ON THE ANNIHILATOR GRAPH OF A COMMUTATIVE Γ - NEAR - RING
 R. RAJESWARI*1, N. MEENAKUMARI², AND T. TAMIZH CHELVAM ${ }^{\mathbf{3}}$
 1,2PG Department of Mathematics,
 A. P. C. Mahalaxmi College for Women, Thoothukudi, India.
 ${ }^{3}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India

(Received On: 06-11-17; Revised \& Accepted On: 30-11-17)

Abstract

Let M be a Commutative Γ - near - ring with non zero identity. Let $Z(M)$ be the set of all zero - divisors of M. For $x \in Z(M)$, let $\operatorname{ann}_{M}(x)=\{y \in M / y \gamma x=0\}$. We define the annihilator graph of M,denoted by $A G(M)$, as the undirected graph whose set of vertices is $Z(M)^{*}=Z(M) \backslash\{0\}$ and two distinct vertices x and y are adjacent if and only if $\operatorname{ann}_{M}(x \gamma y) \neq \operatorname{ann}_{M}(x) \cup a n n_{M}(y)$.In this paper we study the ring theoretic properties of M and graph theoretic properties of $A G(M)$.

Keywords: Annihilator graph, diameter, girth, zero - divisor graph

1. INTRODUCTION

The concept of a zero - divisor of a commutative ring was first introduced by I.Beck [4], where all the elements of the ring were taken as the vertices of the graph. In a commutative ring, for $x \in Z(M)$, let $a n n_{M}(x)=\{y \in M / y x=0\}$. A.Badawi [3] defined and studied the annihilator graph $\mathrm{AG}(\mathrm{M})$ of a commutative ring. The concept of a annihilator graph of a near ring was introduced and studied by T.Tamizh Chelvam and R.Rammoorthy [5]. Let M be a commutative Γ - near - ring with non zero identity and $Z(M)$ be its set of all zero - divisors. In this paper, we introduce the annihilator graph $A G(M)$ for a Γ - near - ring M and study the connectivity of the annihilator graph. For a reduced Γ - near - ring, we show that $\operatorname{Ann}_{G}(M)$ is identical to $\Gamma(M)$ if and only if M has exactly two distinct minimal prime ideals (Theorem 2.11). Among other things, we determine when $A G(M)$ is a complete graph K_{n}, a complete bipartite graph $\left(K_{m, n}\right)$, or a star graph $\left(K_{1, n}\right)$. If $A G(M)$ is identical to $\Gamma(M)$, then we write $A G(M)=\Gamma(M)$ otherwise we write $A G(M) \neq \Gamma(\mathrm{M})$ and also show that $\mathrm{AG}(\mathrm{M})$ is connected with diameter at most two. If $A G(M) \neq \Gamma(M)$, we show that $\operatorname{gr}(A G(M)) \in\{3,4\}$.

2. MAIN RESULTS

Definition 2.1: The annihilator graph $A G(M)$ for a Γ - near - ring M, let $a \in Z(M)$ and let $a n n_{M}(a)=\{m \in$ $M / m \gamma a=0, \gamma \in \Gamma\}$ The annihilator graph of M is the (undirected) graph AG (M) with vertices $Z(M)^{*}=Z(M) \backslash\{0\}$ and two distinct vertices x and y are adjacent if and only if $a n n_{M}(x \gamma y) \neq a n n_{M}(x) \cup a n n_{M}(y)$, it follows that each edge (path) of $\Gamma(\mathrm{M})$ is an edge (path) of $\mathrm{AG}(\mathrm{M})$.

