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ABSTRACT 
The object of this paper is to introduce notion of fuzzy left (respectively right) sub near-field spaces of a  Γ-near-field 
space over a near-field and to study the related properties of fuzzy sub near-field spaces in a Γ-near-field space over a 
near-field.  
 
Keywords: Γ-near-field space; Fuzzy sub near-field space of Γ-near-field space; Fuzzy near-field space ofΓ-near-field 
space. 
 
2000 Mathematics Subject Classification: 43A10, 46B28, 46H25,6H99, 46L10, 46M20, 51 M 10, 51 F 15,03 B 30. 
 
 
SECTION-1: INTRODUCTION 
 
In this paper we consider the fuzzification of left (resp. right) sub near-field spaces of Γ-near-filed spaces over a near-
field, and we three Smt. Thurumella Madhavi Latha, Dr. T  V  Pradeep Kumar and Dr. N V Nagendram together 
investigate the related properties of left (resp. right) sub near-field spaces of Γ-near-filed spaces over a near-field. 
 
In fact, Γ-near-rings were defined by Bhavanari Satyanarayana, who is the professor cum Head of the department of 
Mathematics, Acharya Nagarjuna University at present and also guide of Dr T V Pradeep Kumar and the ideal theory in 
Γ-near-rings was studied by Dr. Bhavanari Satyanarayana and G. L. Booth. Fuzzy ideals of rings were introduced by 
W. Liu, and it has been studied by several authors. The notion of fuzzy ideals and its properties were applied to various 
areas: semi-groups, BCK-algebras, and semi-rings.  
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SECTION-2:  PRELIMINARIES 
 
A near-field space is a triple (N, +,.)  such that (N , +) is a group, if (N, . ) is a semi group, and “.” Is left distributive 
over “+” i.e. w(x + z) = wx + wz for each w, x, y, z ∈ N. A near-field space N is d.g. if there exists T ⊂ N such that     
(T, .) is a semi sub near-field space of (N, .) each element of T is right distributive and T is an additive generating space 
for (N, +).   The near-field space generated additively by all the endomorphism of a (not necessarily commutative) sub 
near-field space (G, +) is d.g. T being the space of endomorphisms. Such a near-field space will be called an 
endomorphism near-field space and will be denoted by E(G). 
 
Dr N V Nagendram has shown that the near-field space generated by all the inner automorphisms of a finite simple, 
non-commutative, sub near-field space (G, +) is E(G). In fact, this near-field space generated by the inner 
automorphisms consists of all the mappings of G into G which leave 0 fixed and also has given a necessary and 
sufficient condition that the near-field space generated by the inner automorphisms of a sub near-field space of a near-
field space be a near-field space. However, the more general endomorphism near-field space has not been studied.  
 
If α is an endomorphism of (G, + ) and g ∈ G, the image of g under α is denoted by gα. Addition of functions on G is 
done point-wise and multiplication of such functions is composition. 
 
Definition 2.1: A sub near-field space H of the near-field space N is a N-sub near-field space over a near-field if        
HN ⊂ H. The radical sub near-field space J(N) is the intersection of the right sub near-field spaces of N which are 
maximal N-sub near-field spaces over a near-field. 
 
Definition 2.2: closed (or open) sub near-field space. More generally, for positive integers m, n we define M to be an 
(m, n)-closed (or open) sub near-field space of N if xm ∈ M for x ∈ N ⇒ x n ∈ M.  
 
Definition 2.3: radical sub near-field space. M is a radical sub near-field space if and only if M is a (2, 1)-closed (or 
open) sub near-field space. In fact, an n-absorbing sub near-field space is ( m, n )-closed (or open) sub near-field space 
for every positive integer m. 
 
Note 2.4: clearly, a proper radical sub near-field space of N is (m, n)-closed (or open) radical sub near-field space for   
1 ≤ m ≤ n. So we often assume that 1 ≤ n ≤ m. 
 
Definition 2.5: A sub near-field space A of a Γ-near-filed spaces over a near-field M is called a left (resp. right) sub 
near-field space of M if (i) (A; +) is a normal divisor of (M; +), (ii) uα(x + v) − uαv ∈A (resp. xαu ∈ A) for all  x ∈ A, 
α ∈Γ and u; v ∈ M. 
 
We now review some fuzzy logic concepts.  
 
Definition 2.6: A fuzzy sub near-field space in a Γ-near-filed space M is a function µ : M  → [0; 1] .  
 
