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ABSTRACT 
A set S of vertices in a graph G is a neighborhood set of G if 𝐺 = ⋃ 〈𝑁[𝑣]〉𝑣∈𝑆 , where is the 〈𝑁[𝑣]〉 subgraph of G 
induced by 𝑣 and all vertices adjacent to. The neighborhood number 𝑛0(𝐺) of 𝐺 is the minimum number of vertices in 
a neighborhood of G [3]. Let 𝑃𝑛 𝑖  be the family of neighborhood sets of a Path 𝑃𝑛 with cardinality 𝑖. In this paper we 
construct family of neighborhood sets of Paths 𝑃𝑛 𝑖 and its polynomial of a path. 
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1. INTRODUCTION 
 
Let G be a simple graph with vertex set 𝑉 = {𝑣1, 𝑣2, 𝑣3, . . , 𝑣𝑛} and the Edge set 𝐸 =  {𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, … , 𝑣𝑛−1𝑣𝑛}.      
A neighborhood set 𝑆⊆𝑉(𝐺) is a neighborhood set of 𝐺 if 𝐺 = ⋃ 〈𝑁[𝑣]〉𝑣∈𝑆  where 〈𝑁[𝑣]〉 is induced subgraph of G. 
The neighborhood number 𝑛0(𝐺). Let 𝑃𝑛𝑖  be the family of neighborhood sets of a Paths 𝑃𝑛𝑖   with cardinality 𝑖 and 
𝑛0(𝑃𝑛, 𝑖) = |𝑃𝑛𝑖| and the Polynomials are 𝑁0(𝑃𝑛, 𝑥) = ∑ 𝑛(𝑃𝑛 , 𝑖)𝑥𝑖𝑛

𝑖=𝑛0  the polynomial of the path. 
 
2. NEIGHBORHOOD SETS OF PATHS 
 
Let 𝑃𝑛 ,𝑛 ≥ 4 be the path with 𝑛 vertices 𝑉(𝑃𝑛) = {1,2,3 … 𝑛} and 𝐸(𝑃𝑛) = {(1,2), (2,3) … (𝑛 − 1,𝑛)}. Let 𝑃𝑛𝑖   be the 
family of neighborhood sets of 𝑃𝑛with cardinality 𝑖. Every path 𝑃𝑛 consist a simple path. The following lemmas and 
theorems are needed for the construction of family Neighborhood sets with different cardinality.  
 
Lemma 2.1: For a graph = 𝑃𝑛 , 𝑛 ≥ 3  The following Properties are true 
                     𝑃𝑛𝑖 =  ∅ if and only if 𝑖 > 𝑛 or 𝑖 < �𝑛

2
�.

 

 
 
Theorem 2.2: If 𝑋 ∈ 𝑃𝑛−3𝑖−1  and there exists 𝑥 ∈ [𝑛]  such that 𝑋 ∪ {𝑥} ∈ 𝑃𝑛𝑖  then 𝑋 ∈ 𝑃𝑛−2𝑖−1 .     
 
Proof: Suppose that 𝑋∉𝑃𝑛−2𝑖−1  since 𝑋 ∈ 𝑃𝑛−3𝑖−1 , 𝑋 contains at least one vertex label 𝑛 − 4 𝑜𝑟 𝑛 − 3. If 𝑛 − 4 ∈ 𝑋, 
then  𝑋 ∈ 𝑃𝑛−3𝑖−1  a contradiction. Hence, 𝑛 − 4 ∈ 𝑋, but in this case, 𝑋 ∪ {𝑥}∉𝑃𝑛𝑖 for any 𝑥 ∈ [𝑛] also a contradiction. 
This  𝑋 ∈ 𝑃𝑛−2𝑖−1 .                                                                
 
Lemma 2.3: Let 𝑃𝑛,𝑛 ≥ 2  be a path. Then  

(i) 𝑋 ∈ 𝑃𝑛−2𝑖−1 = ∅  then  𝑃𝑛−1𝑖−1 = ∅..        
(ii) 𝑃𝑛−1𝑖−1 = 𝑃𝑛−2𝑖−1 = ∅  then  𝑃𝑛𝑖 = ∅.  