Lemma 2.2: Let M be a commutative Γ - near - ring. Then the following are hold.
i) Let x , y be distinct elements of $\mathrm{Z}(M)^{*}$. Then $\mathrm{x}-\mathrm{y}$ is not an edge of $\mathrm{AG}(\mathrm{M})$ if and only if $\operatorname{ann}_{M}(x \gamma y)=\operatorname{ann}_{M}(x)$ or ann $M(x \gamma y)=\operatorname{ann}_{M}(y)$
ii) If $\mathrm{x}-\mathrm{y}$ is an edge of $\Gamma(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$, then $\mathrm{x}-\mathrm{y}$ is an edge of AG (M).In particular if P is a path in $\Gamma(\mathrm{M})$, then P is a path in $\mathrm{AG}(\mathrm{M})$.
iii) If $\mathrm{x}-\mathrm{y}$ is not an edge of $\mathrm{AG}(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$ then $\operatorname{ann_{M}}(x) \subseteq a n n_{M}(y)$ or $\operatorname{ann}_{M}(y) \subseteq \operatorname{ann}_{M}(x)$
iv) If $a n n_{M}(x) \nsubseteq a n n_{M}(y)$ and $a n n_{M}(y) \nsubseteq a n n_{M}(x)$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$ then $\mathrm{x}-\mathrm{y}$ is an edge of AG (M)
v) If $d_{\Gamma(\mathrm{M})}(x, y)=3$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$ then $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$
vi) If $\mathrm{x}-\mathrm{y}$ is not an edge of $A G(M)$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$, then there is a $w \in \mathrm{Z}(M)^{*}-\{x, y\}$ such that $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in $\Gamma(\mathrm{M})$ and hence $\mathrm{x}-\mathrm{w}-\mathrm{y}$ ia also a path in $\mathrm{AG}(\mathrm{M})$.

Corresponding Author: R. Rajeswari ${ }^{* 1}$

Proof:
i) Suppose that $\mathrm{x}-\mathrm{y}$ is not an edge of $\mathrm{AG}(\mathrm{M})$. Then $\operatorname{ann}_{M}(x \gamma y)=a n n_{M}(x) \cup a n n_{M}(y)$ (by Definition 2.1). Since $a n n_{M}(x \gamma y)$ is a union of two ideals, We have, $a n n_{M}(x \gamma y)=a n n_{M}(x)$ or $\operatorname{ann}_{M}(x \gamma y)=a n n_{M}(y)$. Conversely, suppose that $\operatorname{ann}_{M}(x \gamma y)=\operatorname{ann}_{M}(x)$ or ann $n_{M}(x \gamma y)=a n n_{M}(y)$.
Then $a n n_{M}(x \gamma y)=a n n_{M}(x) \cup \operatorname{ann}_{M}(y)$ and thus $\mathrm{x}-\mathrm{y}$ is not an edge of AG (M)
ii) Suppose $\mathrm{x}-\mathrm{y}$ is an edge of $\Gamma(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. Then $x \gamma y=0$ and hence $a n n_{M}(x \gamma y)=M$. Since $x \neq 0$ and $y \neq 0, \operatorname{ann}_{M}(x) \neq M$ and $\operatorname{ann}_{M}(y) \neq M$. Thus $\mathrm{x}-\mathrm{y}$ is an edge of AG (M). The 'in particular' is now clear.
iii) Suppose $\mathrm{x}-\mathrm{y}$ is not an edge of $\mathrm{AG}(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. Then $\operatorname{ann}_{M}(x) \cup \operatorname{ann}_{M}(y)=$ $a n n_{M}(x \gamma y)$. Since $a n n_{M}(x \gamma y)$ is a union of two ideals, we have $\operatorname{ann}_{M}(x) \subseteq \operatorname{ann}_{M}(y)$ or $\operatorname{ann}_{M}(y) \subseteq \operatorname{ann}_{M}(x)$
iv) This statement is now clear by (iii)
v) Suppose that $d_{\Gamma(\mathrm{M})}(x, y)=3$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. Then $\operatorname{ann_{M}}(x) \nsubseteq a n n_{M}(y)$ and $a n n_{M}(y) \nsubseteq a n n_{M}(x)$. Hence $\mathrm{x}-\mathrm{y}$ is an edge of AG (M)by (iv)
vi) Suppose that $\mathrm{x}-\mathrm{y}$ is not an edge of $A G(M)$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. Then there is a $w \in a n n_{M}(x) \cup$ $\operatorname{ann}_{M}(y)$ such that $\mathrm{w} \neq 0$ by (iii). Since $x \gamma y \neq 0$ we have $w \in \mathrm{Z}(M)^{*}-\{x, y\}$.Hence $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in $\Gamma(\mathrm{M})$ and thus $\mathrm{x}-\mathrm{w}-\mathrm{y}$ ia also a path in $\mathrm{AG}(\mathrm{M})$. by (iii).

