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ABSTRACT 

In this paper, we apply homotopy perturbation transform method (HPTM) for solving various heat-like and wave-like 

equations. This method is the combined form of homotopy perturbation method and Laplace transform method. The 

nonlinear terms can be easily obtained by the use of He's polynomials. HPTM presents an accurate methodology to 

solve nonhomogeneous partial differential equations of variable coefficients. The aim of using the Laplace transform is 

to overcome the deficiency that is mainly caused by unsatisfied conditions in the other semi analytical methods such as 

Homotopy perturbation method (HPM), Variational iteration method (VIM) and Adomain decomposition method 

(ADM). The approximate solutions obtained by means of HPTM in a wide range of problem's domain were compared 

with those results obtained from the actual solution. The fact that proposed technique solves nonlinear problems can be 

considered as a clear advantage of this algorithm over the decomposition method.  

 

Keywords: Homotopy perturbation method, Laplace transform method, Parabolic-like equations, Hyperbolic-like 

equations, He's polynomials. 

------------------------------------------------------------------------------------------------------------------------------------------------ 

 

1. INTRODUCTION 

 

The real world problems in scientific fields such as solid state physics, plasma physics, fluid mechanics, chemical 

kinetics and mathematical biology are nonlinear in general when formulate as partial differential equations and integral 

equations. In the last two decades, many powerful and simple methods have been proposed and applied successfully to 

solve various types of problems. Some various approximate methods have been developed such as the Adomain 

decomposition method [1-4], the Variational iteration method [5-12], the differential transform method [13-14], the 

Laplace decomposition method [15-16], the tanh-method [17-18] and the extended tanh-method [19-20].One of the 

analytical methods of recent vintage, namely the homotopy perturbation method (HPM), first proposed by He [21-28] 

by combining the standard homotopy and classical perturbation technique for solving various linear, nonlinear initial 

and boundary value problems [29-39] and has been modified later by some scientists to obtain more accurate results, 

rapid convergence and to reduce the amount of computation [40-43]. HPM, VIM and ADM methods can be used to 

solve the nonlinear partial differential equations with accurate approximations, but this approximation is acceptable 

only for a small range, because boundary conditions in one dimension are satisfied via these methods, consequently, 

this shows that most of the analytical techniques encounter the in-built deficiencies and involve huge computational 

work. The Adomain decomposition method is the most transparent method for solutions of the partial differential 

equations; however, this method is involved in the calculation of complicated Adomain's polynomials which narrow 

down its applications. The Laplace transform is totally incapable of handling the nonlinear equations because of the 

difficulties that are caused by the nonlinear terms. To overcome these deficiencies we combine the homotopy 

perturbation method with Laplace transform method to produce a highly effective technique to deal with these 

nonlinearities. Various ways have been proposed to recently to deal with nonlinearities as Adomain decomposition 

method [44]. Furthermore, the homotopy perturbation method is also combined with the Laplace transform method [45] 

and Variational iteration method [46] to produce a highly effective technique for solving many nonlinear problems. 

 

The basic motivation of this paper is to propose a new modification of HPM to overcome the deficiency. The suggested 

HPTM provides the solution in a rapid convergent series which may leads the solution in closed form. The advantage 

of this method is its capability of combining two powerful methods for obtaining exact solution for nonlinear equations. 

The use of He's polynomials in nonlinear terms first proposed by Ghorbani [47-48].It is worth mentioning that the 

HPTM is applied without any discretization or restrictive assumptions or transformations and free from round-off 

errors. Also very accurate results are obtained in a wide range via one or two iteration steps. Unlike the method of 

separation of variables that require initial or boundary conditions, The HPTM provides an analytical solution by using  
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the initial conditions only. The boundary conditions can be used only to justify the obtained results. The proposed 

method work efficiently and the results so far are very encouraging and reliable. We would like to emphasize that the 

HPTM may be considered as an important and significant refinement of the previously developed techniques and can 

be viewed as an alternative to the recently developed methods such as Adomain's decomposition method, Variational 

iteration method and Homotopy perturbation method. Several examples are given to verify the reliability and efficiency 

of the homotopy perturbation transform method. In this paper we have considered the effectiveness of the homotopy 

perturbation transform method (HPTM) for solving various heat-like and wave-like equations of variable coefficients. 

 

2. HOMOTOPY PERTURBATION TRANSFORM METHOD 

 

This method has been introduced by Y.Khan and Q.Wu [49] by combining the Homotopy perturbation method and 

Laplace transform method for solving various types of linear and nonlinear systems of partial differential equations. To 

illustrate the basic idea of HPTM, we consider a general nonlinear partial differential equation with the initial 

conditions of the form [49]. 