Proof: 
(i) Let 𝑃𝑛−2𝑖−1 = ∅⇒ 𝑖 − 1 < 𝑛 − 2⇒ 𝑖 − 1 < 𝑛 − 1 therefore 𝑃𝑛−1𝑖−1 ≠ ∅ which is a contradiction. Since, By 

lemma 2.1.  𝑃𝑛−2𝑖−1 = ∅  then 𝑃𝑛−1𝑖−1 = ∅.   
(ii) By the result (i), 𝑖 − 1 < 𝑛 − 2⇒ 𝑖 − 1 < 𝑛, therefore 𝑃𝑛𝑖−1 ≠ ∅ which is a contradiction. Hence  

𝑃𝑛−1𝑖−1 = 𝑃𝑛−2𝑖−1 = ∅  then  𝑃𝑛𝑖 = ∅.  
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Lemma 2.4: If 𝑃𝑛𝑖 ≠ ∅  then the following properties are true 

(i) 𝑃𝑛−1𝑖−1 = ∅ and 𝑃𝑛−2𝑖−1 = ∅  if and only if  𝑛 = 2𝑘 + 1 and 𝑖 = 𝑘 = �𝑛
2
�. 

(ii) 𝑃𝑛−2𝑖−1 = ∅  and 𝑃𝑛−1𝑖−1 ≠ ∅  if and only if 𝑖 = 𝑛.  
(iii) 𝑃𝑛−1𝑖−1 ≠ ∅ and 𝑃𝑛−2𝑖−1 ≠ ∅ if and only if  𝑛 = 2𝑘, 𝑘 = 𝑖. 

 
Proof:   

(i) Let 𝑃𝑛−1𝑖−1 = ∅⇒ 𝑖 − 1 > 𝑛 − 1 or 𝑖 − 1 < �𝑛−1
2
�.  If 𝑖 − 1 > 𝑛 − 1 then 𝑖 > 𝑛 by lemma 2.1, 𝑃𝑛𝑖 = ∅ which is 

a contradiction. Therefore −1 < �𝑛−1
2
� + 1 . Since 𝑃𝑛𝑖 ≠ ∅ and �𝑛

2
� ≤ 𝑖 ≤ �𝑛−1

2
� + 1, we get 𝑛 = 2𝑘 + 1 

and 𝑖 = 𝑘 = �𝑛
2
�. Suppose 𝑛 = 2𝑘 + 1and 𝑖 = 𝑘 = �𝑛

2
�
 
for some ∈ 𝑁 . Then  by lemma 2.1 , if  𝑃𝑛−1𝑖−1 = ∅  then 

𝑃𝑛−2𝑖−1 ≠ ∅.    
(ii) Let  𝑃𝑛−2𝑖−1 = ∅ . By lemma 2.1, 𝑖 − 1 > 𝑛 − 2  or  𝑖 − 1 < �𝑛−2

2
� . If 𝑖 − 1 < �𝑛−2

2
�
 
then −1 < �𝑛−1

2
� . 

Therefore   𝑃𝑛−1𝑖−1 = ∅ which is a contradiction. Hence, 𝑖 > 𝑛 − 1. Since 𝑃𝑛−1𝑖−1 = ∅, −1 ≤ 𝑛 − 1. Therefore 
= 𝑛. Suppose 𝑖 = 𝑛  then by lemma 2.1 if  𝑃𝑛−2𝑖−1 = ∅  and 𝑃𝑛−1𝑖−1 ≠ ∅.  

(iii) Let  𝑃𝑛−1𝑖−1 = ∅ . Then −1 > 𝑛 − 1⇒ 𝑖 − 1 < �𝑛−1
2
� . 

