International Journal of Mathematical Archive-8(12), 2017, 214-219 MAAvailable online through www.ijma.info ISSN 2229 - 5046 # TOTAL RESOLVING NUMBER OF EDGE CYCLE GRAPHS G(C₃) # J. PAULRAJ JOSEPH* & N. SHUNMUGAPRIYA Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India. (Received On: 20-10-17; Revised & Accepted On: 13-12-17) #### **ABSTRACT** Let G = (V, E) be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every vertex is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is called the resolving number of G and is denoted by r(G). Total resolving number as the minimum cardinality taken over all resolving sets in which W has no isolates and is denoted by T(G). In this paper, we determine the exact values for the total resolving number of $T(C_3)$, $T(C_3)$ and $T(C_3)$. Also, we obtain bounds for the total resolving number of $T(C_3)$ and characterize the extremal graphs. AMS Subject Classification: Primary 05C12, Secondary 05C35. **Keywords:** resolving number, total resolving number, edge cycle graph. ## 1. INTRODUCTION A graph H is called a subgraph of a graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph F if a graph G is called an induced subgraph $\langle F \rangle$ of G if whenever u and v are vertices of F and uv is an edge of G, then uv is an edge of F as well. For a cut vertex v of a connected graph G, suppose that the disconnected graph $G \setminus \{v\}$ has k components $G_1, G_2, \ldots, G_k \ (k \ge 2)$. The induced subgraphs $B_i = G[V(G_i) \cup \{v\}]$ are connected and referred to as the brances of G at v. The complement G^c of a graph G is that graph whose vertex set is V(G) and such that for each pair u, v of vertices of G, uv is an edge of G^c if and only if uv is not an edge of G. A vertex v in a graph G is called complete vertex if the subgraph by its neighborhood is complete. For an integer $s \ge 2$, $sK_2 + K_1$ is called the friendship graph and is denoted by F_s . If $W = \{w_1, w_2, \dots, w_k\} \subseteq V(G)$ is an ordered set, then the ordered k-tuple $(d(v, w_1), d(v, w_2), \dots, d(v, w_k))$ is called the representation of v with respect to W and it is denoted by $v(v \mid W)$. Since the representation for each $v(v \mid W)$ contains exactly one $v(v \mid W)$ is called a resolving set for $v(v \mid W)$ also have distinct representations. W is called a resolving set for $v(v \mid W)$ also have distinct representations. The minimum cardinality of a resolving set is called the resolving number of v(v) and it is denoted by v(v). Corresponding Author: J. Paulraj Joseph*, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India. In 1975, Slater [9] introduced these ideas and used *locating set* for what we have called *resolving set*. He referred to the cardinality of a minimum resolving set in G as its *location number*. In 1976, Harary and Melter [4] discovered these concepts independently as well but used the term metric dimension rather than location number. In 2003, Ping Zhang and Varaporn Saenpholphat [7, 8] studied *connected resolving number* and in 2015, we introduced and