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 ABSTRACT 
In this paper, a theoretical model is developed for advection-dispersion problem including first order decay and zero 
order production in a one-dimensional semi-infinite porous media. Dispersion coefficient is considered proportional to 
seepage velocity while seepage velocity is a temporal function. Initial concentration is assumed exponentially space 
dependent. Time dependent pulse type source concentration which is any smooth function of time is considered at the 
one end of the boundary. Concentration gradient at other end is supposed to be zero. Interpolation method is applied to 
reduce the input function into a polynomial. In order to eliminate the time derivative, the Laplace transform technique 
is applied to get the solution of advection dispersion equation.  Two different time dependent functions of input are 
considered. Obtained result is demonstrated graphically with the help of numerical examples. 
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INTRODUCTION 
 
The advection-dispersion equation ADE is commonly used for transport of solute in porous media. The advection is 
controlled by the Darcy’s law whereas hydrodynamic dispersion is the combination of mechanical and molecular 
diffusion which accounts for contaminant arising stimulates by velocity variations. Several researchers derived various 
theories to investigate the fluid flow and solute transport in homogeneous / heterogeneous geological formations. 
Solutions of the ADEs can be obtained analytically or numerically with space or temporal dependent dispersivity.  
 
Various analytical solutions describing solute transport through one-dimensional solute transport problem in porous 
formation, considering steady, unsteady flow, first order decay and zero order production have been published in 
literature. Huang et al. (1996) obtained analytical solution of solute transport in heterogeneous porous media with scale 
dependent dispersion. Sposito et al.(1986) observed that dispersion coefficient increase either with distance or time. 
Valocchi (1989) proposed solution for kinetically sorbing solute under conditions of horizontal flow where sorbing 
reaction varied as an arbitrary function in vertical direction. Goode and Konikow (1990) illustrates that fluctuation in 
hydraulic conductivity are not sole responsible of spatial variation in groundwater velocity. Later Watson et al. (2002) 
also observed that the hydrodynamic dispersion coefficients are non-linear function of the seepage velocity. Jaiswal et 
al. (2009&2011) studied the pulse type input phenomena in one dimensional semi-infinite porous media for temporally 
as well space dependent dispersion coefficient. Chen et al. (2011a,b) solved  two-dimensional advection-dispersion 
equation (ADE) in cylindrical coordinates subject to the third-type inlet boundary condition with  finite Hankel 
transform technique in combination with the Laplace transform method Almost all analytical solutions are obtained 
assuming uniform initial concentration in  an infinite or semi-infinite medium with point or line source. Guerrero et. al. 
(2013) obtained analytical solution with time dependent boundary condition in one-dimensional porous media. Van 
Genuchten et al. (2013a&b) proposed one-dimensional solute transport through porous media with or without  zero-
order production and first-order decay. Singh et al.  (2015) obtained an analytical solution in a heterogeneous porous 
medium with scale dependent solute dispersion. Bharati et al. (2015) considered dispersion coefficient and velocity are 
proportional to non homogeneous linear expression in position variable to get the analytical solution. Mahato et al. 
(2015) obtained solution in a finite domain with pulse type input when source  entering different from origin.Using 
Green’s function an analytical solution of one dimensional porous medium for instantaneous and continuous point 
source taking dispersion and velocity proportional was developed in groundwater and riverine flow (Sanskrityayn         
et al., 2017).    
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The objective of this paper is to develop a theoretical model for the solute transport problem in a one-dimensional 
homogeneous porous medium. The homogeneous geological formation is assumed horizontal and semi-infinite length. 
Dispersion coefficient is assumed proportional to the velocity which is inversely proportional to linear function of time. 
Initially, medium is not solute free which means some concentration already present in the medium and which depends 
exponentially on position. Input concentration is considered any function of time which is continuous, smooth and 
bounded for a finite time interval. Laplace Transform Technique LTT is used to get the solution of the present study. 
The impacts of different boundary conditions on the contaminant concentration distribution in the porous domain are 
illustrated with the help of examples.  
 
