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ABSTRACT 
Let M be a Commutative 𝛤 − near – ring with non zero identity. Let Z(M) be the set of all zero – divisors of M. For 
𝑥 ∈ 𝑍(𝑀), let 𝑎𝑛𝑛𝑀(𝑥) = {𝑦 ∈ 𝑀/𝑦𝛾𝑥 = 0}. We define the annihilator graph of M ,denoted by AG(M) ,as the  
undirected graph whose set of vertices is Z(𝑀)∗ = 𝑍(𝑀) ∖ {0} and two distinct vertices x and y are adjacent if and 
only if  𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) ≠  𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑦).In this paper we study the ring theoretic properties of M and graph 
theoretic properties of 𝐴𝐺(𝑀). 
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1. INTRODUCTION 
 
The concept of a zero – divisor of a commutative ring was first introduced by I.Beck [4], where all the elements of the 
ring were taken as the vertices of the graph. In a commutative ring, for 𝑥 ∈ 𝑍(𝑀),  let 𝑎𝑛𝑛𝑀(𝑥) = {𝑦 ∈ 𝑀/𝑦𝑥 = 0}. 
A.Badawi [3] defined and studied the annihilator graph AG(M) of a commutative ring. The concept of a annihilator 
graph of a near ring was introduced and studied by T.Tamizh Chelvam and R.Rammoorthy [5]. Let M be a 
commutative Γ − near – ring with non zero identity and Z(M) be its set of all zero – divisors. In this paper, we 
introduce the annihilator graph 𝐴𝐺(𝑀) for a Γ − near – ring M and study the connectivity of the annihilator graph. For 
a reduced Γ − near – ring, we show that 𝐴𝑛𝑛𝐺(𝑀)is identical to Γ (𝑀) if and only if M has exactly two distinct 
minimal prime ideals (Theorem 2.11). Among other things, we determine when 𝐴𝐺(𝑀)is a complete graph 𝐾𝑛, a 
complete bipartite graph (𝐾𝑚,𝑛), or a star graph(𝐾1,𝑛). If AG (M) is identical to  Γ(M), then we write AG (M) = Γ(M) 
otherwise we write 𝐴𝐺(𝑀) ≠ Γ(M) and also show that AG (M) is connected with diameter at most two. If         
AG (M)  ≠  Γ(M), we show that gr (AG (M) )∈ {3,4}. 
 
2. MAIN RESULTS 
 
Definition 2.1: The annihilator graph AG (M) for a Γ − near – ring M, let  𝑎 ∈ 𝑍(𝑀) and let 𝑎𝑛𝑛𝑀(𝑎) = {𝑚 ∈
𝑀/𝑚𝛾𝑎 = 0, 𝛾 ∈ Γ}  The annihilator graph of M is the (undirected) graph AG (M) with vertices Z(𝑀)∗ = 𝑍(𝑀) ∖ {0} 
and two distinct vertices x and y are adjacent if and only if  𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) ≠  𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑦), it follows that each 
edge (path) of Γ(M) is an edge (path) of AG (M).  
 
Lemma 2.2: Let M be a commutative Γ− near – ring. Then the following are hold. 

i) Let x, y be distinct elements of Z(𝑀)∗. Then x – y is not an edge of AG (M)if and only if   
𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) =  𝑎𝑛𝑛𝑀(𝑥) 𝑜𝑟 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦)  =  𝑎𝑛𝑛𝑀(𝑦) 

ii) If x – y is an edge of Γ(M) for some distinct x, y ∈ Z(𝑀)∗, then x – y is an edge of AG (M).In particular if P is a 
path in Γ(M), then P is a path in AG (M).  

