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ABSTRACT 
The object of this paper is to introduce a permuting tri-derivation in a Γ-near-field space. We obtain the conditions for 
a prime Γ-near-field space  to be a commutative Γ-near-field space over a near-field. 
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SECTION-1: INTRODUCTION  
 
The derivations in near-field spaces have been introduced and they investigated some basic properties of derivations in 
near-field spaces. Then obtained some commutativity conditions for a Γ-near-field spaces with derivations. Some 
characterizations of Γ-near-field spaces and some regularity conditions were together obtained by Smt. T Madhavi 
Latha, Dr T V Pradeep Kumar and Dr N V Nagendram. They introduced the notion of two-sided Γ-α-derivation of a  
Γ-near-field space and investigated the commutativity of prime and semi-prime Γ-near-field spaces. In depth study 
makes us about near-field spaces over a near-field T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram 
worked on prime Γ-near-field spaces with derivations and they investigated the conditions for a Γ-near-field space to be 
commutative. 
 
In this paper, the notion of a permuting tri-derivation in a Γ-near-field spaces is introduced. 
 
We investigate the conditions for a prime Γ-near-field spaces over a near-field to be a commutative Γ-near-field space.  
 
Definition 1.1: N-sub near-field space. Let (N, +, .) be a left near-field space. A sub near-field space (M, +) is called 
an N-sub near-field space i.e. traditional one if there is a near-field space homo-morphism θ : N → Map(M). As usual, 
we write gn to mean g(nθ) for g ∈ M and n ∈ N. In this case the group elements distribute over the near-field spaces.  
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Definition 1.2: Complementary N-near-field space. M is called a complementary N-sub near-field space or N – co 
sub near-field space, for short, if there is a semi sub near-field space elements distribute over the sub near-field space 
elements and the action of N is usually written on the left of the elements of M. 
 
Definition 1.3: (N, T) – bi sub near-field space. Let N and T be two left near-field spaces. A sub near-field space M is 
called an (N, T) – bi sub near-field space if  

(a) M is an N-co sub near field space  
(b) M is an T-sub near-field space and (c) (ng)t = n(gt), ∀ g ∈ M, n ∈ N, t ∈ T. 

 
Definition 1.4: left strong N-sub near-field space. M is called left strong N-sub near-field space if the action of N is 
defined on the left of M satisfying the following conditions ∀ n, n′ ∈ N and g, g’ ∈ M  

(a) (nn’)g  = n(n’g)  
(b) n (g + g’ ) = ng + ng’ and (c) (n + n’)g  = ng + n’g. 
 

Note 1.5: A right strong N-sub near-field space is defined similarly. (N, +) is an (N – N ) – bi sub near-field space for 
the left as well as right near-field space N over a near-field. If N is distributive near-field space then (N, +) is a left as 
well as right strong N-sub near-field space. Many more examples of these structures are given in near-field space 
related topic. 
 
Definition 1.6: N-homomorphism. Let M and K be two N-sub near-field spaces (N-co sub near-field space. A sub 
near-field space homomorphism θ : M → K is called an N-homomorphism if for any g ∈ M and n ∈ N,  
          (gn)θ = (gθ)n , ((rg)θ = r(gθ)). 
 
Note 1.7: An (N – T) – homomorphism for (N – T)-bi sub near-field space are defined in a similar way. 
 
Definition 1.8: A Γ-near-field space is a triple (N, +, Γ) where 

(i) (N, +) is a group (not necessarily abelian), 
(ii) Γ is a non-empty set of binary operations on N such that for each α∈ Γ, (N, +, α) is a left near-field space. 
(iii) xα (yβz) = (xαy)βz, for all x, y, z ∈ N and α, β ∈ Γ. 

 
Definition 1.9: N is a left Γ-near-field space because it satisfies the left distributive law. We will use the word Γ-near-
field space to mean left Γ-near-field space. For a Γ-near-field space N, the set N0 = {x ∈ N: 0αx = 0, α ∈ Γ} is called 
the zero-symmetric part of N.  
 
Definition 1.10: A Γ-near-field space N is said to be zero-symmetric if N = N0.  
 
Note 1.11: Throughout this paper N will be a zero-symmetric Γ-near-field space. 
 
Definition 1.12: Prime Γ-near-field space. N is called prime if xΓNΓy = {0} implies x = 0 or y = 0.  
 