Definition 2.7: We shall use the notation µt, called a level sub near-field space of µ, for {x∈ M /µ(x) ≥ t} where             
t ∈ [0; 1] . If µt is a fuzzy sub near-field space in a Γ-near-filed spaces over a near-field M and f is a function defined on 
M, then the fuzzy sub near-field space v in f(M) defined by v(y) = sup [µ(x)] ∀x∈f−1(y) and  ∀ y ∈ f(M) is called the 
image of µ under f .  
 
Definition 2.8: if v is a fuzzy sub near-field space in f(M), then the fuzzy sub near-field space  µ = v° f  in a Γ-near-filed 
space  over a near-field M (that is, the fuzzy sub near-field space defined by µ(x) = v(f(x)) for all x ∈ M) is called the 
preimage of v under f . We say that a fuzzy sub near-field space  µ  in a Γ-near-filed space  over a near-field  M has the 
sup property if, for any sub near-field space T of  a Γ-near-filed space  over a near-field  M, there exists t0 ∈ T such that 
µ(t0) = sup  [µ(t)] for all t ∈ T. 
 
SECTION-3: FUZZY SUB NEAR-FIELD SPACES OF Γ-NEAR-FILED SPACE OVER A NEAR-FIELD 
 
Definition 3.1 A Fuzzy sub near-field space µ  in a Γ-near-filed space  over a near-field M is called a fuzzy left (resp. 
right) sub near-field space of a Γ-near-filed space  over near-field  M if  (i) µ is a fuzzy normal divisor with respect to 
the addition, (ii) µ(uα(x + v) − uαv) ≥ µ (x) (resp. µ(x° u) ≥ µ(x)) for all x; u; v ∈ M and α ∈ Γ. The condition (i) of 
Definition 3.1 means that µ satisfies:  (i) µ(x − y) ≥ min{µ(x); µ(y)}, and (ii) µ(y + x − y) ≥ µ(x), ∀ x; y ∈ M. 
 
Note 3.2: If µ  is a fuzzy left (resp. right) sub near-field space of a Γ-near-filed space over a near-field M, then           
µ(0) ≥ µ(x) for all x ∈ M, where 0 is the zero sub near-field space of M. 
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Theorem 3.3: Let M be a fuzzy left (resp. right) sub near-field space of a Γ-near-filed space over a near-field M. Then 
the set Mµ= {x ∈ M /µ (x) = µ(0)} is a fuzzy left (resp. right) sub near-field space of a Γ-near-filed space over a near-
field M. 
 
Proof: Let µ be a fuzzy left ideal and let x; y ∈ Mµ. Then µ(x − y) ≥ min {µ(x); µ(y)} = µ(0); and so µ(x − y) = µ(0) or 
x − y ∈ Mµ . 
 
For every y ∈ M and x ∈ Mµ, we have µ(y + x − y) ≥ µ(x) = µ(0). Therefore, we have, y + x − y ∈ Mµ, which shows that 
Mµ is a fuzzy normal divisor left (resp. right) sub near-field space of a Γ-near-filed space M with respect to the addition. 
Let x ∈ Mµ , α ∈ Γ and u; v ∈ M.  
 
Then µ(uα(x + v) − uαv) ≥ µ(x) = µ(0); and hence µ(uα(x + v) − uαv) = µ(0); i.e., uα(x + v) − uαv ∈ Mµ . Therefore 
Mµ is a fuzzy left (resp. right) sub near-field space of a Γ-near-filed space over a near-field M. Similarly we have the 
desired result for the right case. This completes the proof of the theorem. 
 
Theorem 3.4: Let A be a non-empty fuzzy sub near-field space  of a Γ-near-field space over an near-field M and µA be 

a fuzzy sub near-field space  of a Γ-near-field space over an near-field in M defined by µA(x) = 
s if x A
t Otherwise

∈



, for 

all x ∈ M and s, t ∈ [0; 1] with s > t. Then µA is a fuzzy left (resp. right) sub near-field space  of a Γ-near-field space 
over an near-field of  M if and only A is a fuzzy left (resp. right) sub near-field space  of a Γ-near-field space over an 
near-field of M. Moreover MµA = A. 
 
Proof: Let µA be a fuzzy sub near-field space of a Γ-near-field space over an near-field of M and let x, y ∈ A. Then 
µA(x − y) ≥  min {µA(x)/  µA(y)} = s; and so µA(x − y) = s.  
 
⇒  x − y 2 A. For any y ∈ M and x ∈ A, we have µA(y + x − y) ≥ µA(x) = s and so y + x − y ∈ A.  
 
Now let x ∈ A, α ∈ Γ and u, v ∈ M. 
 
Then µA(uα(x + v) − uαv) ≥ µA(x) = s (resp. µA(xαu) ≥ µA(x) = s), and therefore we have, µA(uα(x + v) − uαv) = s 
(resp. µA(xαu) = s).  
 