iii) If x – y is not an edge of AG (M) for some distinct x, y ∈ Z(𝑀)∗ then  𝑎𝑛𝑛𝑀(𝑥) ⊆ 𝑎𝑛𝑛𝑀(𝑦) or 
𝑎𝑛𝑛𝑀(𝑦) ⊆  𝑎𝑛𝑛𝑀(𝑥) 

iv) If 𝑎𝑛𝑛𝑀(𝑥) ⊈ 𝑎𝑛𝑛𝑀(𝑦) and 𝑎𝑛𝑛𝑀(𝑦) ⊈ 𝑎𝑛𝑛𝑀(𝑥) for some distinct x, y ∈ Z(𝑀)∗ then x – y is an edge of  
AG (M) 

v) If 𝑑Γ(M)(𝑥,𝑦) = 3 for some distinct x, y ∈ Z(𝑀)∗ then x – y is an edge of AG (M) 
vi) If x- y is not an edge of 𝐴𝐺(𝑀)for some distinct x, y ∈ Z(𝑀)∗, then there is a 𝑤 ∈ Z(𝑀)∗ − {𝑥,𝑦} such that       

x – w – y is a path in Γ(M) and hence x – w – y ia also a path in  AG (M). 
Corresponding Author: R. Rajeswari*1 
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Proof:  

i) Suppose that x – y is not an edge of AG (M). Then 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑦) (by Definition 
2.1).Since 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) is a union of two ideals, We have, 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑎𝑛𝑛𝑀(𝑥) 𝑜𝑟 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) =  𝑎𝑛𝑛𝑀(𝑦).  
Conversely, suppose that 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑎𝑛𝑛𝑀(𝑥) 𝑜𝑟 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑎𝑛𝑛𝑀(𝑦). 
Then 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑎𝑛𝑛𝑀(𝑥)  ∪  𝑎𝑛𝑛𝑀(𝑦) and thus x – y is not an edge of AG (M) 

ii) Suppose x – y is an edge of Γ(M) for some distinct x, y ∈ Z(𝑀)∗.Then 𝑥𝛾𝑦 = 0 and hence  𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝑀. 
Since 𝑥 ≠ 0 and 𝑦 ≠ 0, 𝑎𝑛𝑛𝑀(𝑥) ≠ 𝑀 𝑎𝑛𝑑 𝑎𝑛𝑛𝑀(𝑦) ≠ 𝑀. Thus x- y is an edge of AG (M). The ‘in 
particular’ is now clear. 

iii) Suppose x – y is not an edge of AG (M) for some distinct x, y ∈ Z(𝑀)∗. Then 𝑎𝑛𝑛𝑀(𝑥)  ∪  𝑎𝑛𝑛𝑀(𝑦) =
𝑎𝑛𝑛𝑀(𝑥𝛾𝑦). Since 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) is a union of two ideals, we have 
 𝑎𝑛𝑛𝑀(𝑥) ⊆ 𝑎𝑛𝑛𝑀(𝑦) or 𝑎𝑛𝑛𝑀(𝑦)  ⊆  𝑎𝑛𝑛𝑀(𝑥) 

iv) This statement is now clear by (iii) 
v) Suppose that  𝑑Γ(M)(𝑥,𝑦) = 3 for some distinct x, y ∈ Z(𝑀)∗. Then  𝑎𝑛𝑛𝑀(𝑥) ⊈ 𝑎𝑛𝑛𝑀(𝑦) and 

 𝑎𝑛𝑛𝑀(𝑦) ⊈ 𝑎𝑛𝑛𝑀(𝑥). Hence x – y is an edge of AG (M)by (iv) 
vi) Suppose that x- y is not an edge of 𝐴𝐺(𝑀) for some distinct x, y ∈ Z(𝑀)∗.Then there is a 𝑤 ∈ 𝑎𝑛𝑛𝑀(𝑥)  ∪

𝑎𝑛𝑛𝑀(𝑦) such that w≠ 0 by (iii). Since 𝑥𝛾𝑦 ≠ 0 we have 𝑤 ∈ Z(𝑀)∗ − {𝑥,𝑦}.Hence x – w – y is a path in 
Γ(M) and thus x – w – y ia also a path in AG (M). by (iii). 

 
In view of lemma 2.2, we have the following result 
 
Theorem 2.3: Let M be a commutative Γ− near – ring with|𝑍(𝑀)∗| ≥ 2. Then 𝐴𝐺(𝑀) is connected and  
𝑑𝑖𝑎𝑚(AG (M))≤ 2 
 
Proof: obvious. 
 