Definition 1.13: ntorsion free Γ-near-field space. N is called ntorsion-free, where n is a positive integer, if nx = 0 
implies x = 0 for all x ∈ R.  
 
Definition 1.14: Multiplicative center of Γ-near-field space. The symbol C(N) will represent the multiplicative 
center of N, that is, C(x) = {x ∈ R : xαy = yαx for all y ∈ R, α ∈ Γ}. For x ∈ N, the symbol C(x) will denote the 
centralizer of x in N.  
 
Definition 1.15: Commutator and derivation of  Γ-near-field space N. ∀ x, y ∈ N, α ∈ Γ, [x, y]α will denote the 
commutator xαy - yαx, while (x, y) will indicate the additive-group commutator x + y - x - y. An additive map                 
ρ : N → N is called a derivation if the Leibniz rule ρ (xαy) = ρ (x)αy + xαρ (y) holds for all x, y ∈ N, α ∈ Γ.  
 
Definition 1.16: Bi-derivation of  Γ-near-field space N. By a bi-derivation we mean a bi-additive map D : N × N → 
N (i.e., D is additive in both arguments) which satisfies the relations D(xαy, z) = D(x, z)αy + xαD(y, z) and D(x, yαz) = 
D(x, y)αz + yαD(x, z) for all x, y, z ∈ N, α ∈ Γ. Let D be symmetric, that is, D(x, y) = D(y, x) for all x, y ∈ N.  
 
Definition 1.17: Trace of D in Γ-near-field space N. The map ρ : N → N defined by ρ(x) = D(x, x) for all x ∈ N is 
called the trace of D.  
 
Definition 1.18: Permuting of Γ-near-field space N. Let us define a mapping F: N × N × N → N is said to be 
permuting if the equation F(x1, x2, x3) = F(xπ(1), xπ (2), xπ (3)) holds for all x1, x2, x3 ∈ N and for every permutation     
{π(1), π (2), π (3)}. 
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SECTION-2: PERMUTING TRI-DERIVATIONS AND COMMUTATIVITY 
 
Definition 2.1: Trace and permuting map of F on Γ-near-field space N. A map f : N → N defined by f(x) = F(x, x, x) 
for all x∈N, where F : N × N × N → N is a permuting map, is called the trace of F. It is obvious that, in the case            
F : N × N × N → N is a permuting map which is also tri-additive (i.e., additive in each argument), the trace f of F 
satisfies the relation f(x + y) = f(x) + 2F(x, x, y) + F(x, y, y) + F(x, x, y) + 2F(x, y, y) + f(y) for all x, y∈N.  
 
Since we have F(0, y, z) = F(0 + 0, y, z) = F(0, y, z) + F(0, y, z) for all y, z∈N, we obtain F(0, y, z) = 0 for all y, z∈N.  
 
Hence we get 0 = F(0, y, z) = F(x- x, y, z) = F(x, y, z) + F(-x, y, z) and so we see that F(-x, y, z) = -F(x, y, z) for all         
x, y, z∈R. This tells us that f is an odd function. 
 
Definition 2.2: Tri-derivation of Γ-near-field space N. A tri-additive map D : N × N × N → N will be called a tri-
derivation if the relations D(x1αx2, y, z) = D(x1, y, z)αx2 + x1αD(x2, y, z), D(x, y1αy2, z) = D(x, y1, z)αy2 + y1αD(x, y2, z) 
and D(x, y, z1αz2) = D(x, y, z1)αz2 + z1αD(x, y, z2) are fulfilled for all x, y, z, xi, yi, zi ∈ N, i = 1, 2, α ∈ Γ. 
 
We need the following lemmas to obtain our main results. 
 
Lemma 2.3:  Let N be a prime Γ-near-field space. If C(N) - {0} contains an element z for which z + z ∈ C(N), then    
(N, +) is abelian. 
 
Lemma 2.4: Let N be a 3!-torsion free G-near-ring. Suppose that there exists a permuting tri-additive map                  
F : N × N × N → N such that f(x) = 0 for all x∈N, where f is the trace of F. Then we have F = 0. 
 
Lemma 2.5: Let N be a 3!-torsion free prime Γ-near-field space and let x∈N. Suppose that there exists a nonzero 
permuting tri-derivation D: N × N × N → N such that xαd(y) = 0 for all y∈N, α∈G, where d is the trace of D. Then we 
have x = 0.   
 
