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ABSTRACT 
We introduce the first and second hyper Gourava indices of a graph. Also we propose the first and second hyper 
Gouava coindices of a graph. In this paper, we determine the first and second hyper-Gourava indices of some standard 
classes of graphs. Also the first and second hyper Gourava indices of certain nanotubes are determined.  
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1. INTRODUCTION  
 
Let G=(V, E) be a finite, simple connected graph. The degree dG(v) of a vertex v is the number of vertices adjacent to v. 
Any undefined term in this paper may be found in Kulli [1]. 
 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. A topological 
index is a numerical parameter mathematically derived from the graph structure. In chemical science, the physico-
chemical properties of chemical compounds are often modeled by means of molecular graph based structure 
descriptors, which are also referred to as topological indices, see [2]. 
 
In [3] Kulli introduced the first and second Gourava indices of a molecular graph G and they are defined as  
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In [3], Kulli introduced the first and second Gourava coindices of a molecular graph as follows: 
 
The first and second Gourava coindices of a graph G are respectively defined as  
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Recently many other topological indices were studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 
 
In this paper, we introduce the first and second hyper Gourava indices and coindices of graphs. Recently many other 
hyper indices and coindices were studied, for example, in [14, 15]. 
 
We consider HC5C7[p q] and SC5C7[p q] nanotubes and we compute the first and second hyper-Gourava indices of 
HC5C7[p q] and SC5C7[p q] nanotubes. For more information about the nanotubes, see [16]. 
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2. THE HYPER-GOURAVA INDICES OF A GRAPH 
 
We introduce the first and second hyper Gourava indices of a graph. 
 
Definition 1: The first and second hyper-Gourava indices of a graph G are defined as  
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3. RESULTS FOR SOME STANDARD CLASSES OF GRAPHS 
 
Proposition 1: Let Cn be a cycle with n ≥ 3 vertices. Then HGO1(Cn) = 64n. 
 
Proof: Let Cn be a cycle with n ≥ 3 vertices. Then HGO1(Cn) = n[ (2 + 2) + (2 × 2)]2= 64n. 
 

Proposition 2: Let Kn be a complete graph with n≥2 vertices. Then ( ) ( ) ( )2 3
1
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Proof: Let Kn be a complete graph with n vertices. Then Kn has 
( )1

2
n n −

 edges. 
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Proposition 3: Let Km,n be a complete bipartite graph with 1≤m≤n. Then 

HGO1(Km, n) = mn(m+n+mn)2. 
 
Proof: Let Km,n be a complete bipartite graph with 1≤m≤n. Then Km, n has m+n vertices and mn edges such that |V1| = m, 
|V2|=n, V(Km,n) = V1∪V2. Clearly every vertex of V1 is adjacent with n vertices and every vertex of V2 is adjacent with m 
vertices. To compute HGO1(Km, n) we see that  HGO1(Km, n) = mn(m+n+mn)2

.
 

 

Proposition 4: If G is an r-regular graph with n vertices, then ( ) ( )23
1

1 2 .
2

HGO G nr r= +  

Proof: If G is an r-regular graph with n vertices, then G has 
2
nr

edges. The degree of each vertex of G is r. 

( ) ( ) ( )2 22 3
1

1 1 2 .
2 2

HGO G nr r r r nr r = + + = + 
 

 
Proposition 5: Let Pn be a path with n≥3 vertices. Then HGO1(Pn) = 64n –142. 
 
Proof: Let G = Pn be a path with n≥3 vertices. We obtain two partitions of edge set of Pn as follows: 
 E3 = {uv∈E(G) | dG(u) = 1, dG(v) = 2}, |E3| = 2. 
 E4 = {uv∈E(G) | dG(u) = dG(v) = 2}, |E4| = n – 3. 
 
To compute HGO1(Pn), we se that  
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      64 142.n= −   
Similarly the second hyper Gourava index of some standard classes of graphs are computed. 
 
Proposition 6:  

(1) Let Cn be a cycle with n≥3 vertices. Then HGO2(Cn) = 256n. 
(2) Let Kn be a complete graph with n≥2 vertices. Then HGO2(Kn) = 2n(n – 1)7

. 