Lemma 2.4: Let M be a commutative Γ− near – ring and let x, y be distinct non zero elements. Suppose that x - y is an 
edge of AG (M) that is not an edge of Γ(M) for some distinct x, y ∈ Z(𝑀)∗. If there is a 𝑤 ∈ 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) − {𝑥,𝑦} such 
that 𝑤𝛾𝑥 ≠ 0 and  𝑤𝛾𝑦 ≠ 0, then x – w – y is a path in AG (M) that is not a path in Γ(M) and hence C : x – w – y – x  
is a cycle in 𝐴𝐺(𝑀)of length three and each edge of C is not an edge of Γ(M) 
 
Proof: Suppose that x – y is an edge in AG (M) that is not an edge in Γ(M). Then 𝑥𝛾𝑦 ≠ 0. Assume there is a           
𝑤 ∈ 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) − {𝑥,𝑦} such that 𝑤𝛾𝑥 ≠ 0 and 𝑤𝛾𝑦 ≠ 0. Since 𝑦 ∈ 𝑎𝑛𝑛𝑀(𝑥𝛾𝑤) − �𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑤)�. We 
concludes that x – w is an edge of AG (M). Since 𝑥 ∈ 𝑎𝑛𝑛𝑀(𝑦𝛾𝑤) − �𝑎𝑛𝑛𝑀(𝑦) ∪ 𝑎𝑛𝑛𝑀(𝑤)�.We conclude that y – w 
is an edge of AG(M).Hence x – w – y is a path in AG (M).Since  𝑥𝛾𝑤 ≠ 0 and 𝑦𝛾𝑤 ≠ 0, we have  x – w – y is not a 
path in Γ(M).It is clear that x – w – y – x is a cycle in 𝐴𝐺(𝑀) of length three and each edge of C is not an edge of 
Γ(M). 
 
Theorem 2.5: Let M be a commutative Γ− near – ring. Suppose that x – y is an edge of AG (M) that is not an edge of 
Γ(M) for some distinct x, y ∈ Z(𝑀)∗. If 𝑥𝛾𝑦2 ≠ 0 and 𝑥2𝛾𝑦 ≠ 0, then there is a w ∈ Z(𝑀)∗ such that x – w – y is a 
path in AG (M)that is not a path in Γ(M) and hence  C : x – w – y – x is a cycle in AG (M)of length three and each 
edge of C is not an edge of Γ(M). 
 
Proof: Suppose that x – y is an edge of AG (M) that is not an edge of Γ(M).Then 𝑥𝛾𝑦 ≠ 0 and there is a                    
𝑤 ∈ 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) − �𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑦)�. We show 𝑤 ∉ {𝑥,𝑦}.Assume 𝑤 ∈ {𝑥,𝑦}.Then either 𝑥2𝛾𝑦 = 0 or  
 𝑦2𝛾𝑥 = 0, which is a contradiction. Thus 𝑤 ∉ {𝑥,𝑦}.Hence x – w – y is the desired path in 𝐴𝐺(𝑀) by Lemma 2.4 
 
Corollary 2.6: Let M be a reduced commutative Γ − near – ring. Suppose that x – y is an edge of AG (M) that is not an 
edge of Γ(M) for some distinct,𝑦 ∈ 𝑍(𝑀)∗. Then there is a 𝑤 ∈ 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) − {𝑥,𝑦} such that x – w – y  is a path in  
AG (M) that is not a path in Γ(M) and AG (M)contains a cycle C of length 3 such that at least two edges C are not the 
edges of Γ(M). 
 
Proof: Suppose that x – y is an edge of AG (M) that is not an edge of Γ(M) for some distinct x,𝑦 ∈ 𝑍(𝑀)∗. Since M is 
reduced, we have(𝑥𝛾𝑦)2 ≠ 0, 𝛾 ∈ Γ. This implies 𝑥2𝛾𝑦 ≠ 0 𝑎𝑛𝑑 𝑥𝛾𝑦2 ≠ 0. Thus the claim is now clear by Theorem 
2.5. 
 
Corollary 2.7: Let M be a reduced commutative Γ − near – ring and suppose that  AG (M) ≠ Γ(𝑀). Then gr(𝐴𝐺(𝑀)) 
= 3. Moreover, there is a cycle C of length 3 in 𝐴𝐺(𝑀) such that at least two edges of C are not the edges of Γ(𝑀). 
 