Proof: Since we have ρ(y + z) = ρ (y) + 2D(y, y, z) + D(y, z, z) + D(y, y, z) + 2D(y, z, z) +ρ (z) for all y, z∈N, α∈G, the 
hypothesis gives 2xαD(y, y, z) + xαD(y, z, z) + xαD(y, y, z) + 2xαD(y, z, z) = 0 for all y, z∈R, α∈Γ.                              (a) 
Setting y = -y in (a), it follows that 
2xαD(y, y, z) - xαD(y, z, z) + xαD(y, y, z) - 2xαD(y, z, z) = 0 for all y, z∈R, α∈Γ                                                            (b) 
 
On the other hand,  
for any y, z∈N, ρ (z + y) = ρ (z) + 2D(z, z, y) + D(z, y, y) + D(z, z, y) + 2D(z, y, y) + ρ (y).  
 
So, by the hypothesis, we have  
2xαD(y, z, z) + xαD(y, y, z) + xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈N, α∈Γ,                                                      (c) 
 
Since D is permuting. Comparing (a) with (b), we get  
2xαD(y, z, z) + xαD(y, y, z) +xαD(y, z, z) = xαD(y, y, z) - 3xαD(y, z, z) which means that 2xαD(y, z, z) + xαD(y, y, z) 
+xαD(y, z, z) + 2xαD(y, y, z) = xαD(y, y, z) - 3xαD(y, z, z) + 2xαD(y, y, z) for all x, y, z∈N,α∈Γ. 
 
Now, from (3), we obtain 
xαD(y, y, z) - 3xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈N, α∈Γ                                                                              (d) 
 
Taking y = -y in (4) leads to 
xαD(y, y, z) + 3xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈N, α∈Γ                                                                             (e) 
 
Combining (d) and (e), we obtain 
xαD(y, z, z) = 0 for all x, y∈N, α∈Γ, since R is 6-torsion free.                                                                                          (f) 
 
Replacing z = z + w to linearize (f) and using the conditions show that 
xαD(w, y, z) = 0 for all w, x, y, z∈N, α∈Γ                                                                                                                         (g) 
 
Substituting wβv for w in (h), we get xαwβD(v, y, z) = 0 for all v, w, x, y, z∈N, α, β∈Γ. Since N is prime and D ≠ 0, we 
arrive at x = 0. This completes the proof of the theorem. 
 
Lemma 2.6: Let N be a Γ-near-field space and let D : N × N × N → N be a permuting tri-derivation. Then we have 
[D(x, z, w)αy + xαD(y, z, w)]βv = D(x, z, w)αyβv + xαD(y, z,w)βv for all v, w, x, y, z∈N, α, β∈Γ. 
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Proof: Since we have D(xαy, z, w) = D(x, z, w)αy + xαD(y, z, w) for all w, x, y, z∈N, α∈Γ, the associative law gives 
D((xαy)βv, z, w) = D(xαy, z, w)βv + xαyβD(v, z, w) = [D(x, z, w)αy + xαD(y, z, w)]βv + xαyβD(v, z, w) for all v, w, x, y, 
z∈N, α, β∈Γ                                                                                                                                                                      (h) 
and D(xα(yβv), z, w) = D(x, z, w)αyβv + xαD(yβv, z, w) 
                                 = D(x, z, w)αyβv + xα[D(y, z, w)βv + yβD(v, z, w)] 
                                 = D(x, z, w)αyβv + xαD(y, z,w)βv + xαyβD(v, z, w) for all v, w, x, y, z∈N, α, β∈Γ                          (i) 
  
Comparing (h) and (i), we see that [D(x, z, w)αy + xαD(y, z, w)]βv = D(x, z, w)αyβv + xαD(y, z, w)βv for all v, w, x, y, 
z∈N, α, β∈Γ. 
 
This completes the proof of the lemma. 
 
Now we are ready to prove our main results in this section. 
 
Theorem 2.7: Let N be a 3!-torsion free prime Γ-near-field space. Suppose that there exists a Non zero permuting tri-
derivation D: N × N × N → N such that D(x, y, z)∈ C(N) for all x, y, z∈N. Then N is a commutative Γ-near-field 
space. 
 