Thus uα(x + v) − uαv ∈ A (resp. xαu ∈ A). This shows that A is a fuzzy sub near-field space of a Γ-near-field space 
over an near-field of M.  
 
Conversely assume that A is a fuzzy sub near-field space  of a Γ-near-field space over an near-field of M. Let x, y ∈ M. 
If at least one of x and y does not belong to A, then µA(x − y) ≥ t = min {µA(x) : µA(y) }: If x, y ∈ A, then x − y ∈ A 
and so µA(x − y) = s = min {µA(x) : µA(y) }: If x ∈ A, then y + x − y ∈ A and hence µA(y + x − y) = s = µA(x).  
 
Clearly µA(y + x − y) ≥ t = µA(x) for all x  ∉ A and y ∈ M. This shows that µA is a fuzzy normal divisor fuzzy sub near-
field space of a Γ-near-field space over an near-field of M with respect to the addition.  
 
Now let x, u, v ∈ M and α ∈ Γ. If x ∈ A, then uα(x + v) − uαv ∈ A (resp. xαu ∈ A) and thus µA(uα(x + v) − uαv) = s 
= µA(x) (resp. µA(xαu) = s = µA(x)). If x ∉ A, then clearly µA(uα(x + v) − uαv) ≥ t = µA(x) (resp. µA(xαu) ≥ t = µA(x)). 
Hence µA is a fuzzy sub near-field space of a Γ-near-field space over an near-field of M. Moreover MµA = {x ∈ M 
/µA(x) = µA(0)} = {x ∈ M /µA(x) = s } = { x ∈ M / x  ∈ A} = A. This completed the proof of the theorem. 
 
Corollary 3.5: Let M be a fuzzy sub near-field space of a Γ-near-field space over a near-field and χA be the 
characteristic function of a sub near-field space of a Γ-near-field space over an near-field A ⊂ M. Then χA is a fuzzy 
left (resp. right) sub near-field space of a Γ-near-field space over an near-field of M if and only if A is a fuzzy left 
(resp. right) sub near-field space of a Γ-near-field space over an near-field of M. 
 
Theorem 3.6: Let µ be a fuzzy sub near-field space of a Γ-near-field space over a near-field in M. Then µ is a fuzzy 
left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M if and only if each level subset         
µt, t ∈ Img(µ), of µ is a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M. Here 
let us call µt a level fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field µ. 
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Proof: Let µ be a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M and let          
t ∈ Im(µ). For any x, y ∈ µt, we have µ(x − y) ≥ min{µ(x); µ(y)} ≥ t and so x − y ∈ µt. Let y ∈ M and x ∈ µt. Then  
µ(y + x − y) ≥ µ(x) ≥ t; whence y + x − y ∈ µt. Now let x ∈ µt , µ ∈ Γ and u; v∈M. Then µ(uα(x + v) − uαv) ≥ µ(x) ≥ t 
(resp. µ(xαu) ≥ µ(x) ≥ t), which implies that uα(x + v) − uαv ∈ µt (resp. xαu ∈ µt). 
 
Hence µt is a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M. Conversely 
assume that µt is a fuzzy left (resp. right) a fuzzy sub near-field space of a Γ-near-field space over a near-field M for 
every t ∈ Img (µ). If µ(x0 − y0) < min{µ(x0), µ(y0)} for some x0, y0 ∈ M, then by taking t0 = ½[(µ(x0 − y0) +min{ µ(x0); 
µ(y0)})] we have µ(x0 −y0) < t0, µ(x0) > t0 and µ(y0) > t0. Hence x0 − y0 ∉ µt0, x0 ∈ µt0 and y0 ∈ µt0. This is a 
contradiction, ⊗ and so µ(x − y) ≥ min { µ(x), µ(y)} for all x, y ∈ M. 
 
Assume that µ(y0 + x0 − y0) < µ(x0) for some x0, y0 ∈ M. Putting s0 = 1/2 (µ(y0 + x0 − y0) + µ(x0)); then µ(y0 + x0 − y0) 
< s0 < µ(x0): It follows that x0 ∈ µs0 and y0 + x0 − y0 ∉ µs0 which is impossible. Hence, µ(y + x − y) ≥ µ(x) for all          
x, y∈M. If the condition (ii) of Definition 3.1 is not true, then for a fixed µ ∈ Γ there exist x, u, v ∈ M such that µ(uα(x 
+ v) − uαv) < µ(x) (resp. µ(xαu) < µ(x)). Let p0 = 1/ 2 (µ(uα(x + v) − uαv) + µ(x)) (resp. q0 = 1/2 (µ(xαu) + µ(x)). 
Then uα(x + v) − uαv ∉ µp0 and x ∈ µp0 (resp. xαu ∉ µq0 and x ∈ µq0 ). This is a contradiction, and we are done. This 
completes the proof of the theorem. 
 