MATHEMATICAL FORMULATION OF THE PROBLEM 
 
The linear advection–dispersion equation in one-dimensional horizontal plane which is derived on basis of mass 
conservation and Fick’s law of diffusion may be written as: (Bear, 1972), 

( ) ( ) ( ) ( ), , , ,
c c

R D x t u x t c x t c x t
t x x

µ γ
∂ ∂ ∂

= − − +
∂ ∂ ∂

 
 
 

                                                                        (1) 

 

In which, 3c ML−   is the solute concentration, 1u LT −    is the groundwater velocity, which is commonly known as the 

seepage velocity, 2 1D L T −    is the dispersion coefficient and R  is a retardation factor, which is a dimension less 

quantity. The dispersion coefficient D  is proportional to flow velocity u  (Yim and Mohsen, 1992) and assumed 

respectively as ( ) ( ) 1

0, 1u x t u m t −= + , ( ) 1

0 1D D m t −= + . Zero order production  ( ) 3 1,x t ML Tγ − −    and first order 

production ( ) 1, [ ]x t Tµ −  are considered respectively as, ( ) ( ) 1

0, 1x t m tγ γ −= +  and ( ) ( ) 1

0, 1x t m tµ µ −= + . Where,

2 1
0D L T −   , 1

0u LT −   ,  1
0 Tµ −    and  3 1

0 ML Tγ − −    are constants and 1m T −    is a unsteady parameter. Also [ ]x L  and 

[ ]t T  represent longitudinal distance and time variable respectively. 
 
Therefore, Eq. (1) may be re-written as  

( ) ( ) ( ) ( )1 1 1 1

0 0 0 01 1 1 1
c c

R D m t u m t c m t c m t
t x x

µ γ− − − −∂ ∂ ∂
= + − + − + + +

∂ ∂ ∂
 
 
 

                                 (2) 

 
The geological formation is assumed to be of semi-infinite along horizontal in direction, which is initially polluted. Let 
there be exponentially space-dependent source contaminant concentration be present initially in the domain space at t = 
0. It means, semi-infinite medium is supposed initially not solute free. Time dependent continuous point source is 
introduced at the origin of the medium and then eliminated after a certain time. Concentration gradient at infinity is 
considered zero. In order to formulate the proposed problem mathematically, the following initial and boundary 
condition may be written as:  

( ) =txc ,   ( )expic xα− ; 0t = , 0>x                                                                                                        (3) 
 

                  ( )tmFc '0 ; 00 tt ≤< ,
                                                                                                                 

(4a) 

( ),c x t =                                              0=x  

                  0 ; 0tt > ,                                                                                                                                      (4b)
                                                                                                       

 

                                                                                                                                                                                    
( ) 0,

=
∂

∂
x

txc
; as ∞→x                                                                                                                                  (5) 

Where, 0c and ic are the reference concentrations and 1Lα −    is a unsteady parameter which can take positive real 

number to regulate initial concentration distribution. 1'm T −    is an unsteady parameter and ( )'F m t  is any  

continuous and bounded smooth function of time t  in domain [ ]00, t . According to Weirstrass approximation 
theorem any continuous function on a bounded interval can be uniformly approximated in a polynomial function. 

Since ( )'F m t   is continuous and bounded in domain [ ]00, t , so Weirstrass approximation theorem suggests that   
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( )'F m t  may be written as polynomial of degree n . Hence the proposed initial and boundary conditions Eq. (3-5) 
may be written as: 

( ) =txc ,   ( )expic xα− , 0t = , 0>x                                                                                                        (6) 

                                     ( )tGc n0  ; 00 tt ≤<                                                                                                                  (7a) 

( ) =txc ,       0=x  

                                      0  ; 0tt >                                                                                                                                  (7b) 

( ) 0,
=

∂
∂

x
txc

,     as     ∞→x                                                                                                                          (8) 

Where, ( ) n
nn tatataatG ++++= .............2

210                                                                                                     (9) 
also naaa ,,........., 10  are constants and ( )nG t  is dimension less . 
 
Using a transformation T as; (Crank, 1975) 

( ) 1

0
1

t
T m t dt−= +∫  

or           ( )1
log 1T m t

m
= +

 
  and ( )1

1m Tt e
m

= −
       

                                                                                           (10) 

With this transformation Eq. (10), Eq. (2) and Eqs. (6-8) are reduced into new time variable T .  

0 0 0 0

c c
R D u c c

T x x
µ γ

∂ ∂ ∂
= − − +

∂ ∂ ∂
 
 
 

                                                                                                           (11) 

( ) =Txc ,   ( )xci α−exp , 0=T , 0>x                                                                                                    (12) 

                                     ( )TH  ; 00 TT ≤<                                                                                                                (13a) 

                ( ) =Txc ,                                             0=x  

                                     0  ; 0TT >                                                                                                                               (13b) 

( ) 0,
=

∂
∂

x
Txc

, as ∞→x                                                                                                                                (14) 

Where, ( ) 2
0 1 2 .............m T m T n m T

nH T b b e b e b e= + + + +   and  ( )0 0

1
log 1T m t

m
= +   . 

also nbbb ,,........., 10  are constants and have dimension of concentration. 
 