In view of lemma 2.2, we have the following result
Theorem 2.3: Let M be a commutative Γ - near - ring with $\left|Z(M)^{*}\right| \geq 2$. Then $A G(M)$ is connected and $\operatorname{diam}(\mathrm{AG}(\mathrm{M})) \leq 2$

Proof: obvious.
Lemma 2.4: Let M be a commutative Γ - near - ring and let x , y be distinct non zero elements. Suppose that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. If there is a $w \in \operatorname{ann} n_{M}(x \gamma y)-\{x, y\}$ such that $w \gamma x \neq 0$ and $w \gamma y \neq 0$, then $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in $\mathrm{AG}(\mathrm{M})$ that is not a path in $\Gamma(\mathrm{M})$ and hence $\mathrm{C}: \mathrm{x}-\mathrm{w}-\mathrm{y}-\mathrm{x}$ is a cycle in $A G(M)$ of length three and each edge of C is not an edge of $\Gamma(\mathrm{M})$

Proof: Suppose that $\mathrm{x}-\mathrm{y}$ is an edge in $\mathrm{AG}(\mathrm{M})$ that is not an edge in $\Gamma(\mathrm{M})$. Then $x \gamma y \neq 0$. Assume there is a $w \in \operatorname{ann}_{M}(x \gamma y)-\{x, y\}$ such that $w \gamma x \neq 0$ and $w \gamma y \neq 0$. Since $y \in a n n_{M}(x \gamma w)-\left(a n n_{M}(x) \cup a n n_{M}(w)\right)$. We concludes that $\mathrm{x}-\mathrm{w}$ is an edge of AG (M). Since $x \in a n n_{M}(y \gamma w)-\left(a n n_{M}(y) \cup a n n_{M}(w)\right)$. We conclude that $\mathrm{y}-\mathrm{w}$ is an edge of $\mathrm{AG}(\mathrm{M})$. Hence $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in $\mathrm{AG}(\mathrm{M})$. Since $x \gamma w \neq 0$ and $y \gamma w \neq 0$, we have $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is not a path in $\Gamma(\mathrm{M})$.It is clear that $\mathrm{x}-\mathrm{w}-\mathrm{y}-\mathrm{x}$ is a cycle in $A G(M)$ of length three and each edge of C is not an edge of $\Gamma(\mathrm{M})$.

Theorem 2.5: Let M be a commutative Γ - near - ring. Suppose that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(\mathrm{M})$ for some distinct $\mathrm{x}, \mathrm{y} \in \mathrm{Z}(M)^{*}$. If $x \gamma y^{2} \neq 0$ and $x^{2} \gamma y \neq 0$, then there is a $\mathrm{w} \in \mathrm{Z}(M)^{*}$ such that $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in AG (M)that is not a path in $\Gamma(M)$ and hence $C: x-w-y-x$ is a cycle in $A G(M)$ of length three and each edge of C is not an edge of $\Gamma(M)$.

Proof: Suppose that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(\mathrm{M})$.Then $x \gamma y \neq 0$ and there is a $w \in \operatorname{ann}_{M}(x \gamma y)-\left(a n n_{M}(x) \cup \operatorname{ann}_{M}(y)\right)$. We show $w \notin\{x, y\}$.Assume $w \in\{x, y\}$. Then either $x^{2} \gamma y=0$ or $y^{2} \gamma x=0$, which is a contradiction. Thus $w \notin\{x, y\}$.Hence $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is the desired path in $A G(M)$ by Lemma 2.4

Corollary 2.6: Let M be a reduced commutative Γ - near - ring. Suppose that $x-y$ is an edge of $A G(M)$ that is not an edge of $\Gamma(\mathrm{M})$ for some distinct, $y \in Z(M)^{*}$. Then there is a $w \in a n n_{M}(x \gamma y)-\{x, y\}$ such that $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path in AG (M) that is not a path in $\Gamma(M)$ and $A G(M)$ contains a cycle C of length 3 such that at least two edges C are not the edges of $\Gamma(\mathrm{M})$.