Theorem 3.7: Let A be a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field M. Then 
for any t ∈ (0; 1] there exists a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field µ of 
M such that µt = A. 
 
Proof: Let µ : M → [0; 1] be a fuzzy sub near-field space of a Γ-near-field space over a near-field defined by  

µ(x) = 


 ∈

otherwise
Axift

0
for all x ∈ M, where t ∈ (0; 1]. Then clearly µt = A.  

 
It is easy to prove that µ(x − y) ≥ min {µ(x), µ(y)}; x, y ∈ M:  
 
Assume that µ(y + x − y) < µ(x) for some x; y ∈ M. Since µ is two-valued, i.e., |Img(µ)| = 2, µ(y + x − y) = 0 and       
µ(x) = t and hence y + x − y ∉ A and x ∈ A.  
 
This contradicts the fact that (A, +) is a normal divisor sub near-field space of a Γ-near-field space over a near-field of 
(M, +).  
 
Hence µ(y + x − y) < µ(x) for all x, y ∈ M. Now assume that µ(uα(x + v) − uαv) < µ(x) (resp. µ(xαu) < µ(x)) for some 
x, u, v ∈ M and µ ∈ Γ.  
 
Since |Img(µ)| = 2, we have µ(uα(x + v) − uαv) = 0 and µ(x) = t (resp. µ(xαu) = 0 and µ(x) = t ); whence     
uα(x+v)−uαv ∉ A and x ∈ A (resp. xαu ∉ A and x ∈ A). This is impossible because A is a fuzzy left (resp. right) sub 
near-field space of a Γ-near-field space over a near-field of M, which proves the theorem. 
 
Theorem 3.8: If µ is a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M, then 
µ(x) = sup{t ∈ [0; 1]/x ∈ µt}; ∀ x ∈ M: 
 
Proof: Let s := sup{ t ∈ [0; 1]/ x ∈ µt } and let ε > 0 be given. Then s − ε < t for some t ∈ [0; 1] such that x ∈ µt, and so 
s − ε < µ(x). Since ε is arbitrary, it follows that s  ≤ µ(x). Now let µ(x) = u. Then x ∈ µu and so u ∈ {t ∈ [0; 1]/x ∈ µt}: 
Hence µ(x) = u ≤ sup{t ∈ [0; 1]/ x∈µt} = s. Therefore µ(x) = s, as desired. 2 We now consider the converse of Theorem 
3.8. Let A be a non-empty subset of [0; 1]. Without loss of generality, we may use A as an index set in the following: 
 
Theorem 3.9: Let {At /t ∈ A} be a collection of fuzzy left (resp. right) sub near-field space of a Γ-near-field space over 
a near-field M such that  
(i) M = t

t A

A
∈


, (ii) s > t if and only if As ⊂ At for all s; t ∈ A. Define a fuzzy set µ in M by µ(x) = sup{t ∈ A/x ∈ At}; 

∀ x ∈ M: Then µ is a fuzzy left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M. 
 
Proof: By theorem 3.6, It is sufficient to show that µp ( ≠ 0) is a fuzzy left (resp. right) sub near-field space of a Γ-near-
field space over a near-field of M for every p ∈ [0; 1] . We consider the following two cases: 

(1) p = sup{t ∈ µ/ t < p} and (2) p ≠ sup{t ∈ µ/ t < p}: 
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Case (1) implies that x ∈ µp, x ∈ At for all t < p, x∈  ∩ At for  all t<p, whence µp =  ∩ At  for all t<p  which is a fuzzy 
left (resp. right) sub near-field space of a Γ-near-field space over a near-field of M. For the case (2), there exists ε > 0 
such that (p−ε; p)∩A = φ. We claim that µp = t

t p

A
≥


. 

 
If x ∈ t

t p

A
≥


 , then x ∈ At for some t ≥ p. It follows that µ(x) ≤ p - ε so that x ∉ µp Conversely if x ∉ µp, µp = t
t p

A
≥


 

then x ∉ At for all t ≥ p, which implies that x ∉ At for all t > p − ε, that is, if x ∈ At then t ≤ p − ε. Thus µ(x) ≤ p − ε and 
so x ∉ µp. Consequently µp = µp = t

t p

A
≥


 At which is a fuzzy left (resp. right) sub near-field space of a Γ-near-field 

space over a near-field of M. This completes the proof. 
 