Proof: Assume that D(x, y, z)∈ C(N) for all x, y, z∈N. Since D is nonzero, there exist x0, y0, z0∈N such that          
D(x0,y0, z0)∈C(N) - {0} and D(x0,y0, z0) + D(x0,y0, z0) = D(x0,y0, z0+z0)∈C(N). 
 
So (N, +) is abelian by Lemma 2.1 and Since the hypothesis implies that 
 
wβD(x, y, z) = D(x, y, z)βw for all w, x, y, z∈N, β∈Γ,                                                                                                       (j) 
 
we replace x by xαv in (j) to get wβ[D(x, y, z)αv + xαD(v, y, z)] = [D(x, y, z)αv + xαD(v,y, z)]βw and thus, from Lemma 
2.4 and the hypothesis, it follows that D(x, y, z)βwαv + D(v, y, z)αwβx = D(x, y, z)αvβw + D(v, y, z)βxαw which means 
that 
D(x, y, z)β[w, v]α = D(v, y, z)β[x, w]α for all v, w, x, y, z ∈N, α, β∈Γ                                                                             (k) 
 
Setting d(u) in place of v in (k) and using d(x)Î C(N) for all x∈N, by the hypothesis, 
 
We obtain 
D(d(u), y, z)β[x, w]α = 0 for all u, w, x, y, z∈N, α, β∈Γ                                                                                                    (l) 
 
The substitution vax for x in (l) yields that D(d(u), y, z)βva[x, w]α = 0 ∀ u, v, w,x, y, z ∈ N,    α, β∈Γ. Since R is prime, 
we obtain either D(d(u), y, z) = 0 or [x, w]α = 0 ∀ u, w, x, y, z∈N, α, β∈Γ. 
 
Assume that D(d(u), y, z) = 0 for all u, y, z∈N, α, β∈Γ                                                                                                   (m) 
 
Let us take u + x instead of u in (m).  
 
⇒ 0 = D(d(u + x), y, z) = D(d(u) + d(x) + 3D(u, u, x) + 3D(u, x, x), y, z) 
        = 3D(D(u, u, x), y, z) + 3D(D(u, x, x), y, z), that is, 
 
D(D(u, u, x), y, z) + D(D(u, x, x), y, z) = 0 for all v, w, x, y∈N.                                                                                        (n) 
 
Setting u = -u in (14) and then comparing the result with (n), we see that 
D(D(u, u, x), y, z) = 0 for all u, x, y, z∈N                                                                                                                          (o) 
 
Substituting ulx for x in (o) and employing (n) give the relation d(u)lD(x, y, z) +D(u, y, z)lD(u, u, x) = 0 and so it 
follows from the hypothesis that  
d(u)lD(x, y, z) + D(u, u, x)lD(u, y, z) = 0 for all u, x, y, z∈N, α, β∈Γ                                                                               (p) 
 
We put u = y = x in (p) to obtain, ρ(x)lD(x, x, w) = 0 for all w, x∈N, l∈Γ                                                                       (q) 
 
Taking wlx in substitute for w in (q) yields d(x)lwld(x) = 0, for all l∈Γ, and so the primeness of N implies that ρ(x) = 0 
for all x∈N.  
 
Hence, by Lemma 3.2, we have D = 0 which is a contradiction. So N is a commutative Γ-near-field space over a near-
field. This completes the proof of the theorem. 
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Theorem 2.8: Let N be a 3!-torsion free prime G-near-ring. Suppose that there exists a nonzero permuting tri-
derivation D : N × N × N → N such that ρ(x), ρ (x) + ρ (x)∈ C(D(u, v, w)) for all u, v, w, x∈N, where ρ is the trace of 
D. Then N is a commutative Γ-near-field space over a near-field. 
 
Proof: Assume that ρ (x), ρ (x) + ρ (x) ∈ C(D(u, v, w)) for all u, v, w, x∈N                                                                    (r) 
From (r), we get 
D(u + t, v, w)α(ρ (x) + ρ (x)) = (ρ (x) + ρ (x))αD(u + t, v, w) 

= (ρ(x) + ρ (x))α[D(u, v, w) + D(t, v, w)] 
= (ρ (x) + ρ (x))αD(u, v, w) + (ρ (x) + ρ (x))αD(t, v, w) 
= ρ (x)αD(u, v, w) + ρ (x)αD(u, v, w) + ρ (x)αD(t, v, w) + ρ (x)αD(t, v, w) 
= ρ(x)α[D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, w)] 
= [D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, w)]αρ (x) for all t, u, v, w, x∈N, α∈Γ       (s) 

and 
D(u + t, v, w)α(ρ (x) + ρ (x)) = D(u + t, v, w)αρ (x) + D(u + t, v, w)αρ (x) 