Proof: Suppose that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(\mathrm{M})$ for some distinct $\mathrm{x}, y \in Z(M)^{*}$. Since M is reduced, we have $(x \gamma y)^{2} \neq 0, \gamma \in \Gamma$. This implies $x^{2} \gamma y \neq 0$ and $x \gamma y^{2} \neq 0$. Thus the claim is now clear by Theorem 2.5.

Corollary 2.7: Let M be a reduced commutative Γ - near - ring and suppose that $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$. Then $\operatorname{gr}(A G(M))$ $=3$. Moreover, there is a cycle C of length 3 in $A G(M)$ such that at least two edges of C are not the edges of $\Gamma(M)$.

Proof: Since $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$, there are some distinct $x, y \in Z(M)^{*}$ such that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(M)$. Since M is reduced, we have $(x \gamma y)^{2} \neq 0, \gamma \in \Gamma$. This implies $x^{2} \gamma y \neq 0$ and $x \gamma y^{2} \neq 0$. Thus the claim is now clear by Theorem 2.5.

Theorem 2.8: Let M be a commutative Γ - near - ring and suppose that $A G(M) \neq \Gamma(M)$ with $\operatorname{gr}(\mathrm{AG}(\mathrm{M})) \neq 3$. Then there are some distinct $x, y \in Z(M)^{*}$ such that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(M)$ and there is no path of length 2 from x to y in $\Gamma(M)$.

Proof: Since $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$, there are some distinct $x, y \in Z(M)^{*}$ such that $\mathrm{x}-\mathrm{y}$ is an edge of $\mathrm{AG}(\mathrm{M})$ that is not an edge of $\Gamma(M)$. If possible suppose that $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path of length 2 in $\Gamma(M)$. Then $\mathrm{x}-\mathrm{w}-\mathrm{y}$ is a path of length 2 in AG (M) by lemma 2.2(i). Therefore $x-w-y-x$ is a cycle of length 3 in $A G(M)$ and hence $g r(A G(M))=3$, a contradiction. Thus there is no path of length from x to y in $\Gamma(M)$.

Lemma 2.9: Let M be a reduced Γ - near - ring that is not an gamma near- integral domain and let $z \in Z(M)^{*}$. Then
i) $\quad \operatorname{ann} n_{M}(x)=\operatorname{ann} n_{M}\left(z^{n}\right)$ for each positive integer $n \geq 2$
ii) If $c+z \in Z(M)$ for some $c \in \operatorname{ann}_{R}(z) \backslash\{0\}$ then $\operatorname{ann}_{R}(z+c) \subset \operatorname{ann}_{R}(z)\left((i e) \operatorname{ann}_{M}(c+z) \subset \operatorname{ann}_{M}(z)\right)$ In particular if $\mathrm{Z}(\mathrm{M})$ is an ideal of M and $c \in \operatorname{ann}_{M}(x)-\{0\}$, then $\operatorname{ann}_{M}(z+c)$ is properly contained in $a n n_{M}(z)$.

Proof:

i) Let $n \geq 2$. It is clear that $a n n_{M}(z) \subseteq a n n_{M}\left(z^{n}\right)$ let $f \in a n n_{M}\left(z^{n}\right)$. Since $f \gamma z^{n}=0$ and M is reduced, we have $f \gamma z=0$. Thus $\operatorname{ann}_{M}\left(z^{n}\right)=\operatorname{ann}_{M}(z)$.
ii) Let $c \in \operatorname{ann}(z) \backslash\{0\}$ and suppose that $c+z \in Z(M)$. Since $z^{2} \neq 0$, we have $c+z \neq 0$ and hence $c+z \in Z(M)^{*}$. Since $c \in \operatorname{ann} n_{M}(z)$ and M is reduced, we have $c \notin \operatorname{ann_{M}}(c+z)$. Hence $a n n_{M}(c+z) \neq$ $\operatorname{ann}_{M}(z)$. Since $a n n_{M}(c+z) \subset \operatorname{ann}_{M}(z \gamma(c+z))=a n n_{M}\left(z^{2}\right)$ and $a n n_{M}\left(z^{2}\right)=a n n_{M}(z)$ by (i) It follows that $\operatorname{ann}_{M}(c+z) \subset \operatorname{ann}_{M}(z)$.

