Volume 9, No. 1, Jan. - 2018 (Special Issue) International Journal of Mathematical Archive-9(1), 2018, 210-213 MAAvailable online through www.ijma.info ISSN 2229 - 5046

SOME PROPERTIES OF INTUITIONISTIC FUZZY BI-IDEALS OF NEAR RINGS

K. DHILIP KUMAR*1

Assistant Professor, Department of Mathematics, SSM College of Arts & Science, Komarapalayam -638 183, Tamil Nadu, India.

M. RAMACHANDRAN²

Assistant Professor, Department of Mathematics, Government Arts & Science College, Sathyamangalam -638 401, Tamil Nadu, India.

E-mail: dhilipkumarmaths@gmail.com¹, dr.ramachandran64@gmail.com²

ABSTRACT

In this present paper, we introduce the concept of intuitionistic fuzzy bi-ideals of near-rings. Also we investigate some algebraic nature of intuitionistic fuzzy bi-ideals of near-rings and some related properties of these fuzzy substructures.

Keywords: Near-rings, Bi-ideals, Fuzzy bi-ideals, Intuitionistic fuzzy set, Intuitionistic fuzzy subring, Intuitionistic fuzzy ideal, Intuitionistic fuzzy bi-ideal.

Mathematics Subject Classification: 16D25; 03E72; 16Y30; 03F55.

1. INTRODUCTION

The notion of intuitionistic fuzzy set (IFS) was introduced by Atanassov [2] as a generalization of notion of fuzzy sets. The concept of near-rings was introduced by Pilz [9] and that of quasi-ideal in near ring was introduced by Yakabe [12]. The notion of bi-ideals was introduced by Chelvam and Ganesan [4].

In this paper we study the intuitionistic fuzzification of the notion of bi-ideals in near-rings. We show that every intuitionistic fuzzy bi-ideal of a near-ring is an intuitionistic fuzzy subnear-ring. We give characterizations of intuitionistic fuzzy bi-ideals in near-rings.

A near-ringisa non empty set N with two binary operations "+" and "."such that

- (i) (N,+) is a group not necessarily abelian
- (ii) (N, .) is a semi group
- (iii) (x + y).z = x.z + y.z, for all $x, y, z \in \mathbb{N}$.

Precisely speaking it is a right near-ring because it satisfies the right distributive law. If the condition (iii) is replace by $z(x + y) = z \cdot x + z \cdot y$ for all $x, y, z \in \mathbb{N}$, then it is called left near-ring .We denote *xy* instead of *x*.*y*. A near-ring N is called zerosymmetric if $x \cdot 0 = 0$ for all $x \in \mathbb{N}$.

Given two subsets A and B of N, the product ABis defined as

 $AB = \{ab|a \in A, b \in B\}$

A subgroup S of (N, +) is called left (right) N-subgroup of N if NS \subseteq S(SN \subseteq S). A subgroup M of (N, +) is called subnear-ring of N if MM \subseteq M. A subnear-ring M is called invariant in N if MN \subseteq MM \subseteq M.

2. PRELIMINARIES

Throughout this paper N stands for a right zero symmetric near-ring.

Definition 2.1: An ideal of a near-ring N is a subset I of N such that

- (i) (I, +) is normal subgroup of (N, +)
- (ii) IN⊆I

(iii) $y(x + i) - yx \in I$ for all $x, y \in N$ and $i \in I$

International Journal of Mathematical Archive- 9(1), Jan. - 2018

CONFERENCE PAPER

International Conference dated 08-10 Jan. 2018, on Intuitionistic Fuzzy Sets and Systems (ICIFSS - 2018), Organized by Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.

210

K. Dhilip Kumar^{*1}, M. Ramachandran² / Some Properties of Intuitionistic Fuzzy Bi-Ideals of Near Rings / IJMA- 9(1), Jan.-2018, (Special Issue)

Note that I is right ideal of N if I satisfies (i) and (ii), and I is left ideal of N if I satisfies (i) and (iii).

Definition 2.2: A subgroup Q of N is called a quasi-ideal of N if $QN \cap NQ \cap N^*Q \subseteq Q$.

Proposition 2.3: Let Q be a quasi-ideal and M be a sub near-ring of a near-ring N then $Q \cap M$ is a quasi-ideal of N.

Proposition 2.4: Let N be a zero symmetric near-ring and Q be the subgroup of N. Then Q is a quasi-ideal of N if and only if $QN \cap NQ \subseteq Q$.