 
If 𝑖 − 1 > 𝑛 − 1 then 𝑖 − 1 > 𝑛 − 2. Hence by lemma 

2.1, 𝑃𝑛−1𝑖−1 = 𝑃𝑛−2𝑖−1 = ∅, which is a contradiction. Therefore 𝑖 − 1 < �𝑛−1
2
� + 1

 
and 𝑃𝑛−2𝑖−1 ≠ ∅. Hence  

�𝑛−2
2
� + 1 ≤ 𝑖 ≤ �𝑛−1

2
�. Therefore,𝑛 = 2𝑘 = 𝑖. For some 𝑘 ∈ 𝑁 then by lemma 2.1 𝑃𝑛−1𝑖−1 = 𝑃2𝑘𝑘 ≠ ∅ for some 

𝑘 ∈ 𝑁.                               
 
3. CONSTRUCTION OF FAMILIES OF NEIGHBORHOOD SETS OF PATHS   
 
Theorem 3.1: For any path 𝑃𝑛𝑖 , 𝑛 ≥ 4 and 𝑖 ≥ �𝑛

2
�, the following result are true. 

(i) If  𝑃𝑛−1𝑖−1 = ∅ and 𝑃𝑛−2𝑖−1 ≠ ∅   then 𝑃𝑛𝑖 = {2,4, … ,𝑛 − 5,𝑛 − 3,𝑛 − 1} .  
(ii) If  𝑃𝑛−2𝑖−1 = ∅ and 𝑃𝑛−1𝑖−1 ≠ ∅  then  𝑃𝑛𝑖 = {[𝑛]}. 
(iii) If 𝑃𝑛−2𝑖−1 ≠ ∅   and 𝑃𝑛−1𝑖−1 ≠ ∅  then 𝑃𝑛𝑖 = 𝑃𝑛𝑛−1 = {[𝑛] − {𝑥}/𝑥 ∈ [𝑛]} .  
(iv) If  𝑃𝑛−2𝑖−1 ≠ ∅ and 𝑃𝑛−1𝑖−1 ≠ ∅  then  𝑃𝑛𝑖 = {𝑋1 ∪ {𝑛}/𝑋1 ∈ 𝑃𝑛−1𝑖−1}, 𝑃𝑛𝑖 = {𝑋2 ∪ {𝑛 − 1}/1 ∈ 𝑋2 ∈ 𝑃𝑛−2𝑖−1},  

 𝑃𝑛𝑖 = {𝑋2 ∪ {𝑛 − 1}/𝑋2 ∈ 𝑃𝑛−2𝑖−1} and  𝑃𝑛𝑖 = {𝑋2 ∪ {𝑛}/1∉𝑋2 ∈ 𝑃𝑛−2𝑖−1}. 
 
Proof: 
(i) Let  𝑃𝑛−1𝑖−1 = ∅ and 𝑃𝑛−2𝑖−1 ≠ ∅ . By lemma 2.4 (i), 𝑛 = 2𝑘 + 1  and 𝑖 = 𝑘 for some  𝑘 = �𝑛

2
� ∈ 𝑁. This imply that 

𝑃𝑛𝑖  =𝑃𝑛
�𝑛 2� � = {2,4,6,8, . . ,𝑛 − 1} . 

(ii) Let 𝑃𝑛−2𝑖−1 = ∅ and  𝑃𝑛−1𝑖−1 ≠ ∅  .  By lemma 2.4 (ii) 𝑖 = 𝑛. Hence
 
𝑃𝑛𝑖 = 𝑃𝑛𝑛 = {[𝑛]}. 

(iii)    If 𝑖 = 𝑛 − 1 in lemma 2.4 (iii), then we get   𝑃𝑛𝑖 = 𝑃𝑛𝑛−1 = {[𝑛] − {𝑥}/𝑥 ∈ [𝑛]} . 
(iv) 𝑃𝑛−1𝑖−1 ≠ ∅   and 𝑃𝑛−2𝑖−1 ≠ ∅. Let 𝑋1 ∈ 𝑃𝑛−2𝑖−1

  then there exists at least one vertex labled in  𝑛 − 3 𝑜𝑟 𝑛 − 2  is in 𝑋1. 
If 𝑛 − 3 𝑜𝑟 𝑛 − 2 ∈ 𝑋1, then 𝑋1 ∪ {𝑛 − 1} ∈ 𝑃𝑛𝑖.  Let 1

2 1
i

nX P −
−∈  then there exists one vertex labled as 𝑛 − 1 is 

in 𝑋2. If 𝑛 − 1 ∈ 𝑋2  then 𝑋1 ∪ {𝑛} ∈ 𝑃𝑛𝑖 .  
 