Definition 3.10: Let M and N be Γ-near-field spaces over near-field. A mapping θ: M→N is called a Γ-near-field space 
over a near-field homomorphism if θ(x + y) = θ(x) + θ(y) and θ(xαy) = θ(x)αθ(y) ∀ x, y ∈ M and α∈Γ. 
 
Theorem 3.11: A fuzzy Γ-near-field space over near-field homomorphic preimage of a fuzzy left (resp. right) sub near-
field space of a Γ-near-field space over a near-field is a fuzzy left (resp. right) sub near-field space of a Γ-near-field 
space over a near-field.  
 
Proof: Let θ : M →N be a fuzzy Γ-near-field space over near-field homomorphism, v a fuzzy left (resp. right) fuzzy 
left (resp. right) sub near-field space of a Γ-near-field space over a near-field of N and µ the preimage of v under θ.  
 
Then µ(x − y) = v(θ(x − y)) = v(θ(x) − θ(y)) ≥ min{v(θ(x)); v(θ(y)) = min{µ(x); µ(y); 
µ(y + x − y) = v(θ(y + x − y)) = v(θ(y) +θ(x) − θ(y)) ≥ v(θ(x)) = µ(x); and 
µ(uα(x + v) − uαv) = v(θ(uα(x + v) − uαv)) = v(θ(u)α(θ(x) + θ(v)) − θ(u)αθ(v)) ≥ v(θ(x)) = µ(x) (resp. µ(xαu) = 
v(θ(xαu)) = v(θ(x)αθ(u)) ≥ v(θ(x)) = µ(x)) ∀ x, y, u, v ∈  M and µ ∈ Γ. Hence µ is a fuzzy left (resp. right) sub near-
field space of a Γ-near-field space over a near-field of M.  
 
Let θ : M →N be a fuzzy Γ-near-field space over near-field homomorphism. Assume that µ is a fuzzy left sub near-
field space of a Γ-near-field space over a near-field of M with the sup property and let v be the image of µ under θ. 
Given θ(x); θ(y) ∈ θ(M), let x0 ∈ θ−1(θ(x)), y0 ∈ θ−1(θ(y)), u0 ∈ θ−1(θ(u)) and          

v0 ∈ θ−1(θ(v)) be such that µ(x0) = 
1

( )
( ( ))

Sup z
z x

µ

θ θ−




∈
, µ(y0) = 

1

( )
( ( ))

Sup z
z y

µ

θ θ−




∈ 
,  

µ(u0) = 
))((

)(
1 uz

zSup
θθ

µ
−∈

and µ(v0) = 
))((

)(
1 vz

zSup
θθ

µ
−∈

respectively. 

Then  

v(θ(x) − θ(y)) = 
))()((

)(
1 yxz

zSup
θθθ

µ

−∈ − ≥ µ(x0) −µ(y0) ≥ min{µ(x0), µ(y0)}  

                                                                  = min   1

( )
( ( ))

Sup z
z x

µ

θ θ−




∈
, 1

( )
( ( ))

Sup z
z y

µ

θ θ−




∈ 
 

                                                                  = min {v(θ(x)); v(θ(y)); 

v(θ(y) + θ(x) − θ(y)) = 
))()()((

)(
1 yxyz

zSup
θθθθ

µ

−+∈ −
≥ µ(y0 + x0 − y0) ≥ µ(x0) =  

))((
)(

1 xz
zSup
θθ

µ
−∈

= v(θ(x));  

and for any α ∈ Γ, v(θ(u)α(θ(x) + θ(v)) − θ(u)αθ(v)) = 
))()()()((

)(
1 uvxuz

zSup
θθαθθ

µ

−+∈ −  

                                                                                      ≥ µ(u0α(x0 + v0) − u0αv0) ≥ µ(x0) = 
1

( )
( ( ))

Sup z
z x

µ

θ θ−




∈
= v(θ(x)): 

This proves that v is a fuzzy left sub near-field space of a Γ-near-field space over a near-field of N. Similarly if µ is a 
fuzzy right sub near-field space of a Γ-near-field space over a near-field of M with the sup property, then the image v of 
µ under θ is a fuzzy right sub near-field space of a Γ-near-field space over a near-field of N. This completes the proof 
of the theorem. 
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Theorem 3.12: A fuzzy Γ-near-field space over near-field homomorphic image of a fuzzy left (resp. right) sub near-
field space of a Γ-near-field space over a near-field of M possessing the sup property is a fuzzy left (resp. right) sub 
near-field space of a Γ-near-field space over a near-field. 
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