Proof: Let $n \in \mathbb{N}$, $q \in \mathbb{Q}$ be any element. As N is zero symmetric near-ring. Therefore $nq=n(0+q) - n0 \in \mathbb{N}^* \mathbb{Q}$ implies $\mathbb{NQ} \subseteq \mathbb{N}^* \mathbb{Q}$ so that $\mathbb{NQ} \cap \mathbb{N}^* \mathbb{Q} = \mathbb{NQ}$. Hence have $\mathbb{QN} \cap \mathbb{NQ} \subseteq \mathbb{Q}$.

Definition 2.5: A subgroup B of N is called a bi-ideal of N if $BNB\cap(BN)^*B\subseteq B$.

Proposition 2.6: Let N be a zero symmetric near-ring and B be the subgroup of N. Then B is abi-ideal if and only if $BNB \subseteq B$.

Proof: Since N is a zero symmetric, therefore NB \subseteq N*B. Hence BNB = BNB \cap BNB \subseteq BNB \cap (BN)*B \subseteq B.

Proposition 2.7: Intersection of a bi-ideal B and a sub near-ring S of a near-ring is a bi-ideal of S.

Lemma 2.8: Let N be a zero symmetric near-ring and Q be a quasi-ideal in N. Then every Q is bi-ideal.

Proof: Let Q be a quasi ideal in a zero symmetric near-ring N. Then (Q, +) is a subgroup of N and $QN \cap NQ \subseteq Q$. Now, $QNQ \subseteq QN$ and $QNQ \subseteq NQ$. Thus, $QNQ \subseteq QN \cap NQ \subseteq Q$. Hence Q is bi-ideal of N.

Definition 2.9: Let X be a non-empty set. A mapping μ : X \rightarrow [0, 1] is a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$. For any I \subseteq X, χ_I denote the characteristic function of I.

Definition 2.10: For any fuzzy set μ in X and $r \in [0, 1]$, we define two sets, U $(\mu, r) = \{x \in X \mid \mu(x) \ge r\}$ and L $(\mu, r) = \{x \in X \mid \mu(x) \le r\}$, which are called an upper and lower *r*-level cut of μ respectively and can be used to the characterization of μ .

Definition 2.11: A fuzzy set μ in N is a fuzzy subnear-ring of N if for all *x*, $y \in \mathbb{N}$,

- (i) $\mu(x y) \ge \min\{\mu(x), \mu(y)\}$ and
- (ii) $\mu(xy) \ge \min\{\mu(x), \mu(y)\}.$

Definition 2.12: A fuzzy set μ in N is a fuzzy bi-ideal of N if for all *x*, $y \in \mathbb{N}$,

- (i) $\mu(x y) \ge \min\{\mu(x), \mu(y)\}$ and
- (ii) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}$ for all $x, y, z \in \mathbb{N}$.

3. INTUITIONISTIC FUZZY SETS AND BI-IDEALS

Definition 3.1: An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)) | x \in X \}$, where the functions $\mu_A: X \to [0, 1]$ and $\nu_A: X \to [0, 1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the setA, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we shall use the symbol A = (μ_A, ν_A) for the intuitionistic fuzzy set A = $\{(x, \mu_A(x), \nu_A(x)) | x \in X\}$.

Definition 3.2: An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ of a group (G, +) is said to be an intuitionistic fuzzy subgroup of G if for all $x, y \in G$

(i) $\mu_A(x + y) \ge \min\{\mu_A(x), \mu_A(y)\}$ (ii) $\mu_A(-x) = \mu_A(x)$ (iii) $\nu_A(x + y) \le \max\{\nu_A(x), \nu_A(y)\}$ (iv) $\nu_A(-x) = \nu_A(x)$

Equivalently, $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(x - y) \le \max\{\nu_A(x), \nu_A(y)\}$ for all $x, y \in G$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER International Conference dated 08-10 Jan. 2018, on Intuitionistic Fuzzy Sets and Systems (ICIFSS - 2018), Organized by Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.

211

Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic fuzzy subset of a near-ring N. We define the product of A and B as $AB = (\mu_{AB}, \nu_{AB})$. If $S \subseteq N$, then, we define the characteristic function χ_S on N is defined as

$$\chi_s(x) = \begin{cases} (1,0) \text{ if } x \in S\\ (0,1) \text{ if } x \in N \setminus S \end{cases}$$

The characteristic function on N is χ_N and $\chi_N(x) = (1, 0)$ for all $x \in \mathbb{N}$

Definition 3.3: An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an intuitionistic fuzzy subnear-ring of N if for all *x*, *y* \in N,

(i) $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$ (ii) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}$ (iii) $\nu_A(x - y) \le \max\{\nu_A(x), \nu_A(y)\}$ (iv) $\nu_A(xy) \le \max\{\nu_A(x), \nu_A(y)\}.$

Definition 3.4: An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an intuitionistic fuzzy bi-ideal of N if for all *x*, *y*, *z* \in N,

(i) $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$

(ii) $\mu_A(xyz) \ge \min\{\mu_A(x), \mu_A(z)\}$

(iii) $\nu_A(x-y) \le max\{\nu_A(x), \nu_A(y)\}$

(iv) $\nu_A(xyz) \leq max\{\nu_A(x), \nu_A(z)\}.$

Lemma 3.5: Let A = (μ_A, ν_A) be an intuitionistic fuzzy setinN. Then A is an intuitionistic fuzzy bi-ideal of N if and only if the fuzzy sets μ_A and ν_A^c are fuzzy bi-ideals of N.