3.1 NEIGHBORHOOD POLYNOMIAL OF PATHS

  
Definition 3.1.1: Let 𝑃𝑛𝑖   be the family of neighborhood sets of a path 𝑃𝑛  with cardinality i and let 𝑛0(𝑃𝑛𝑖) = �𝑃𝑛𝑖�.  Then 
the neighborhood polynomial of 𝑃𝑛  is defined as 

𝑁(𝑃𝑛, 𝑥) = � 𝑛(𝑃𝑛, 𝑥)𝑥𝑖
𝑛

𝑛0=�
𝑝
2�

    

We obtain a neighborhood polynomial of  𝑃7 .  𝑁(𝑃7, 𝑥) = 𝑥3 + 10𝑥4 + 15𝑥5 + 7𝑥6 + 𝑥7.   
Theorem 3.1.2: Let = 𝑃𝑛 ,𝑛 ≥ 3 be a path. Then the following properties are true. 

(i) If 𝑃𝑛𝑖  is the family of neighborhood sets with cardinality i of 𝑃𝑛 then �𝑃𝑛𝑖� = �𝑃𝑛−1𝑖−1  � + �𝑃𝑛−2𝑖−1  �. 
(ii) For every 𝑛 ≥ 4, 𝑁(𝑃𝑛 , 𝑥) = 𝑥[𝑁(𝑃𝑛−1, 𝑥) + 𝑁(𝑃𝑛−2, 𝑥)] with the initial values, 

𝑁(𝑃1, 𝑥) = 𝑥,𝑁(𝑃2, 𝑥) = 𝑥2 + 2𝑥,𝑁(𝑃3, 𝑥) = 𝑥3 + 3𝑥2 + 3𝑥 
 
4. COEFFICIENTS OF NEIGHBORHOOD POLYNOMIAL OF PATHS  
The coefficients of 𝑁(𝑃𝑛 , 𝑥)  is determined for 1 ≤ 𝑛 ≤ 12. Let 𝑛 (𝑃𝑛, 𝑖) = �𝑃𝑛𝑖�. Also there are some relationship exist 
between the coefficients 𝑛(𝑃𝑛 , 𝑖)  where  𝑛

2
≤ 𝑖 ≤ 𝑛.   
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Theorem 4.1: Let = 𝑃𝑛, 𝑛 ≥ 3  be a path and Let 𝑁(𝑃𝑛 ,𝑛) be the total number of neighborhood sets with size 𝑛. Then 
The following properties hold for coefficients of  𝑁(𝑃𝑛, 𝑥). 

(i) For every 𝑛 ∈ 𝑁, 𝑛 (𝑃2𝑛+1,𝑛) = 1   
(ii) For every  𝑛 ≥ 4𝑖 ≥ �𝑛

2
�, 𝑛(𝑃𝑛 , 𝑖) = 𝑛 (𝑃𝑛−1, 𝑖 − 1) + 𝑛 (𝑃𝑛−2, 𝑖 − 1) 

(iii) For every 𝑛 ∈ 𝑁,  𝑛 (𝑃2𝑛+1,𝑛 + 1) = (𝑛+1)(𝑛+2)
2

  
(iv) For every 𝑛 ∈ 𝑁, 𝑛 (𝑃2𝑛+2,𝑛 + 1) = (𝑛 + 2) 
(v) For every 𝑛 ∈ 𝑁, 𝑛(𝑃𝑛,𝑛) = 1       
(vi) For every 𝑛 ∈ 𝑁, 𝑛(𝑃𝑛,𝑛 − 1) = 𝑛  
(vii) For every 𝑛 ∈ 𝑁, 𝑛 (𝑃2𝑛 ,𝑛 + 1) = 𝑛(𝑛+1)(𝑛+2)

6
  

(viii) For every 𝑛 ∈ 𝑁, 𝑛(𝑃2𝑛 ,𝑛) = 1 + 𝑛,𝑛 ≥ 2  
(ix) For every 𝑛 ∈ 𝑁,𝑛 (𝑃𝑛,𝑛 − 2) = (𝑛−1)(𝑛−2)

2
  

(x) If  𝑆𝑛 = ∑ 𝑛(𝑃𝑛, 𝑖)𝑛
𝑖=�𝑛2�

  then for every 𝑛 ≥ 4, 𝑆𝑛 = 𝑆𝑛−1 + 𝑆𝑛−2. 