Lemma 2.10: Let M be a commutative Γ - near - ring. Then diam $(\Gamma(M))=2$ if and only if either of the following is true:
i) M is reduced with exactly two minimal primes and at least three non - zero zero - divisors or
ii) $Z(M)$ is an ideal whose square is not $\{0\}$ and each pair of distinct zero - divisors has a non - zero annihilator.

Theorem 2.11: Let M be a reduced Γ - near - ring with $|\operatorname{Min}(M)| \geq 3$. (Possibly Min (M) is infinite) Then $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$ and $\operatorname{gr}(A G(M))=3$

Proof: If $\mathrm{Z}(\mathrm{M})$ is an ideal of M then $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$ by Theorem 2.3 Hence assume that $\mathrm{Z}(\mathrm{M})$ is not an ideal of M . Since $|\operatorname{Min}(M)| \geq 3$, we have diam $(\Gamma(M))=3$ by lemma $2.10(i i)$ and thus $A G(M) \neq \Gamma(M)$ by Theorem 2.3.Since M is reduced and $\mathrm{AG}(\mathrm{M}) \neq \Gamma(M)$, we have $\operatorname{gr}(A G(M))=3$.

Theorem 2.12: Let M be a reduced Γ - near - ring that is not an gamma near- integral domain. Then $A G(M)=\Gamma(M)$ if and only if $|\operatorname{Min}(M)|=2$

Proof: Suppose that $\mathrm{AG}(\mathrm{M})=\Gamma(M)$.Since M is a reduced Γ - near - ring that is not an gamma near- integral domain $|\operatorname{Min}(M)|=2$ by Theorem 2.5.Conversely, suppose that $|\operatorname{Min}(M)|=2$.Let P_{1}, P_{2} be the minimal prime ideals of M. Since M is reduced, we have $\mathrm{Z}(\mathrm{M})=P_{1} \cup P_{2}$ and $P_{1} \cap P_{2}=\{0\}$. Let $\mathrm{a}, \mathrm{b} \in \mathrm{Z}(M)^{*}$. Assume that a, b $\in P_{1}$. Since $P_{1} \cap P_{2}=\{0\}$ neither a $\in P_{2}$ nor $\mathrm{b} \in P_{2}$ and thus $a \gamma b \neq 0$. Since $P_{1} \Gamma P_{2} \subseteq P_{1} \cap P_{2}=\{0\}$, it follows that $\operatorname{ann} n_{M}(a \gamma b)=$ $a n n_{M}(a)=a n n_{M}(b)=P_{2}$. Thus $\mathrm{a}-\mathrm{b}$ is not an edge of $A G(M)$. Similarly, if $\mathrm{a}, \mathrm{b} \in P_{2}$ then $\mathrm{a}-\mathrm{b}$ is not an edge of $A G(M)$ If a $\in P_{1} \mathrm{~b} \in P_{2}$ then $a \gamma b=0$ and thus $\mathrm{a}-\mathrm{b}$ is an edge of AG (M).Hence each edge of $A G(M)$ is an edge of $\Gamma(M)$ and therefore $\mathrm{AG}(\mathrm{M})=\Gamma(M)$

For the remainder of this section, we study the case when M is non reduced
Theorem 2.13: Let M be a non reduced Γ - near - ring with $\left|\operatorname{Nil}(M)^{*}\right| \geq 2$ and let $A G_{N}(M)$ be the (induced) sub graph of AG (M) with vertices $\operatorname{Nil}(M)^{*}$. Then $A G_{N}(M)$ is complete.