studied *total resolving number*. In this paper, we use the term *resolving number* to maintain uniformity in the current literature. If W is a resolving set and the induced subgraph $\langle W \rangle$ has no isolates, then W is called a *total resolving set* of G. The minimum cardinality taken over all total resolving sets of G is called the *total resolving number* of G and is denoted by tr(G). We introduced edge cycle graph in [5] and studied the resolving number of edge cycle graph $G(C_k)$. An *edge cycle graph* of a graph G is the graph $G(C_k)$ formed from one copy of G and |E(G)| copies of P_k , where the ends of the ith edge are identified with the ends of ith copy of P_k . In this paper, we determine the exact values for the total resolving number of $T(C_3)$, $C_n(C_3)$ and $F_s(C_3)$. Also, we obtain bounds for the total resolving number of $G(C_3)$ and characterize the extremal graphs. ## 2. BUILDING BLOCKS The following results are used in the subsequent sections. **Theorem 2.1:** [6] Let $\{w_1, w_2\} \subset V(G)$ be a total resolving set in G. Then the degrees of w_1 and w_2 are at most 3. **Lemma 2.2:** [6] For $n \ge 3$, $tr(P_n) = 2$ and $tr(C_n) = 2$. **Observation 2.3:** [6] *Let G be a graph of order* $n \ge 3$. Then $2 \le tr(G) \le n-1$. **Theorem 2.4:** [6] Let G be a graph of order $n \ge 3$. Then tr(G) = n - 1 if and only if $G = K_n$ or $K_{1, n-1}$. **Definition 2.5:** A block of G containing exactly one cut vertex of G is called an end block of G. **Lemma 2.6:** [5] Let G be a 1-connected graph with $\delta(G) \ge 2$. Then every resolving set contains at least one non cut vertex of each end block. **Corollary 2.7:** [5] *If* G *contains* b *end blocks, then* $r(G) \ge b$. **Definition 2.8:** A cycle C_r is called an end cycle if C_r contains exactly one vertex of degree at least 3. **Notation 2.9:** *Let* e_c *denote the number of end cycles of the graph G.* **Theorem 2.11:** [6] Let T be a tree of order $n \ge 3$. Then $r(T(C_3)) = p$. In this paper, we investigate the total resolving number of the edge cycle graphs $G(C_3)$. # 3. TOTAL RESOLVING NUMBER OF EDGE CYCLE GRAPHS G(C₃) In this section, we determine the exact values for the total resolving number of $T(C_3)$, $C_n(C_3)$ and $F_s(C_3)$. **Observation 3.1:** For $n = 3, 4, 5, tr(C_n(C_3)) = 3$ **Theorem 3.2:** For $n \ge 6$, $tr(C_n(C_3)) = 4$. $\begin{aligned} & \textbf{Proof:} \ \text{Let} \ \ V(C_n) = \{v_1, v_2, \dots, v_n\}, \ E(C_n) \ = \ \{v_1 v_2, v_2 v_3, \dots, v_n v_1\} \ \text{and} \ u_1, \ u_2, \dots, u_n \ \text{be the new vertices in} \ C_n(C_3) \\ & \text{corresponding to the edges} \ \ v_1 v_2, v_2 v_3, \dots, v_n v_1. \ \ \text{Then} \ \ V(C_n(C_3)) = V \ \cup \ U, \ \ \text{where} \ \ V = V(C_n), \ U = \{u_1, u_2, \dots, u_n\} \\ & \text{and} \ E(C_n(C_3)) = E(C_n) \ \cup \ \{u_i v_i, u_i v_{i+1} \ / \ 1 \le i \le n-1\} \ \cup \ \{u_n v_n, u_n v_1\}. \ \ \text{Let} \ W \ \text{be a total resolving set of} \ C_n(C_3). \end{aligned}$ First, we claim that $\operatorname{tr}(C_n(C_3)) \geq 4$. Suppose that $\operatorname{tr}(C_n(C_3)) \leq 