Proof: Since AG (M) ≠ Γ(𝑀), there are some distinct 𝑥,𝑦 ∈ 𝑍(𝑀)∗such that x – y is an edge of AG (M) that is not an 
edge of Γ(𝑀). Since M is reduced, we have (𝑥𝛾𝑦)2 ≠ 0, 𝛾 ∈ Γ. This implies 𝑥2𝛾𝑦 ≠ 0 𝑎𝑛𝑑 𝑥𝛾𝑦2 ≠ 0. Thus the claim 
is now clear by Theorem 2.5. 
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Theorem 2.8: Let M be a commutative Γ− near – ring and suppose that 𝐴𝐺(𝑀) ≠  Γ(𝑀) with gr(AG (M))  ≠ 3. Then 
there are some distinct 𝑥,𝑦 ∈ 𝑍(𝑀)∗ such that x – y is an edge of AG (M) that is not an edge of Γ(𝑀) and there is no 
path of length 2 from x to y in Γ(𝑀). 
 
Proof: Since AG (M) ≠  Γ(𝑀), there are some distinct 𝑥,𝑦 ∈ 𝑍(𝑀)∗such that x – y is an edge of AG (M) that is not an 
edge of Γ(𝑀). If possible suppose that x – w – y is a path of length 2 in Γ(𝑀). Then x – w – y is a path of length 2 in 
AG (M) by lemma 2.2(i). Therefore x – w – y – x is a cycle of length 3 in AG (M) and hence gr (AG (M)) = 3, a 
contradiction. Thus there is no path of length from x to y in Γ(𝑀). 
 
Lemma 2.9: Let M be a reduced Γ − near – ring that is not an gamma near- integral domain and let 𝑧 ∈ 𝑍(𝑀)∗. Then  

i) 𝑎𝑛𝑛𝑀(𝑥) = 𝑎𝑛𝑛𝑀(𝑧𝑛) for each positive integer 𝑛 ≥ 2 
ii) If  𝑐 + 𝑧 ∈ 𝑍(𝑀)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 ∈ 𝑎𝑛𝑛𝑅(𝑧) ∖ {0} 𝑡ℎ𝑒𝑛 𝑎𝑛𝑛𝑅(𝑧 + 𝑐) ⊂ 𝑎𝑛𝑛𝑅(𝑧) ((ie) 𝑎𝑛𝑛𝑀(𝑐 + 𝑧) ⊂ 𝑎𝑛𝑛𝑀(𝑧)) 

In particular if Z(M) is an ideal of M and 𝑐 ∈ 𝑎𝑛𝑛𝑀(𝑥) − {0}, then 𝑎𝑛𝑛𝑀(𝑧 + 𝑐) is properly contained 
in 𝑎𝑛𝑛𝑀(𝑧). 

 
Proof: 

i) Let 𝑛 ≥ 2. It is clear that  𝑎𝑛𝑛𝑀(𝑧) ⊆ 𝑎𝑛𝑛𝑀(𝑧𝑛) let 𝑓 ∈ 𝑎𝑛𝑛𝑀(𝑧𝑛). Since 𝑓𝛾𝑧𝑛 = 0 𝑎𝑛𝑑 M is reduced, we 
have 𝑓𝛾𝑧 = 0. Thus 𝑎𝑛𝑛𝑀(𝑧𝑛) = 𝑎𝑛𝑛𝑀(𝑧). 

ii) Let  𝑐 ∈  𝑎𝑛𝑛𝑀(𝑧) ∖ {0}  and suppose that 𝑐 + 𝑧 ∈ 𝑍(𝑀).Since 𝑧2 ≠ 0, we have 𝑐 + 𝑧 ≠ 0 and hence 
𝑐 + 𝑧 ∈ 𝑍(𝑀)∗.Since 𝑐 ∈  𝑎𝑛𝑛𝑀(𝑧) and M is reduced, we have 𝑐 ∉  𝑎𝑛𝑛𝑀(𝑐 + 𝑧).  Hence 𝑎𝑛𝑛𝑀(𝑐 + 𝑧) ≠
𝑎𝑛𝑛𝑀(𝑧). Since 𝑎𝑛𝑛𝑀(𝑐 + 𝑧) ⊂  𝑎𝑛𝑛𝑀�𝑧𝛾(𝑐 + 𝑧)� = 𝑎𝑛𝑛𝑀(𝑧2) and 𝑎𝑛𝑛𝑀(𝑧2) = 𝑎𝑛𝑛𝑀(𝑧) 𝑏𝑦(𝑖) It follows 
that 𝑎𝑛𝑛𝑀(𝑐 + 𝑧) ⊂ 𝑎𝑛𝑛𝑀(𝑧). 