In order to remove convective term from advection-dispersion equation Eq. (11), following transformation is used 

( ) ( )
2

0 0 0
0

0 0 0

1
, , exp

2 4
u u

c x T k x T x T
D R D

γ
µ

µ
= − + +

  
  
  

                                                                         (15) 

With transformation Eq. (15), Eqs. (11-14) reduced into: 
2

0 2

k k
R D

T x
∂ ∂

=
∂ ∂

                                                                                                                                               (16) 

( ) =Txk ,  ( ){ } ( )0

0

exp expic x x
γ

α β β
µ

− + − − ; 0=T , 0≥x                                                             (17) 

                                ( ) ( ) ( )TTTH 2

0

02 expexp η
µ
γη −  ; 00 TT ≤< ,                                                                      (18a) 

            ( ) =Txk ,                                                       0=x  

                                ( )T2

0

0 expη
µ
γ

− ; 0TT >                                                                                                               (18b) 
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( ) ( ) 0,

2
,

0

0 =+
∂

∂ Txk
D
u

x
Txk

;   as ∞→x ,   0≥T                                                                                 (19) 

Where, 
0

0

2D
u

=β and 
2

0
0

0

1
4
u

R D
η µ= +

 
 
      

  

           
Applying Laplace transformation on Eqs. (16–19) to reduce into ordinary differential equation. 

( ){ } ( )
2

0
2

0 0 0

exp expi

d k pR R
k c x x

dx D D
γ

α β β
µ

− = − − + − −
 
 
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                                                                  (20) 
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, 0x =               (21) 

0 0
2 0

udk
k

dX D
+ = ,   as   ∞→x                                                                                                                      (22) 

Where,  ( ) ( ){ } ( )
0

, , ,ptf x p L f x p e f x t d t
∞ −= = ∫ ,  0>p  where p is a Laplace parameter.  

 
Hence solution of Eq. (20), by using Eq. (21) and Eq. (22) may be written as: 
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(23)                  
 
 
 
 
 



R. R.Yadav*1, Joy Roy2 /  
One-Dimensional Solute Transport in a Homogeneous Porous Media with Pulse Type Input Source / IJMA- 8(12), Dec.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      232  

 
Applying inverse Laplace Transform to Eq. (23) and using the transformation Eq. (15), we get the solution of the 
present problem as; 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )



−++++
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
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                ( ) ( ) ( ) ( ) ×



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
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( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){



×−−+−−








−=

++ 010
2

0
0

0
0 ,,exp,,, 22 TTxFTxFbTTTxFTxFbTxc

mm ηηηη η
µ
γ

 

              
( ){ }} ( )( ) ( ) ( ) ( ){ }{ } +++−−++

++
............2exp,,exp 0

2
02220

2
22 TmTTxFTxFbTm

mm
ηη

ηη  

 ( ) ( ){ ( ) ( ) ( ){ }} ( ) ( )−−−+−−
++ 0

2
0

0

0
0

2
0 exp,exp,, 22 TTTxFTnmTTxFTxFb

nmnmn η
µ
γη ηηη     

                ( ) ( ) ( ) ( )
0

0
0

0

2
0

0

0

0

0

0

0

4
1

2
exp,,,,

µ
γµ

µ
γ

µ
γ

ρω +




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                                                                                                                          ;     TT <0                                   (24b) 

Where, 

( ),F x tϕ = 2 2

0 0 0

1
exp exp

2 2

Rx x R Rx
t erfc t t

D D t D

ϕ ϕ
ϕ ϕ ϕ− − + +

           
     
            02

x R
erfc t

D t
ϕ+

  
 

  
 ; 

( ),G x t = ( ){ }2exp t xω α β− + ; 

( ),H x t = ( ){ }2exp t xρ β+ − ; 

Where   ( )20D
R

ω α β= +  and  20D
R

ρ β=  

 
RESULTS AND DISCUSSIONS 
  

The solution obtained as in Eq. (24a,b)  are discussed for sinusoidal ( ) ( ){ }' sin 'F m t l m t= +  and exponential 