3$. By Theorem 2.1, $\operatorname{tr}(C_n(C_3)) = 3$. Therefore $\langle W \rangle$ is P_3 or P_3 or P_3 or P_3 or P_3 . If P_3 is P_3 , then without loss of generality, let P_3 . Then P_3 is P_3 , then without loss of generality, let P_3 is P_3 , then without loss of generality, let P_3 is P_3 , then without loss of generality, let P_3 is P_3 , then P_3 , then without loss of generality, let P_3 is P_3 , P_3 , then P_3 is . Then P_3 is P_3 , then P_3 is P_3 . Then P_3 is P_3 is P_3 , then P_3 is P_3 . Then P_3 is P_3 , then P_3 is P_3 , then P_3 is P_3 . Then P_3 is P_3 , then P_3 is P_3 . Then P_3 is P_3 is P_3 , then P_3 is P_3 . Then P_3 is is P_3 . Then P_3 is P_3 is P_3 is P_3 . Then P_3 is P_3 is P_3 is P_3 . Then P_3 is $P_$ Let $W = \left\{ v_1, \ v_2, \ v_{\left\lfloor \frac{n}{2} \right\rfloor + 1}, \ v_{\left\lfloor \frac{n}{2} \right\rfloor + 2} \right\}$. Let x, y be two distinct vertices of $V(C_n(C_3)) \setminus W$. If $d(x, v_1) \neq d(y, v_1)$ or $d(x, v_2) \neq d(y, v_2)$, then $r(x \mid W) \neq r(y \mid W)$. So we may assume that $d(x, v_1) = d(y, v_1)$ or $d(x, v_2) = d(y, v_2)$. Then $x \in U$ and $y \in V$ or $x \in V$ and $y \in U$. Without loss of generality, let $x \in U$ and $y \in V$. But $d(x, v_{\left\lfloor \frac{n}{2} \right\rfloor + 1}) = d(y, v_{\left\lfloor \frac{n}{2} \right\rfloor + 1}) + 1$ and $d(x, v_{\left\lfloor \frac{n}{2} \right\rfloor + 2}) = d(y, v_{\left\lfloor \frac{n}{2} \right\rfloor + 2}) + 1$. It follows that $r(x \mid W) \neq r(y \mid W)$. Thus W is a resolving set of $C_n(C_3)$ and $\langle W \rangle$ has no isolates, $tr(C_n(C_3)) \leq 4$. Hence $tr(C_n(C_3)) = 4$. **Lemma 3.3:** Let G be a graph of order $n \ge 3$ and $\delta(G) = 1$. Then $tr(G(C_3)) \ge p + s$. **Proof:** Let W be a total resolving set of $G(C_3)$. Let B_1, B_2, \ldots, B_p be the end blocks of $G(C_3)$. Then by Lemma 2.6, $W \cap V(B_i) \neq \emptyset$, for all $1 \le i \le p$. Since W is a total resolving set, $|W \cap V(B_i)| \ge 2$ for all $1 \le i \le p$. But some end blocks have the common vertex, $|W \cap V(G(C_3))| \ge p + s$ and hence $tr(G(C_3)) \ge p + s$. **Theorem 3.4:** Let T be a tree of order at least 3. Then $tr(T(C_3)) = p + s$. **Proof:** The proof follows from Theorem 2.11 and Lemma 3.3. **Corollary 3.5:** For $n \ge 4$, $tr(P_n(C_3)) = 4$. **Corollary 3.6:** For $n \ge 2$, $t r(K_{1, n-1}(C_3)) = n$. **Corollary 3.7:** For $s, t \ge 1$, $t r(B_{s,t}(C_3)) = s + t + 2$. **Theorem 3.8:** For $s \ge 2$, $t r(F_s(C_3)) = 2s$. **Proof:** Let $V(F_s) = \{u, u_{11}, u_{12}, u_{21}, u_{22}, ..., u_{s1}, u_{s2}\}$ and $E(F_s) = \{uu_{ij} / 1 \le i \le s \text{ and } j = 1, 2\} \cup \{u_{11}u_{12}, u_{21}u_{22}, ..., u_{s1}u_{s2}\}.