(xi) For every 𝑛 ∈ 𝑁  and 𝑘 = 0,1,2, … ,2𝑛 −  1, then  
𝑛 (𝑃𝑛+1, 𝑖 + 1) − 𝑛 (𝑃𝑛 , 𝑖 + 1) = 𝑛(𝑃𝑛 , 𝑖) − 𝑛(𝑃𝑛−2, 𝑖).  

 
Proof: 

(i) Since,𝑃2𝑛+1𝑛 = �{2,4,6,8, … ,𝑛 − 1}�, |𝑃2𝑛+1𝑛 | = 1,   𝑃2𝑛+1𝑛 = {2,4,6,8, … ,𝑛 − 1} therefore 𝑃2𝑛+1𝑛 = 1,  
𝑛 = 1,2,3, … 

(ii) From the theorem (3.8.2)  �𝑃𝑛𝑖� = �𝑃𝑛−1𝑖−1  � + �𝑃𝑛−2𝑖−1  �, 𝑛(𝑃𝑛 , 𝑖) = 𝑛 (𝑃𝑛−1, 𝑖 − 1) + 𝑛 (𝑃𝑛−2, 𝑖 − 1).  
(iii) This property is proved for  𝑃2𝑛+1by induction on . The result is true for  𝑛 = 1 and 𝑖 = 1 Similarly for 𝑛 = 3  

and 𝑖 = 2, we get 𝑛(𝑃3, 2) = 𝑛(𝑃2, 1) + 𝑛(𝑃1, 1) = 2 + 1 = 3, therefore 𝑃32 = �{1,2}, {1,3}, {2,3}�. For 𝑛 = 2  
in 𝑃2𝑛+1 = 𝑃5  and 𝑖 = 2 the Neighborhood sets are 
 𝑛(𝑃5, 3) = �{1,2,4}, {1,3,4}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}� = 6 For 𝑛 = 3,4,5, … ,𝑛 − 1 this result is true.  
Then by (i) and (ii), it is true for n in 𝑃2𝑛+1.  
By property (ii), 

𝑛 (𝑃2𝑛+1,𝑛 + 1) = 𝑛 (𝑃2𝑛 ,𝑛) + 𝑛 (𝑃2𝑛−1,𝑛)  
                            = (𝑛 + 1) + 𝑛(𝑛+1)

2
 

𝑛 (𝑃2𝑛+1,𝑛 + 1) = (𝑛+1)(𝑛+2)
2

  
(iv) By induction on 𝑛. When 𝑛 = 1  𝑃2𝑛+2 and 𝑖 = 2  the   neighborhood sets are 

𝑛(𝑃4, 2) = 𝑛(𝑃3, 1) + 𝑛(𝑃2, 1) = 2 + 1 = 3 𝑃42 = �{1,3}, {2,3}, {2,4}�, therefore 𝑛(𝑃4, 2) = 3. This result is 
true for 𝑛 = 2,3,4, … ,𝑛 − 1. Then by the results (i), (ii) & (iii), this result is true for n 

𝑛 (𝑃2𝑛+2,𝑛 + 1) = 𝑛 (𝑃2𝑛+1,𝑛) + 𝑛 (𝑃2𝑛 ,𝑛) 
                            = (𝑛 + 1) + 1 
𝑛 (𝑃2𝑛+2,𝑛 + 1) = 𝑛 + 2. 