 
Lemma 2.10: Let M be a commutative Γ − near – ring. Then diam (Γ(𝑀)) = 2 if and only if either of the following is 
true: 

i) M is reduced with exactly two minimal primes and at least three non – zero zero – divisors or 
ii) Z(M) is an ideal whose square is not {0} and each pair of distinct zero – divisors has a non – zero annihilator. 

 
Theorem 2.11: Let M be a reduced Γ − near – ring with|𝑀𝑖𝑛(𝑀)| ≥ 3. (Possibly Min (M) is infinite) Then  
AG (M) ≠ Γ(𝑀) and gr (𝐴𝐺(𝑀)) = 3 
 
Proof: If Z(M) is an ideal of M then AG (M) ≠ Γ(𝑀) by Theorem 2.3 Hence assume that Z (M) is not an ideal of M. 
Since |𝑀𝑖𝑛(𝑀)| ≥ 3,we have diam (Γ(𝑀)) = 3 by lemma 2.10(ii) and thus AG (M) ≠ Γ(𝑀) by Theorem 2.3.Since M 
is reduced and AG (M) ≠ Γ(𝑀), we have gr (𝐴𝐺(𝑀)) = 3. 
 
Theorem 2.12: Let M be a reduced Γ − near – ring that is not an gamma near- integral domain. Then AG (M) = Γ(𝑀) 
if and only if |𝑀𝑖𝑛(𝑀)| = 2 
 
Proof: Suppose that AG (M) = Γ(𝑀).Since M is a reduced Γ − near – ring that is not an gamma near- integral domain 
|𝑀𝑖𝑛(𝑀)| = 2 by Theorem 2.5.Conversely, suppose that |𝑀𝑖𝑛(𝑀)| = 2.Let 𝑃1,𝑃2 be the minimal prime ideals of M. 
Since M is reduced, we have Z (M) = 𝑃1 ∪ 𝑃2 and  𝑃1 ∩ 𝑃2 = {0}. Let a, b ∈ Z(𝑀)∗.Assume that a, b ∈ 𝑃1.Since 
𝑃1 ∩ 𝑃2 = {0} neither a ∈ 𝑃2 nor b ∈ 𝑃2  and thus 𝑎𝛾𝑏 ≠ 0.Since 𝑃1Γ𝑃2 ⊆ 𝑃1 ∩ 𝑃2 = {0}, it follows that 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) =
𝑎𝑛𝑛𝑀(𝑎) = 𝑎𝑛𝑛𝑀(𝑏) = 𝑃2. Thus a – b is not an edge of 𝐴𝐺(𝑀). Similarly, if a, b ∈ 𝑃2 then a – b is not an edge of 
𝐴𝐺(𝑀) If a ∈ 𝑃1 b ∈ 𝑃2then 𝑎𝛾𝑏 = 0 and thus a – b is an edge of AG (M).Hence each edge of 𝐴𝐺(𝑀)is an edge of 
Γ(𝑀) and therefore AG (M) = Γ(𝑀) 
 
For the remainder of this section, we study the case when M is non reduced 
 
Theorem 2.13: Let M be a non reduced Γ− near – ring with |𝑁𝑖𝑙(𝑀)∗| ≥ 2 and let 𝐴𝐺𝑁(𝑀) be the (induced) sub 
graph of AG (M) with vertices 𝑁𝑖𝑙(𝑀)∗. Then 𝐴𝐺𝑁(𝑀) is complete. 
 