$ For $1 \le j \le s$, let v_i be the new vertex of the edge $u_{i1}u_{i2}$, v_{j1} be the new vertex of the edge uu_{j1} and v_{j2} be the new vertex of the edge uu_{j2} in $F_s(C_3)$. Then we have G contains exactly s blocks, say B_1 , B_2 , ..., B_s . Let W be a total resolving set of $F_s(C_3)$. First, we claim that $tr(F_s(C_3)) \ge 2s$. Suppose that $tr(F_s(C_3)) \le 2s - 1$. Then we have W contains at most three vertices from union of two blocks. Without loss of generality, let B_1 and B_2 be such blocks. Then we have $|W \cap (V(B_1) \cup V(B_2))| \le 3$. By Lemma 2.6, $|W \cap (V(B_1) \setminus \{u\}| \ne \emptyset$ and $|W \cap (V(B_2) \setminus \{u\}| \ne \emptyset$. Let $u, x, y \in W$, where $x \in N(u) \cap V(B_1)$ and $y \in N(u) \cap V(B_2)$. Then d(x) = 2 or 4 in $F_n(C_3)$. If d(x) = 2, then without loss of generality, let $x = v_{11}$. But we have $r(v_{12} \mid W) = r(v_{12} \mid W)$. If d(x) = 4, then without loss of generality, let $x = u_{11}$. But we have $r(v_{11} \mid W) = r(u_{12} \mid W)$, which is a contradiction. Hence $tr(F_s(C_3)) \ge 2s$. Next, we claim that $tr(F_s(C_3)) \le 2s$. Now, let $W = \{u_{11}, u_{21}, ..., u_{s1}\} \cup \{u_{12}, u_{22}, ..., u_{s2}\}$. Let x, y be two distinct vertices of $V(F_s(C_3)) \setminus W$. Then we consider the following two cases. **Case-1:** $x, y \in V(B_i)$ for some $1 \le i \le s$. Without loss of generality, let $x, y \in V(B_1)$. If $d(x, w) \neq d(y, w)$ for some $w \in W \cap (V(B_1)$, then $r(x \mid W) \neq r(y \mid W)$. So we may assume that d(x, w) = d(y, w) for all $w \in W \cap (V(B_1))$. Then $x = v_1$ and y = u. But 3 = d(x, w) > d(y, w) = 1. It follows that $r(x \mid W) \neq r(y \mid W)$. **Case-2:** $x \in V(B_i)$, $y \in V(B_i)$ for some $1 \le i \ne j \le s$. Then clearly, d(x, w) < d(y, w) for all $w \in W \cap V(B_i)$. It follows that $r(x \mid W) \neq r(y \mid W)$. Thus W is a resolving set and $\langle W \rangle$ has no isolates, $tr(F_3(C_3)) \le 2s$. Hence $tr(F_3(C_3)) = 2s$. #### GENERAL BOUNDS AND EXTREMAL GRAPHS In this section, we obtain bounds for the total resolving number of $G(C_3)$ and characterize the extremal graphs. **Theorem 4.1:** Let G be a graph of order $n \ge 3$. Then $3 \le tr(G(C_3)) \le n$. **Proof:** By Theorem 2.1, $tr(G(C_3)) \ge 3$. Let $V(G) = \{v_1, v_2, ..., v_n\}$ and v_{ij} be the new vertex of the edge v_iv_j in $G(C_3)$, where $i, j \in \{1, 2, ..., n\}$ and $i \ne j$. Let W = V(G). Then i^{th} and j^{th} coordinates of the representation of v_{ij} are 1. Since $i \ne j$, representation of all v_{ij} are distinct. Therefore $tr(G(C_3)) \le n$. Hence $3 \le tr(G(C_3)) \le n$. **Theorem 4.2:** Let G be a graph of order $n \ge 3$. Then $tr(G(C_3)) = 3$ if and only if $G \cong P_3$ or K_3 or $K_4 \setminus \{e\}$ or $K_4 \cap K_5$. **Proof:** Let $V(G) = \{v_1, v_2, \dots, v_n\}$ and $tr(G(C_3)) = 3$. If n = 3, then $G \cong P_3$ or K_3 . So we may assume that $n \ge 4$. For $i, j \in \{1, 2, \dots, n\}$ and $i \ne j$, let v_{ij} be the new vertex of the edge $v_i v_j$ in $G(C_3)$. Let $W = \{w_1, w_2, w_3\}$ be a total resolving set of $G(C_3)$. Let $\langle W \rangle$ be K_3 . If W is not a subset of V(G), then without loss of generality, let $W = \{v_1, v_2, v_{12}\}$. Let $X = V(G) \setminus \{v_1, v_2\}$. Since G is connected, a vertex of X, say v_3 is adjacent to v_1 or v_2 or both. If v_3 is adjacent to v_1 or v_2 , say v_1 , then $r(v_3 \mid W) = r(v_{13} \mid