(v) For any Path 𝑃𝑛 with 𝑛  vertices the number of neighborhood sets of 𝑃𝑛 of size 𝑖 = 𝑛 is 𝑛(𝑃𝑛 ,𝑛) = 1. 
(vi) For any Path 𝑃𝑛  with 𝑛  vertices the number of neighborhood sets of 𝑃𝑛  of size 𝑖 = 𝑛 − 1 is (𝑃𝑛,𝑛 − 1) = 𝑛. 
(vii) By induction on 𝑛, the result is true for𝑛 = 1 in 𝑃2𝑛  and 𝑖 = 2  ie). 𝑛(𝑃2, 2) = 3. Then the result is true for all 

𝑛 = 2,3, … ,𝑛 − 1 in and = 𝑛 + 1. Therefore it is true for 𝑛. By the results (iii) and (iv) and the induction 
hypothesis, the number of neighborhood sets of 𝑃2𝑛  and 𝑖 = 𝑛 + 1 is 

𝑛 (𝑃2𝑛 ,𝑛 + 1) = 𝑛 (𝑃2𝑛−1,𝑛) + 𝑛 (𝑃2𝑛−2,𝑛)  
                           = 𝑛(𝑛+1)

2
+ (𝑛−1)𝑛(𝑛+1)

6
  

𝑛(𝑃2𝑛 ,𝑛 + 1) = 𝑛(𝑛+1)(𝑛+2)
6

  
(viii) It is proved by induction on ≥ 2 . The result is true for 𝑛 = 2. Then (𝑃4, 2) = 3. The result is true for all   

𝑛 = 3, … ,𝑛 − 1. and it is true for 𝑛 by the result (v) and (vi), for 𝑛 in 𝑃2𝑛 
𝑛(𝑃2𝑛 ,𝑛) = 𝑛(𝑃2𝑛−1,𝑛 − 1) + 𝑛(𝑃2𝑛−2,𝑛 − 1) 
𝑛(𝑃2𝑛 ,𝑛) = 1 + 𝑛 

(ix) It is proved by induction on 𝑛 ≥ 4. The result is true 𝑛 = 4 then (𝑃4, 2) = 3. The result is true for all 
       𝑛 = 4,5, . . ,𝑛 − 1. 

In 𝑃𝑛  with 𝑖 = 𝑛 − 2. Then it is true for 𝑛 in 𝑃𝑛 with 𝑖 = 𝑛 − 2 
𝑛(𝑃𝑛 ,𝑛 − 2) = 𝑛(𝑃𝑛−1,𝑛 − 3) + 𝑛(𝑃𝑛−2,𝑛 − 3)   
                     = (𝑛−2)(𝑛−3)

2
+ 𝑛 − 2  

𝑛(𝑃𝑛 ,𝑛 − 2) = (𝑛−1)(𝑛−2)
2
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(x) It is proved from the result theorem 3.1.2 (i) 

𝑆𝑛 = � 𝑛(𝑃𝑛 , 𝑖)
𝑛

𝑖=�𝑛2�

 

= � 𝑛(𝑃𝑛−1, 𝑖 − 1) + 𝑛(𝑃𝑛−2, 𝑖 − 1)
𝑛

𝑖=�𝑛2�

 

= � 𝑛(𝑃𝑛−1, 𝑖) + � 𝑛(𝑃𝑛−2, 𝑖 − 1)
𝑛−2

𝑖=�𝑛2�−1

𝑛−1

𝑖=�𝑛2�−1

 

𝑆𝑛 = 𝑆𝑛−1 + 𝑆𝑛−2. 
(xi) From the result theorem 3.1.2 (i) for every 𝑛 ∈ 𝑁  and 𝑘 = 0,1,2, … , 2𝑛 − 1 then 

𝑛(𝑃𝑛+1, 𝑖 + 1) − 𝑛(𝑃𝑛 , 𝑖 + 1) = ��𝑛(𝑃𝑛, 𝑖) + 𝑛(𝑃𝑛−1, 𝑖)�� − �(𝑛(𝑃𝑛−1, 𝑖) + 𝑛(𝑃𝑛−2, 𝑖))� 
𝑛(𝑃𝑛+1, 𝑖 + 1) + 𝑛(𝑃𝑛 , 𝑖 + 1) = 𝑛(𝑃𝑛 , 𝑖) − 𝑛(𝑃𝑛−2, 𝑖) 
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