Proof: Suppose there are non - zero distinct elements $a, b \in \operatorname{Nil}(M)$ such that $a \gamma b \neq 0, \gamma \in \Gamma$.Assume that $a n n_{M}(a \gamma b)=a n n_{M}(a) \cup a n n_{M}(b)$. Hence $a n n_{M}(a \gamma b)=a n n_{M}(a)$ or $a n n_{M}(a \gamma b)=a n n_{M}(b)$. Without loss of generality, we may assume that $a n n_{M}(a \gamma b)=a n n_{M}(a)$. Let n be the least positive integer such that $b^{n}=0$.Suppose that $a \gamma b^{k} \neq 0$ for each $\mathrm{k}, 1 \leq k \leq n$. Then $b^{n-1} \in a n n_{M}(a \gamma b) \backslash a n n_{M}(a)$, a contradiction. Hence assume that $\mathrm{k}, 1 \leq k \leq n$ is the least positive integer such that $a \gamma b^{k}=0$. Since $a \gamma b \neq 0,1<k<n$. Hence $b^{k-1} \in a n n_{M}(a \gamma b)-$ $a n n_{M}(a)$, a contradiction. Thus $\mathrm{a}-\mathrm{b}$ is an edge of $A G_{N}(M)$.

Theorem 2.14: Let M be a non reduced Γ - near - ring with $\left|\operatorname{Nil}(M)^{*}\right| \geq 2$ and let $\Gamma_{N}(M)$ be the induced sub graph of $\Gamma(\mathrm{M})$ with vertices $\mathrm{Nil}(\mathrm{M})^{*}$. Then $\Gamma_{N}(\mathrm{M})$ is complete if and only if $\mathrm{Nil}(\mathrm{M})^{2}=\{0\}$.

Proof: If Nil $(\mathrm{M})^{2}=\{0\}$, then it is clear that $\Gamma_{N}(\mathrm{M})$ is complete. Hence assume that $\Gamma_{N}(\mathrm{M})$ is complete. We need only show that $w^{2}=0$ for each $\mathrm{w} \epsilon \operatorname{Nil}(\mathrm{M})^{*}$. Let $\mathrm{w} \epsilon \operatorname{Nil}(\mathrm{M})^{*}$ and assume that $\mathrm{w}^{2} \neq 0$. Let n be the least positive integer such that $w^{n}=0$. Then $\mathrm{n} \geq 3$. Thus $w \gamma\left(w^{n-1}+w\right)=0$ and $w^{n}=0$. We have $w^{2}=0 \Rightarrow \Leftarrow$.Thus $w^{2}=0$ for each $\mathrm{w} \in \operatorname{Nil}(\mathrm{M})$.

Theorem 2.15: Let M be a Γ - near - ring such that $A G(M) \neq \Gamma(M)$. Then the following statements are equivalent
i. $\quad \Gamma(\mathrm{M})$ is a star graph
ii. $\quad \Gamma(\mathrm{M})=K_{1,2}$
iii. $A G(M)=K_{3}$

Proof:

(i) $=>$ (ii): Since $\operatorname{gr}(\Gamma(M))=\infty$ and $A G(M) \neq \Gamma(M)$,We have M is non reduced by Theorem 2.11 and $\left|Z(M)^{*}\right| \geq 3$. Since $\Gamma(\mathrm{M})$ is a star graph, there are two sets A, B such that $Z(R)^{*}=A \cup B$ with $|A|=1, A \cap B=\emptyset, A \gamma B=\{0\}$ and $b_{1} \gamma b_{2} \neq 0$ for every $b_{1}, b_{2} \in B$. Since $|A|=1$, we may assume that $A=\{w\}$ for some $w \in Z(M)^{*}$. Since each edge of $\Gamma(\mathrm{M})$ is an edge of $A G(M)$ and $\mathrm{AG}(\mathrm{M}) \neq \Gamma(\mathrm{M})$, there are some $\mathrm{x}, \mathrm{y} \in B$ such that $x \gamma y$ is an edge of $\Gamma(\mathrm{M})$, but not an edge of $A n n_{G}(M)$. Since $a n n_{M}(c)=w$ for each $c \in B$ and $\operatorname{ann} n_{M}(x \gamma y) \neq \operatorname{ann}_{M}(x) \cup a n n_{M}(y)$