W) = (1, 2, 2)$, which is a contradiction. If no vertex of X is adjacent to exactly one vertex of $\{v_1, v_2\}$, then a vertex of X, say v_3 is adjacent to v_1 and v_2 . Since G is connected and $n \ge 4$, v_3 is adjacent to a vertex of X, say v_4 . But we have $r(v_4 \mid W) = r(v_{34} \mid W) = (2, 2, 3)$, which is a contradiction and hence $W \subset V(G)$. Without loss of generality, let $W = \{v_1, v_2, v_3\}$ and $X = V(G) \setminus W$. Then $r(v_{12} \mid W) = (1, 1, 2)$, $r(v_{23} \mid W) = (2, 1, 1)$, $r(v_{31} \mid W) = (1, 2, 1)$ which shows that no vertex of X has exactly two neighbors in W. If a vertex $v_i \in X$ is adjacent to exactly one vertex of W, say v_j , $j \in \{1, 2, 3\}$, then $r(v_i \mid W) = r(v_{1j} \mid W)$, which is a contradiction. If there exists a vertex of X, say v_i is adjacent to no vertex of W, then $r(v_i \mid W) = r(v_{1j} \mid W)$, where $v_i v_k \in E(G)$, which is a contradiction. Hence each vertex of X is adjacent to all the vertices of W. If |X| > 1, then $r(v_4 \mid W) = r(v_5 \mid W) = \dots = r(v_n \mid W)$, which is a contradiction. Consequently, |X| = 1. Hence $X = \{v_4\}$ and $G \cong K_4$. Let $\langle W \rangle$ be P₃. Then we consider the following two cases. ## **Case-1:** W is a subset of V(G). Then without loss of generality, let $W = \{v_1, v_2, v_3\}$, where v_2 is adjacent to v_1 and v_3 . Then $r(v_{12} \mid W) = (1, 1, 2)$ and $r(v_{23} \mid W) = (2, 1, 1)$. Let $X = V(G) \setminus W$. If there exists a vertex $v_i \in X$ which is adjacent to v_2 but not to v_1 and v_3 , then $r(v_i \mid W) = r(v_{i2} \mid W) = (2, 1, 2)$ in $G(C_3)$, which is a contradiction. If there exist two distinct vertices v_i , $v_j \in X$ such that v_i is adjacent to v_1 & v_3 and v_j is adjacent to v_1 , v_2 & v_3 , then $r(v_{i1} \mid W) = r(v_{j1} \mid W) = (1, 2, 2)$ and $r(v_{3i} \mid W) = r(v_{3j} \mid W) = (2, 2, 1)$ in $G(C_3)$, which is a contradiction. Now, we claim that |N(W)| = 1 or 2. Suppose $|N(W)| \ge 4$. Let $N(W) = \{v_4, v_5, ..., v_k\}$, $k \ge 7$. Without loss of generality, let v_4 be adjacent to v_1 but not to v_2 and v_3 , v_5 be adjacent to v_3 but not to v_1 and v_2 , v_6 be adjacent to v_1 & v_2 or v_1 , v_2 & v_3 . But a vertex of $\{v_7, v_8, ..., v_k\}$ is adjacent to v_1 or v_3 or v_1 & v_3 . If v_7 is adjacent to v_1 or v_3 , say v_1 , then $r(v_{14} | W) = r(v_{17} | W) = (1, 2, 3)$, which is a contradiction. If v_7 is adjacent to v_1 and v_3 , then $r(v_6 | W) = r(v_7 | W)$, which is a contradiction. Suppose |N(W)| = 3. Then without loss of generality, let $N(W) = \{v_4, v_5, v_6\}$ and v_4 be adjacent to v_1 , v_5 be adjacent to v_3 and v_6 be adjacent to either v_1 and v_3 or v_1 , v_2 & v_3 . If $(\{v_4, v_5, v_6\})$ is either K_3^c or $K_2 \cup K_1$, then without loss of generality, let v_4 be not adjacent to v_5 and v_6 . Then $r(v_4 | W) = r(v_{14} | W) = (1, 2, 3)$ in $G(C_3)$, which is a contradiction. If $(\{v_4, v_5, v_6\})$ is either P_3 or K_3 , then $r(v_4 | W) = r(v_{16} | W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. Hence |N(W)| = 1 or 2. Now, we consider the following two subcases. # **Subcase-1:** |N(W)| = 1. Then without loss of generality, let $N(W) = \{v_4\}$. We claim that |X| = 1. Suppose $|V_1| \ge 2$. Then v_4 is a cut vertex of G. Then there are at least two branches at v_4 in $G(C_3)$, say B_1 and B_2 . Let $\{\{v_1, v_2, v_3, v_4\}\} = B_1$. Therefore B_2 contains at least one end block. But no vertex of B_2 belongs to W, which is a contradiction to Lemma 2.6 and hence $X = \{v_4\}$. If v_4 is adjacent to v_1 but not to v_2 and v_3 in G, then $r(v_4 | W) = r(v_{14} | W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. If v_4 is adjacent to v_1 and v_3 but not to v_2 , then $G \cong C_4$ and if v_4 is adjacent to v_1 , v_2 and v_3 , then $G \cong K_4 \setminus \{e\}$. #### **Subcase-2:** |N(W)| = 2. Then without loss of generality, let $N(W) = \{v_4, v_5\}$. Then exactly one vertex of $\{v_4, v_5\}$ is adjacent to exactly one vertex of $\{v_1, v_3\}$. Without loss of generality, let v_4 be adjacent to v_1 . If $v_4v_5 \not\in E(G)$, then $r(v_4 \mid W) = r(v_{4i} \mid W)$, $i \in \{1, 2, 3\}$, which is a contradiction. Thus $v_4v_5 \in E(G)$. If v_5 is adjacent to v_3 , then we claim that |V| = 5. Suppose |V| > 5. Let $V = \{v_1, v_2, v_3, ..., v_n\}$, $n \ge 6$. Let $\{\{v_4, v_5, v_i\}\} \ge P_3$ for some $i \in \{6, 7, ..., n\}$. If v_i is adjacent to v_4 , then $r(v_i | W) = r(v_4 | W) = (2, 3, 3)$ in $G(C_3)$, which is a contradiction. If $\{\{v_4, v_5, v_i\}\} \ge K_3$ for some $i \in \{6, 7, ..., n\}$, then $r(v_i | W) = r(v_{45} | W) = (2, 3, 2)$ in $G(C_3)$, which is a contradiction. Therefore |V| = 5 and hence $G \ge C_5$. If v_5 is adjacent to v_1 and v_3 in G, then $r(v_{15}|W) = r(v_4|W) = (1, 2, 2)$ in $G(C_3)$, which is a contradiction. ## Case-2: W is not a subset of V(G). Then without loss of generality, let v_1 , v_2 and v_3 be three vertices of G such that $\langle \{ v_1, v_2, v_3 \} \rangle \cong P_3$ or K_3 , $v_3 \notin W$ and $v_2 \in W$. Let $V_1 = V(G) \setminus X$. Then clearly, no vertex of V_1 is adjacent to v_2 in G, for, if $v_i \in V_1$ is adjacent to v_2 in G, then $r(v_i \mid W) = r(v_2 \mid W) = (2, 1, 2)$ in G (C_3) , which is a contradiction. Now, we claim that |N(X)| = 1. Suppose $|N(X)| \ge 4$. Let $N(X) = \{v_4, v_5, ..., v_k\}$, $k \ge 7$. Then without loss of generality, let v_4 be adjacent to exactly one vertex of $\{v_1, v_3\}$, say v_1, v_5 be adjacent to v_3 not to v_1 and v_6 be adjacent to v_1 and v_3 . But a vertex of $\{v_7, v_8, ..., v_k\}$ is adjacent to v_1 or both. Without loss of generality, let v_7 be adjacent to say v_1 . Then $r(v_7|W) = r(v_4|W)$, which is a contradiction and hence $|N(X)| \le 3$. If |N(X)| = 2, then without loss of generality, let v_4 and v_5 be two vertices in N(X). If v_4 is adjacent to v_1 , v_5 is adjacent to v_3 or v_4 is adjacent to v_1 and v_5 v_2 is adjacent to v_1 and v_2 is adjacent to v_1 and v_2 is adjacent to v_1 and v_2 is adjacent to v_2 in v_3 and v_4 is adjacent to v_1 and v_2 is adjacent to v_2 and v_3 is adjacent to v_4 in v_4 in v_5 is adjacent