  

),,(),(),(),( txgtxuNtxuRtxuD =++                                                      (1)

  

)()0,( xhxu = ,        )()0,( xfxut = . 

where  D is the second order linear differential operator
22 tD ∂∂∂∂∂∂∂∂==== , R is the linear differential operator of less 

order than D; N represents the general nonlinear differential operator and ),( txg is the source term. Taking the 

Laplace transform (denoted in this paper by L ) on both sides of Eq. (1): 
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Using the differentiation property of the Laplace transform, we have 
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Operating with the Laplace inverse on both sides of Eq. (3) gives 
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where ),( txG  represents the term arising from the source term and the prescribed initial conditions. Now we apply 

the homotopy perturbation method    
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and the nonlinear term can be decomposed as  
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for some He's polynomials )(uH n (see [47-48]) that are given by 
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Substituting Eq. (7), Eq. (6) and Eq. (5) in Eq. (4) we get 
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which is the coupling of the Laplace transform and the homotopy perturbation method using He's polynomials. 

Comparing the coefficient of like powers of p, the following approximations are obtained. 

),(),(: 0
0

txGtxup =  
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and so on 

 

3. APPLICATIONS 

 

In this section, we will present the exact solutions of the heat-like and wave-like equations with variable coefficients 

investigated by A.M.Wazwaz [50] and L.Jin [51] to assess the efficiency of the homotopy perturbation transform 

method. 

 

Example: 3.1 Consider the one-dimensional parabolic-like equation with variable coefficients [50-51]. 
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with the initial condition 
2)0,( xxu =  

 

taking Laplace Transform both of sides of Eq. (10) subject to the initial conditions, we have 
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taking inverse Laplace transform, we get 
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By homotopy perturbation method, we get 
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using eq. (13) in eq. (12), we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 

....),(),(),(),(),( 3210 ++++= txutxutxutxutxu  
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which is an exact solution. The results of the above example shows that our method is capable of reducing the huge 

computational work and generates the modification of homotopy perturbation method in the convergence rate and is 

same as obtained by the Adomain decomposition method [50] and Homotopy perturbation method [51]. 

 

Example: 3.2 Consider the two-dimensional parabolic-like equation with variable coefficients [50-51]. 
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with the initial condition 
2)0,,( yyxu =  

 

by applying aforesaid method, we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 
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Which is an exact solution and is same as obtained by the Adomain decomposition method [50] and Homotopy 

perturbation method [51]. 

 

Example: 3.3 Consider the three-dimensional parabolic-like equation with variable coefficients [50-51]. 
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by applying aforesaid method, we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 
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Which is an exact solution and is same as obtained by the Adomain decomposition method [50] and Homotopy 

perturbation method [51]. 

 

Example: 3.4 Consider the one-dimensional hyperbolic-like equation with variable coefficients [50-51]. 
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by applying aforesaid method, we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 

....),(),(),(),(),( 3210 ++++= txutxutxutxutxu  

              = txx sinh2+                                                  (28) 

 

Which is an exact solution and is same as obtained by the Adomain decomposition method [50] and Homotopy 

perturbation method [51]. 
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Example: 3.5 Consider the two-dimensional hyperbolic-like equation with variable coefficients [50-51]. 
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with the initial conditions 
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by applying aforesaid method, we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 
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              = tytx sinhcosh 44 +                                                 (32) 

 

Which is an exact solution and is same as obtained by the Adomain decomposition method [50] and Homotopy 

perturbation method [51]. 

 

Example: 3.6 Consider the three-dimensional hyperbolic-like equation with variable coefficients [50-51]. 
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by applying aforesaid method, we get 
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Comparing the coefficients of various powers of p , we get 
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Therefore the approximate solution is given by 
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Which is an exact solution and is same as obtained by the Adomain decomposition method [50] and Homotopy 

perturbation method [51]. 

 

4. CONCLUSIONS 

 

The main concern of this article is to construct an analytic solution for heat-like and wave-like partial differential 

equations of variable coefficients. We have achieved this goal by applying homotopy perturbation transform method 

(HPTM). The main advantage of this algorithm is the fact that it provides its user with an analytical approximation, in 

many cases an exact solution, in a rapidly convergent sequence with elegantly computed terms. Analytical solutions 

enable researchers to study the effect of different variables under study easily. Its small size of computation in 

comparison with the computational size required in other numerical methods and its rapid convergence show that the 

method is reliable and introduces a significant improvement in solving partial differential equations over existing 

methods. The solution procedure by using He's polynomials is simple, but the calculation of Adomain's polynomials is 

complex. The fact that the HPTM solves nonlinear problems without using the Adomain's polynomials can be 

considered as a clear advantage of this algorithm over the decomposition method. Also the proposed scheme exploits 

full advantage of Variational iteration method (VIM), Adomain's decomposition method (ADM) and Variational 

iteration decomposition method (VIDM). Finally, we conclude that HPTM can be considered as a nice refinement in 

existing numerical technique and might find wide applications in different fields of Sciences. 
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