(3) Let Km,n be a complete bipartite graph with 1≤m≤n. Then HGO2(Km, n) = (m+n)2(mn)3. 
(4) Let G is an r-regular graph with n vertices. Then HGO2(G) = 2nr7. 
(5) Let Pn be a path with n≥3 vertices. Then HGO2(Pn) = 256n – 696. 
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3. RESULTS FOR HC5C7[p, q] NANOTUBES 
 
We consider HC5C7[p, q] nanotubes in which p is the number of heptagons in the first row and q rows of pentagons 
repeated alternatively. The 2-dimensional lattice of nanotube HC5C7[8, 4] is shown in Figure 1. 
 

        
Figure-1: 2-D and 3-D lattice of nanotube HC5C7[8, 4]. 

 
By algebraic mehod, we obtain |V(HC5C7[p, q]|=4pq and |E(HC5C7[p, q])|= 6pq – p. 
 
Let G be the graph of nanotube HC5C7[p, q]. It is easy to see that the vertices of G are either of degree 2 or 3. 
 
By algebraic method, we obtain the edge partition of G based on the sum of degrees of the end vertices of each edge, as 
given in Table 1. 
 

dG(u), dG(u)\ uv ∈ E(G) (2, 3) (3, 3) 
Number of edges 4p 6pq – 5p 

Table-1: Edge partition of G 
 
In the following theorem, we compute the first and second hyper Gourava indices of HC5C7[p, q] nanotubes. 
 
Theorem 1: The first and second hyper Gourava indices of HC5C7[p, q] nanotube are given by 

(i) HGO1(HC5C7[p, q]) = 1350pq – 641p. 
(ii) HGO2(HC5C7[p, q]) = 17496pq – 10980p. 

 
Proof: Let G be the graph of HC5C7[p, q] nanotube. The graph G has 4pq vertices and 6pq – p edges. 

 
i) From equation (1), we have  
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              Using Table 1, we obtain 

[ ]( ) ( ) ( ) ( ) ( ) ( )2 2
1 5 7 , 4 2 3 2 3 6 5 3 3 3 3HGO HC C p q p pq p=  + + ×  + −  + + ×       

     1350 641 .pq p= −  
 

ii) From equation (2), we have  
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4. RESULTS FOR SC5C7[p, q] NANOTUBES 
 
We consider SC5C7[p, q] nanotubes. The 2-dimensional lattice of nanotube SC5C7 [8, 4] is shown in Figure 2. In 2-
dimensional lattice of SC5C7[p, q], p is the number of heptagons in the first row and q rows of vertices and edges are 
repeated alternatively.  
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Figure-2: 2-D and 3-D lattice of nanotube SC5C7[8, 4]. 

 
Let G be the graph of nanotube SC5C7[p, q]. By algebraic mehod, we obtain |V(SC5C7[p, q]| = 4pq and |E(HC5C7[p, q])| 
= 6pq – p. 
 
It is easy to see that the vertices of G are either of degree 2 or 3. By algebraic method, we obtain the edge partition of G 
based on the sum of degrees of the end vertices of each edge, as given in Table 2. 
 

dG(u), dG(v)\ uv ∈ E(G) (2, 2) (2, 3) (3, 3) 
Number of edges q 6q 6pq – p – 7q 

Table-2: Edge partition of G 
 

In the following theorem, we compute the first and second hyper-Gourava indices of SC5C7[p, q] nanotubes. 
 
Theorem 2: The first and second hyper Gourava indices of SC5C7[p, q] nanotube are respectively given by 

(i) HGO1(SC5C7[p, q]) = 1350pq – 225p  – 785q. 
(ii) HGO2(SC5C7[p, q]) = 17496pq – 2916p  – 14756q. 

 
Proof: Let G be the graph of SC5C7[p, q] nanotube. The graph G has 4pq vertices and 6pq – p edges. 

i) From equation (1), we have  
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ii) From equation (2), we have  
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5. THE FIRST AND SECOND HYPER GOURAVA COINDICES 
 
We propose the first and second hyper-Gourava coindices of a graph. 
 
Definition 2: The first and second hyper-Gourava coindices of a graph G are defined as  
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