to v_1 and v_2 is adjacent to v_2 in v_3 and v_4 is adjacent to v_4 and v_5 is adjacent to v_5 and v_6 is adjacent to v_6 and v_7 in v_8 and v_8 is adjacent to v_8 and v_9 is adjacent to v_1 and v_2 v_2 in v_3 and v_4 in v_4 in v_2 in v_3 in v_4 Let v_4 be adjacent to v_3 and v_5 is adjacent to v_1 and v_3 . If W contains exactly one vertex of V, then $r(v_4 \mid W) = r(v_{14} \mid W) = (3, 2, 2)$ in G (C₃), which is a contradiction. If W contains two vertices of V, then by our assumption $v_2 \in W$ and $v_3 \notin W$, $v_1 \in W$. If $\langle \{v_1, v_2, v_3\} \rangle \cong K_3$, then $r(v_4 \mid W) = r(v_{34} \mid W) = (2, 2, 2)$. If $\langle \{v_1, v_2, v_3\} \rangle \cong P_3$ and $v_4v_5 \notin E(G)$, then $r(v_4 \mid W) = r(v_{34} \mid W) = (3, 2, 2)$. If $\langle \{v_1, v_2, v_3\} \rangle \cong P_3$ and $v_4v_5 \in E(G)$, then $r(v_4 \mid W) = r(v_{35} \mid W) = (2, 2, 2)$, which is a contradiction. If N(X) = 3, then without loss of generality, let v_4 , v_5 , v_6 be three vertices in N(X) and v_4 be adjacent to v_1 , v_5 be adjacent to v_3 , v_6 be adjacent to v_1 and v_3 in G. Then $r(v_4 | W) = r(v_{14} | W) = (2, 2, 3)$ in $G(C_3)$, which is a contradiction. Without loss of generality, let $N(X) = \{v_4\}$. We claim that $V_1 = \{v_4\}$. Suppose $V_1 = \{v_4, v_5, ..., v_n\}$, $n \ge 5$. If H is $\langle V_1 \rangle$, then $H(C_3)$ contains at least one end block. But no vertex of $H(C_3)$ belongs to W, which is a contradiction to Lemma 2.6. Therefore $X = \{v_4\}$. If v_4 is adjacent to either v_1 or v_3 , say v_1 , then $r(v_4 \mid W) = r(v_{14} \mid W) = (1, 2, 3)$ in G (C_3) , which is a contradiction and hence v_4 is adjacent to v_1 and v_3 . But if $\langle \{v_1, v_2, v_3\} \rangle \cong K_3$, then $r(v_4 \mid W) = r(v_{13} \mid W)$ in G (C_3) , which is a contradiction. Therefore $\langle \{v_1, v_2, v_3\} \rangle \cong P_3$ and hence in this case, $G \cong C_4$. Conversely, let $G \cong P_3$ or K_3 or C_4 or $K_4 \setminus \{e\}$ or K_4 or C_5 . Let $W = \{v_1, v_2, v_3\}$ and $v_1v_2, v_2v_3 \in E(G)$. Then W is a total resolving set of $G(C_3)$. Thus $tr(G(C_3)) \le 3$. By Theorem 4.1, $tr(G(C_3)) \ge 3$ and hence $tr(G(C_3)) = 3$. **Theorem 4.3:** Let G be a graph of order $n \ge 3$. Then $tr(G(C_3)) = n$ if and only if each non support vertex is a complete vertex of degree 2. **Proof:** Assume that $tr(G(C_3)) = n$. Let $V(G) = \{v_1, v_2, ..., v_n\}$. Let v_{ij} be the new vertex of the edge $v_i v_j$ in $G(C_3)$. Then we claim that each non support vertex is a complete vertex of degree 2. Suppose not. Then we consider the following two cases. **Case-1:** There exists a non support vertex v_i for some i such that $d(v_i) \ge 3$ in G. Then without loss of generality, let v_1 be such vertex and $N(v_1) = \{v_1, v_3, ..., v_{k+1}\}, k \ge 3$ in G. Let $W = \{v_2, v_3, ..., v_n\}$. Then for $2 \le i \ne j \le n$, $i-1^{th}$ and $j-1^{th}$ coordinates of the representation of v_{ij} are 1, 1^{st} k coordinates of the representation of v_1 are 1 and $j-1^{th}$ coordinate of the representation of v_{1j} , $2 \le j \le k+1$ is 1 in $G(C_3)$. Therefore each vertex of $V(G(C_3)) \setminus W$ have distinct representations. Since $\langle W \rangle$ has no isolates, $tr(G(C_3)) \le n-1$, which is a contradiction. Case-2: There exists a non support vertex v_i for some i such that $d(v_i) = 2$ and v_i is not a complete vertex in G. Then without loss of generality, let v_i be such vertex in G. Let $N(v_1) = \{v_2, v_3\}$ and $W = \{v_2, v_3, ..., v_n\}$. Then for $2 \le i \ne j \le n$, $i-1^{th}$ and $j-1^{th}$ coordinates of the representation of v_{ij} are 1, 1^{st} and 2^{nd} coordinates of v_1 are 1, 1^{st} coordinate of v_{12} is 1 and 2^{nd} coordinate of v_{13} is 1 in $G(C_3)$. Thus each vertex of $V(G(C_3)) \setminus W$ have distinct representations. Since $\langle W \rangle$ has no isolates, $tr(G(C_3)) \le n-1$, which is a contradiction. Hence each non support vertex is a complete vertex of degree 2. Conversely, suppose that each non support vertex is a complete vertex of degree 2. By Theorem 4.1, $tr(G(C_3)) \le n$. Let W be a total resolving set for G (C_3) . Let $d(v_i) = 2$, v_i is a complete non support vertex and $N(v_i) = \{v_j, v_k\}$. Then $d(v_i, v) = d(v_{jk}, v)$ for all $v \in V(G(C_3)) \setminus v_i$, v_{jk} . Therefore v_i or $v_{jk} \in W$ and by Lemma 3.3, $tr(G(C_3) \ge p + s + s' = n$, where s' denote the number of non support vertices of G. Thus $tr(G(C_3)) \ge n$ and hence $tr(G(C_3)) = n$. #### **ACKNOWLEDGEMENT** The research work of the second author is supported by the University Grants Commission, New Delhi through Basic Science Research Fellowship (vide Sanction No.F.7-201/2007 (BSRF). ## REFERENCES - 1. F. Buckely and F. Harary, Distance in graphs, Addison Wesley, Reading MA, 1990. - 2. G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, *Resolvability in graphs and metric dimension of a graph*, Discrete Appl. Math. 105(2000), 99-113. - 3. Gary Chartrand and Ping Zhang, *Introduction to Graph Theory*, Tata McGraw Hill Education Private Limited, New Delhi (2006). - 4. F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin. 2(1976), 191-195. - 5. J. Paulraj Joseph and N. Shunmugapriya, *Resolving Number of Edge Cycle Graphs*, Aryabhatta Journal of Mathematics and Informatics (Accepted). - 6. J. Paulraj Joseph and N. Shunmugapriya, Total *Resolving Number of a Graph*, Indian Journal of Mathematics, Vol 57, No. 3(2015), 323-343. - 7. Ping Zhang and Varaporn Saenpholphat, Connected *resolvability of graphs*, Czechoslovak Mathematical Journal, Vol 53(2003), No. 4, 827-840. - 8. Ping Zhang and Varaporn Saenpholphat, *On connected resolvability of graphs*, Australasian Journal of Combinatorics, Vol 28(2003), 25-37. - 9. P. J. Slater, *Leaves of trees*, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Vol 14 of Congr. Numer. (1975), 549-559. - 10. Sooryanarayana B, On the metric dimension of a graph, Indian. J. Pure Appl. Math 29(4) (1998), 413-415. Source of support: University Grants Commission, New Delhi, India. Conflict of interest: None Declared. [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]