Proof: Suppose there are non – zero distinct elements 𝑎, 𝑏 ∈ 𝑁𝑖𝑙(𝑀) such that 𝑎𝛾𝑏 ≠ 0, 𝛾 ∈ Γ.Assume that 
𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) = 𝑎𝑛𝑛𝑀(𝑎) ∪ 𝑎𝑛𝑛𝑀(𝑏). Hence 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) = 𝑎𝑛𝑛𝑀(𝑎)𝑜𝑟 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) = 𝑎𝑛𝑛𝑀(𝑏).Without loss of 
generality, we may assume that 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) = 𝑎𝑛𝑛𝑀(𝑎).Let n be the least positive integer such that 𝑏𝑛 = 0.Suppose 
that 𝑎𝛾𝑏𝑘 ≠ 0 for each k, 1 ≤ 𝑘 ≤ 𝑛. Then 𝑏𝑛−1 ∈ 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) ∖ 𝑎𝑛𝑛𝑀(𝑎), a contradiction. Hence assume that 
k, 1 ≤ 𝑘 ≤ 𝑛 is the least positive integer such that 𝑎𝛾𝑏𝑘 = 0. Since  𝑎𝛾𝑏 ≠ 0,1 < 𝑘 < 𝑛. Hence  𝑏𝑘−1 ∈ 𝑎𝑛𝑛𝑀(𝑎𝛾𝑏) −
𝑎𝑛𝑛𝑀(𝑎), a contradiction. Thus a – b is an edge of 𝐴𝐺𝑁(𝑀).  
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Theorem 2.14: Let M be a non reduced Γ− near – ring with |𝑁𝑖𝑙(𝑀)∗| ≥ 2 and let Γ𝑁(𝑀) be the induced sub graph of 
Γ(M) with vertices Nil (M)*. Then Γ𝑁(M) is complete if and only if Nil (M)2={0}. 
 
Proof: If Nil (M)2={0}, then it is clear that Γ𝑁(M) is complete. Hence assume that  Γ𝑁(M) is complete. We need only 
show that 𝑤2 = 0 for each w 𝜖 Nil (M)*. Let w 𝜖 Nil (M)* and assume that w2≠0. Let n be the least positive integer 
such that 𝑤𝑛 = 0. Then n≥ 3. Thus 𝑤𝛾( 𝑤𝑛−1 + 𝑤)=0 and 𝑤𝑛 = 0.We have 𝑤2 = 0 ⟹⟸.Thus 𝑤2 = 0 for each 
w ∈ Nil (M). 
 
Theorem 2.15: Let M be a Γ − near – ring such that AG (M) ≠  Γ(M). Then the following statements are equivalent 

i. Γ(M) is a star graph 
ii. Γ(M) = 𝐾1,2 
iii. AG (M) = K3 

 
Proof: 
(i)=>(ii): Since gr ( Γ(M)) = ∞ and AG (M)≠  Γ(M),We have M is non reduced by Theorem 2.11 and |𝑍(𝑀)∗| ≥ 3. 
Since Γ(M) is a star graph, there are two sets A, B such that 𝑍(𝑅)∗ = 𝐴 ∪ 𝐵 with |𝐴| = 1,𝐴 ∩ 𝐵 = ∅,𝐴𝛾𝐵 = {0}   
and  𝑏1𝛾𝑏2 ≠ 0 for every 𝑏1, 𝑏2 ∈ 𝐵. Since |𝐴| = 1, we may assume that 𝐴 = {𝑤} for some 𝑤 ∈ 𝑍(𝑀)∗. Since each 
edge of Γ(M) is an edge of 𝐴𝐺(𝑀) and AG (M) ≠  Γ(M), there are some x, y ∈ 𝐵 such that 𝑥𝛾𝑦 is an edge of Γ(M), but 
not an edge of 𝐴𝑛𝑛𝐺(𝑀). Since 𝑎𝑛𝑛𝑀(𝑐) = 𝑤 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐 ∈ 𝐵 𝑎𝑛𝑑 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦 ) ≠ 𝑎𝑛𝑛𝑀(𝑥) ∪ 𝑎𝑛𝑛𝑀(𝑦) 
 