= [D(u, v, w) + D(t, v, w)]αρ (x) + [D(u, v, w) + D(t, v, w)]αρ (x) 
= [D(u, v, w) + D(t, v, w) + D(u, v, w) + D(t, v, w)]αρ (x) for all t, u, v, w, x∈N, α∈Γ       (t) 

 
Comparing (s) and (t), we obtain D((u, t), v, w)αρ (x) = 0 for all t, u, v, w, x∈N,α∈Γ.  
Hence it follows from Lemma 2.3 that D((u, t), v, w) = 0 for all t, u, v, w∈N                                                                 (u) 
 
We substitute uβz for u and uβt for t in (u) to get 
0 = D(uβ(z, t), v, w) = D(u, v, w)β(z, t) + uβD((z, t), v, w) = D(u, v, w)β(z, t), β∈Γ. 
That is, 
D(u, v, w)β(z, t) = 0 for all t, u, v, w, z∈N, β∈Γ                                                                                                               (v) 
 
Letting z = sdz in (v) and comparing the results (v) we obtain, 
D(u, v, w)βsρ(z, t) = 0 for all s, t, u, v, w, z∈N, β, ρ∈Γ                                                                                                   (w) 
 
Since D ≠ 0, we conclude, from (w) and the primeness of N, that (z, t) = 0 is fulfilled for all t, z∈N. Therefore (N, +) is 
abelian.  
 
By the hypothesis, we know that [ρ(x), D(u, v, w)]α = 0 for all u, v, w, x∈N, α∈Γ                                                         (x) 
 
Hence if we let x = x + y in (24) and since ρ(x + y) = ρ(x) + 2D(x, x, y) + D(x, y, y) + D(x, x, y) + 2D(x, y, y) + ρ (y), 
then we deduce from (x) that 3[D(x, x, y), D(u, v, w)]α + 3[D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈N, α∈Γ. 
 
Since N is 3-torsion-free, we obtain, 
[D(x, x, y), D(u, v, w)]α + [D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈N, α∈Γ                                                        (y) 
 
Setting y = -y in (y) and comparing the result with (y), we obtain 
[D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈N, α∈Γ                                                                                                  (z) 
 
Replacing y by y + z in (z) and using (z), we have [D(x, y, z), D(u, v, w)]α = 0, α∈Γ, since D is permuting, i.e., 
D(x, y, z)αD(u, v, w) = D(u, v, w)αD(x, y, z) for all u, v, w, x, y, z∈N, α∈Γ                                                                   (aa) 
 
Taking uβt instead of u in (aa), we obtain, 
D(u, v ,w)βtαD(x, y, z) - D(x, y, z)αD(u, v, w)βt + uβD(t, v, w)αD(x, y, z) - D(x, y, z)βuαD(t, v, w) = 0  
for all t, u, v, w, x, y, z ∈ N, α, β∈ Γ                                                                                                                               (bb) 
 
Substituting ρ(u) for u in (bb) and then utilizing the hypothesis and (aa), we get 
D(d(u), v, w)β[t, D(x, y, z)]α = 0 for all t, u, v, w, x, y, z ∈ N, α, β∈ Γ                                                                           (cc) 
 
Let us write in (cc) wds instead of w. Then we have D(d(u), v, w)dsβ[t, D(x, y, z)]α = 0 for all s, t, u, v, w, x, y, z∈N, α, 
β, ρ∈ Γ. Since N is prime near-field space over a near-field, we arrive at either D(d(u), v, w) = 0 or [t, D(x, y, z)]α = 0 
for all t, u, v, w, x, y, z ∈ N, α, β∈ Γ.  
 
As in the proof of Theorem 2.5, the case when D(d(u), v, w) = 0 holds for all u, v, w∈N leads to the contradiction. 
Consequently, we arrive at [t, D(x, y, z)]α = 0 for all t, x, y, z∈N ,α∈Γ, i.e, D(x, y, z)∈C(N) for all x, y, z∈N. Therefore, 
Theorem 2.5 yields that a near-field space N is a commutative Γ-near-field space over a near-field which completes the 
proof. 
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