( ) ( )' exp 'F m t m t= forms of input function for a chosen set of data taken from published literatures or empirical 

relationship. For example the range of seepage velocity, keeping in view the different types of soils, aquifer is lies 
between 2m/day to 2m/year (Todd, 1980). Concentration values 0/ cc  are evaluated assuming reference concentrations 

as 0.10 =c , 0.01ic =  in a finite domain along longitudinal direction ( )0 10x m≤ ≤  and shown graphically. Presence 

of source is assumed up to time ( ) 90 =dayt  and then it is eliminated. Initial seepage velocity and dispersion 

coefficient are taken ( )1
0 0.01u m day−=  and ( )2 1

0 1.2D m day−= respectively. Other values of common parameters 

are considered as 25.1=R , ( )1
0 0.05dayµ − = , 0007.00 =γ , 0.019α = . Polynomial (9) is obtained by Hermite 

interpolation and Lagrange interpolation for case I  and case II respectively. The concentration pattern in presence of 
the source for both the two cases are verified by Pdepe Matlab solution.    
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Case-I: When input is in the sinusoidal form  ( ) ( ){ }0' sin 'F m t c l m t= + . 

For the present case, the value of both unsteady parameters m  and 'm  are taken 8.0 , while value assigned to 
dimensionless parameter l  is 2 . Concentration value in the time domain  ( )0 9t day≤ ≤  are computed at times 

( ) =dayt  5,2 and8 ,while for ( ) ( )09 tdayt => the same is computed at times ( ) =dayt  12,10 and14 .  

 
Figure-1: Distribution of dimensionless concentration for various in presence of source. 

 
Figure1 is drawn to study the concentration pattern in presence of the source from solution Eq. (24a).  Contaminant 
attenuates with position and time. It may be observed that the attenuation process is faster. It may also be observed that 
concentration near the inlet is much higher and less toward outer boundary and continuously decreases and goes on 
decreasing towards minimum or harmless concentration. Fluctuations at ( ) 0x m =  with time is due to periodic nature 
input. The obtained concentration is same in every aspect as the concentration pattern plotted with pdepe Matlab and 
this similarity authenticates the obtained solution.  
.  

 
Figure-2: Distribution of dimensionless concentration for various time in absence of the source. 

 
Fig. 2 illustrates the concentration profiles described by the solution in Eq. (24b), once the source of the pollution is 
eliminated, i.e., in the time domain 9>t  at ( ) 10,12,14t day = . The input concentration is nearly zero at source 
boundary. It may also observe that the contaminant concentration increases at the source and emerges at a point 
towards other boundary. The maximum value attained at lower time and lower for higher time.  
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Case-II: When value of input is ( ) 0' expF m t c= . ( )'m t  

For the present case, the value of unsteady parameters are assumed as 1.0)(' 1 =−daym and 2.0)( 1 =−daym . 

Concentration value in the time domain in presence of source i.e. in time domain ( ) 90 ≤≤ dayt  are computed at 

times ( ) =dayt  5,2,05.0 and 8 .while for ( )09t t> = the same is computed at times ( ) =dayt  12,10 and14  

 
Figure-3: Distribution of dimensionless concentration for various times in presence of source. 

 
Figure 3 displays the solute concentration from the point source along the longitudinal direction in the presence of the 
source of pollution, in the time domain ( )t≤0 , at ( ) 85,2,05.0 anddayt = . The input concentration, 0/ cc  at the 

origin, ( ) 0=mx  are 45.203.2,56.1,05.1 and respectively. The concentration patterns are virtually identical for 

all values of time ( ) 0.05,2,5 8t day and= . It attenuates with position and time. It may be observed that the 
contaminant concentration decreases and emerges towards the minimum or harmless concentration. The similarity 
between obtained solution and pdepe Matlab solution validates the solution. 

 
Figure-4: Distribution of dimensionless concentration for various times in absence of source. 

Fig. 4 shows the solute concentration profiles at time ( ) 10,12 14t day and=  in the case of when source has been 
eliminated. It may be observed that the contaminant concentration profiles are virtually identical at source boundary. 
Initially, concentration is higher for lower time and lower for higher time near the source boundary. It may also be 
noticed that as the time elapses after elimination of source concentration, the peak of the concentration broadens, 
reduces and shifts away from origin as a result of transport phenomena of solute transport. 
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Since the approximation of the interpolation polynomial (9) in Lagrange method of interpolation depends on precision 
in selection of independent variable nodes (arguments), the solution may be refined with better approximate 
interpolation polynomial.  
 