We have 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) ≠ 𝑤. Thus 𝑎𝑛𝑛𝑀(𝑥𝛾𝑦) = 𝐵 𝑎𝑛𝑑 𝑥𝛾𝑦 = 𝑤. Since A = { 𝑥𝛾𝑦}  𝑎𝑛𝑑 𝐴𝛾𝐵 = {0}. We have 
(𝑥𝛾𝑦)𝛾𝑥 = 𝑥2𝛾𝑦 = 0 and (𝑥𝛾𝑦)𝛾𝑦 = 𝑦2𝛾𝑥 = 0. We show that B ={x, y} and hence |𝐵| = 2. Thus assume there is a 
𝑐 ∈ 𝐵 such that 𝑐 ≠ 𝑥 𝑎𝑛𝑑 𝑐 ≠ 𝑦.Then w𝛾𝑐 = 𝑥𝛾𝑦𝛾𝑐 = 0.We show that(𝑥𝛾𝑐 + 𝑥𝛾𝑦) ≠ 𝑥 𝑎𝑛𝑑 (𝑥𝛾𝑐 + 𝑥𝛾𝑦) ≠
𝑥𝛾𝑦(𝑛𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑥𝛾𝑦 = 𝑤).Suppose that (𝑥𝛾𝑐 + 𝑥𝛾𝑦) = 𝑥.Then (𝑥𝛾𝑐 + 𝑥𝛾𝑦)𝛾𝑦 = 𝑥𝛾𝑐𝛾𝑦 + 𝑥𝛾𝑦2 = 0 𝑎𝑛𝑑 𝑥𝛾𝑦 = 0, 𝑎  
𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛.  Hence 𝑥 ≠ (𝑥𝛾𝑐 + 𝑥𝛾𝑦).Since 𝑥, 𝑐 ∈ 𝐵 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥𝛾𝑐 ≠ 0 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 (𝑥𝛾𝑐 + 𝑥𝛾𝑦), 𝑥𝛾𝑦 𝑎𝑟𝑒 
 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑍(𝑀)∗. 
 
Since 𝑥2𝛾𝑦 = 0 𝑎𝑛𝑑 𝑦 ∈ 𝐵 𝑒𝑖𝑡ℎ𝑒𝑟 𝑥2 = 0 𝑜𝑟 𝑥2 = 𝑥𝛾𝑦 𝑜𝑟 𝑥2 = 𝑦. Suppose that 𝑥2 = 𝑦. Since x𝛾𝑦 = 𝑤 ≠ 0. We 
have 𝑥𝛾𝑦 = 𝑥𝛾(𝑥2) = 𝑥3 = 𝑤 ≠ 0. Since 𝑥2𝛾𝑦 = 0, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑥4 = 0. Since 𝑥4 = 0, 𝑎𝑛𝑑 𝑥3 ≠ 0,𝑤𝑒 ℎ𝑎𝑣𝑒 
 𝑥2, 𝑥3, 𝑥2 + 𝑥3 are distinct elements of  𝑍(𝑀)∗, and thus 𝑥2 − 𝑥3 − 𝑥2 + 𝑥3 − 𝑥2 is a cycle of length three in 
Γ(M)=><=. Hence we assume that either 𝑥2 = 0 𝑜𝑟 𝑥2= 𝑥𝛾𝑦 = 𝑤. In both cases, we have 𝑥2𝛾𝑐 = 0. Since      
𝑥, (𝑥𝛾𝑐 + 𝑥𝛾𝑦), 𝑥𝛾𝑦 are distinct elements of 𝑍(𝑀)∗ and 𝑥𝛾𝑦2 =  𝛾𝑦𝑥2 = 𝑥2𝛾𝑐 = 0. We have  𝑥 −  (𝑥𝛾𝑐 + 𝑥𝛾𝑦) −
 𝑥𝛾𝑦 − 𝑥 is a cycle of length three in Γ(M) =><=. Thus B = {x, y} and |𝐵| = 2. Hence Γ(M) =  𝐾1,2. 
 
(ii)=>(iii): Since each edge of Γ(M) is an edge of AG (M) and AG (M) ≠  Γ(M), and Γ(M)=𝐾1,2. It is clear that           
AG (M) must be 𝐾3. 
 
(iii)=>(i): Since |𝑍(𝑀)∗| = 3 and Γ(M) is connected and AG (M) ≠ Γ(M) exactly one edge of 𝐴𝐺(𝑀) is not an edge of 
Γ(M).Thus Γ(M) is a star graph. 
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