We have $\operatorname{ann}_{M}(x \gamma y) \neq w$. Thus $\operatorname{ann}_{M}(x \gamma y)=B$ and $x \gamma y=w$. Since $\mathrm{A}=\{x \gamma y\}$ and $A \gamma B=\{0\}$. We have $(x \gamma y) \gamma x=x^{2} \gamma y=0$ and $(x \gamma y) \gamma y=y^{2} \gamma x=0$. We show that $\mathrm{B}=\{\mathrm{x}, \mathrm{y}\}$ and hence $|B|=2$. Thus assume there is a $c \in B$ such that $c \neq x$ and $c \neq y$.Then $\mathrm{w} \gamma c=x \gamma y \gamma c=0$. We show that $(x \gamma c+x \gamma y) \neq x$ and $(x \gamma c+x \gamma y) \neq$ $x \gamma y$ (note that $x \gamma y=w$).Suppose that $(x \gamma c+x \gamma y)=x$.Then $(x \gamma c+x \gamma y) \gamma y=x \gamma c \gamma y+x \gamma y^{2}=0$ and $x \gamma y=0, a$ contradiction. Hence $x \neq(x \gamma c+x \gamma y)$. Since $x, c \in B$ we have $x \gamma c \neq 0$ and thus $(x \gamma c+x \gamma y)$, $x \gamma y$ are distinct elements of $Z(M)^{*}$.

Since $x^{2} \gamma y=0$ and $y \in B$ either $x^{2}=0$ or $x^{2}=x \gamma y$ or $x^{2}=y$. Suppose that $x^{2}=y$. Since $\mathrm{x} \gamma y=w \neq 0$. We have $x \gamma y=x \gamma\left(x^{2}\right)=x^{3}=w \neq 0$. Since $x^{2} \gamma y=0$, we have $x^{4}=0$. Since $x^{4}=0$, and $x^{3} \neq 0$, we have $x^{2}, x^{3}, x^{2}+x^{3}$ are distinct elements of $Z(M)^{*}$, and thus $x^{2}-x^{3}-x^{2}+x^{3}-x^{2}$ is a cycle of length three in $\Gamma(\mathrm{M})=><=$. Hence we assume that either $x^{2}=0$ or $x^{2}=x \gamma y=w$. In both cases, we have $x^{2} \gamma c=0$. Since $x,(x \gamma c+x \gamma y), x \gamma y$ are distinct elements of $Z(M)^{*}$ and $x \gamma y^{2}=\gamma y x^{2}=x^{2} \gamma c=0$. We have $x-(x \gamma c+x \gamma y)-$ $x \gamma y-x$ is a cycle of length three in $\Gamma(\mathrm{M})=><=$. Thus $\mathrm{B}=\{\mathrm{x}, \mathrm{y}\}$ and $|B|=2$. Hence $\Gamma(\mathrm{M})=K_{1,2}$.
(ii) $=>$ (iii): Since each edge of $\Gamma(\mathrm{M})$ is an edge of $\mathrm{AG}(\mathrm{M})$ and $\mathrm{AG}(\mathrm{M}) \neq \Gamma(\mathrm{M})$, and $\Gamma(\mathrm{M})=K_{1,2}$. It is clear that AG (M) must be K_{3}.
(iii)=>(i): Since $\left|Z(M)^{*}\right|=3$ and $\Gamma(\mathrm{M})$ is connected and $\mathrm{AG}(\mathrm{M}) \neq \Gamma(\mathrm{M})$ exactly one edge of $A G(M)$ is not an edge of $\Gamma(\mathrm{M})$.Thus $\Gamma(\mathrm{M})$ is a star graph.

REFERENCES

1. D.F.Anderson, On the diameter and girth of a zero - divisor graph II, Houston J.Math.34, 2008, 361 - 371.
2. D.F.Anderson, A.S Livingston, The zero - divisor graph of a commutative ring, J. Algebra 217, 1999, $434-447$.
3. A.Badawi, On the annihilator graph of a commutative ring, comm. Algebra 42, 2014, 1 - 14 .
4. I.Beck, Coloring of commutative rings, J. Algebra 116, 1988, $208-226$.
5. T.Tamizh Chelvam and S.Rammurthy, On annihilator graphs of Near rings, alestine journal of Mathematics, 5(1), 2016,100-107. of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]