VERIFICATION OF SOLUTION 
 
Consider the case where input ( )' 1 (1 ' )F m t m t= +  and solution (A7&A8) is obtained the way given in appendix. For a 
chosen set of data taken from the experimental and theoretical published literatures  described as 0.10 =c , 01.0=ic  

( )1
0 0.01u m day−=  and ( )2 1

0 1.2D m day−= , 1.25R = , ( )1
0 0.05dayµ − = , 0007.00 =γ , 019.0=α and 02.0'== mm  

respectively and with  time of elimination of source 0 ( ) 9t day =  ,concentration- space graphs figure 5&6 are plotted 

from solution Eqs. (24a&24b) and Eqs. (A7&A8) in appendix in domain ( )0 10x m≤ ≤  at times ( ) 2,5 8t day and=  

in presence of source, while at times ( )t day =  12,10 and14   in absence of source.  
 

 
Figure-5: Distribution of dimensionless concentration for various times in presence of source. 

 

 
Figure-6: Distribution of dimensionless concentration for various times in absence of source. 

 
Concentration pattern obtained from solution Eq.(A7& A8) in appendix has been in good agreement with same 
obtained from the Eq.(24a &24b) as shown with help of figure (5&6). It verifies the authenticity of the obtained 
solution Eq. (24a & 24b). 
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CONCLUSION  
 
In the present study an analytical solution of advection- dispersion equation in one-dimensional semi-infinite porous 
media is obtained to simulate groundwater transport of a solute. Two different time dependent function are taken as 
input concentration. The input point source has been a general continuous and bounded smooth function of time in an 
interval of time and then eliminated.Laplace transformation technique is employed to get the analytical solution of the 
present problem. The input point source has been taken a general continuous and bounded smooth function of time 
dependent. The obtained result predicts the concentration profiles accurately for non-reactive contaminants and an 
appropriate interpolation method provides optimum result. The transport model is benchmarked against analytical 
solutions available in the literature for one-dimensional longitudinal porous formation. The proposed model has not 
been authenticated against any experimental data. The solution may help to determine minimum/maximum or harmless 
concentration at any position and time. 
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Appendix: 
The input boundary conditions with ( )' 1 (1 ' )F m t m t= +  may be described as  

( ),c x t =   ( )expic xα− ;  0t > , 0x >                                                                                                      (A1) 

                                    )'1(0 tmc + ;   00 tt ≤<                                                                                                      (A2a) 

( ) =txc ,                                                    0=x  

                                    0  ;                    0tt >        ,                                                                                                 (A2b) 
 

( ) 0,
=

∂
∂

x
txc

;  as ∞→x                                                                                                                               (A3) 

 
With transformation Eq. (10) may written as: 

( ),c x T = ( )expic xα− ,  0T = , 0x >                                                                                                       (A4) 

                                    0 exp( )c mT− ; 00 T T< ≤                                                                                                          (A5a) 

( ) =Txc ,                                 0=x  

                                    0 ;  0T T> ,        0=x                                                                                                             (A5b) 
 

( ),
0

c x T
x

∂
=

∂
, as    x →∞                                                                                                                            (A6) 

 
Now, applying Laplace Transformation Technique, solution may be written as: 

( ) ( ) ( ) ( ) ( )
1

0 0
0

0 0

, , , , ,ic x T c F x T F x T c F x T F x Tη η ω ρ

γ γ
µ µ

= − − +


  

                

( ) ( )
2

0 0 0 0
0

0 0 0 0

1
, , exp

2 4i

u u
c G x T H x T x T

D R D
γ γ

µ
µ µ

+ − × − + +
   
  

   
 

                                                                                                                               00 T T< ≤                       (A7) 

( ) ( ) ( ) ( ){ } ( ) ( ) ( )
1 1

2 0 0
0 0 1 0

0 0

, , , exp , , ,ic x T c F x T F x T T T F x T c F x T F x Tη η η ω ρ

γ γ
η

µ µ
= − − − − +


  

                

( ) ( )
2

0 0 0 0
0

0 0 0 0

1
, , exp

2 4i

u u
c G x T H x T x T

D R D
γ γ

µ
µ µ

+ − × − + +
   
  

   
 

                                                                                                                      0T T<                                        (A8) 
Where, 

2
1 mη η= −  
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