

Similarly we can show that d(G (x,y), F(u,v)) < ¢ (2% max{d(Tx, Sw), d(Ty, 51;)}).

Also it is clear that S(X) and T (X) are complete subspaces of X, the pairs (F,S ) and (G,T) are w-compatible and
FIXxX)STX),GX xX) < S(X). Thusall conditions of Theorem 2.4 are satisfied.
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Clearly (0, 0) is the unique common coupled fixed point of F, G, Sand T in X X X.

Remark: Theorem 2.4 is a generalization of Theorem 4.1 of [14], Theorem 3.2 of [11] and Theorem 2.1 of [1].
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