Proof: If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N, then clearly μ_A is a fuzzy bi-ideal of N.

For all x, $y \in \mathbb{N}$,

 $\nu_{A}^{c}(x - y) = 1 - \nu_{A}(x - y)$ $\geq 1 - \max\{\nu_{A}(x), \nu_{A}(y)\}$ $= \min\{1 - \nu_{A}(x), 1 - \nu_{A}(y)\}$ $= \min\{\nu_{A}^{c}(x), \nu_{A}^{c}(y)\}.$

For all $x, y, z \in \mathbb{N}$,

$$\begin{aligned} &A(xyz) = 1 - \nu_A(xyz) \\ &\ge 1 - \max\{\nu_A(x), \nu_A(z)\} \\ &= \min\{1 - \nu_A(x), 1 - \nu_A(z)\} \\ &= \min\{\nu^c_A(x), \nu^c_A(z)\}. \end{aligned}$$

Thus ν_A^c is a fuzzy bi-ideal of N.

 ν^{c}

Conversely, suppose that μ_A and ν_A^c are fuzzy bi-ideals of *N*, then clearly the conditions (i) and (ii) of Definition 3.4 are valid.

Now for all $x, y \in \mathbb{N}$,

 $1 - \nu_A(x-y) = \nu^c_A(x-y)$ $\geq \min\{\nu^c_A(x), \nu^c_A(y)\}$ $= 1 - \max\{\nu_A(x), \nu_A(y)\}.$

Therefore $v_A(x-y) \leq max\{v_A(x), v_A(y)\}$.

For all $x, y, z \in \mathbb{N}$,

 $1 - \nu_A(xyz) = \nu_A^c(xyz)$ $\geq \min\{\nu_A^c(x), \nu_A^c(z)\}$ $= 1 - \max\{\nu_A(x), \nu_A(z)\}.$

Therefore $v_A(xyz) \leq \max\{v_A(x), v_A(z)\}.$

Thus $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N.

© 2018, IJMA. All Rights Reserved

212

CONFERENCE PAPER International Conference dated 08-10 Jan. 2018, on Intuitionistic Fuzzy Sets and Systems (ICIFSS - 2018), Organized by Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.

K. Dhilip Kumar^{*1}, M. Ramachandran² / Some Properties of Intuitionistic Fuzzy Bi-Ideals of Near Rings / IJMA- 9(1), Jan.-2018, (Special Issue)

Theorem 3.6: Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in N. Then A is an intuitionistic fuzzy bi-ideal of N if and only if $A = (\mu_A, \mu_A^c)$ and $A = (\nu_A^c, \nu_A)$ are intuitionistic fuzzy bi-ideals of N.

Proof: If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of *N*, then $\mu_A = (\mu_A^c)^c$ and ν_A^c are fuzzy bi-ideals of *N*, from Lemma 3.5. Therefore $A = (\mu_A, \mu_A^c)$ and $A = (\nu_A^c, \nu_A)$ are intuitionistic fuzzy bi-ideals of N.

Conversely, if A and A are intuitionistic fuzzy bi-ideals of N, then the fuzzy sets μ_A and ν_A^c are fuzzy bi-ideals of N. Therefore A = (μ_A , ν_A) is an intuitionistic fuzzy bi-ideal of N.

Theorem 3.7: Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy setinN. Then Ais a fuzzybi-ideal of N if and only if all the non-empty sets $U(\mu_A, r)$ and $L(\nu_A, t)$ are bi-ideals of N for all $r \in Im(\mu_A)$ and $t \in Im(\nu_A)$ respectively.

Proof: Suppose that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N. For $x, y \in U(\mu_A, r)$, we have $\mu_A(x-y) \ge \min\{\mu_A(x), \mu_A(y)\} \ge r$. Hence, $x-y \in U(\mu_A, r)$. Let $x, z \in U(\mu_A, r)$ and $y \in N$. Then $\mu_A(xyz) \ge \min\{\mu_A(x), \mu_A(z)\} \ge r$ and so $xyz \in U(\mu_A, r)$.

Hence U(μ_A , r) is a bi-ideal of N for all $r \in \text{Im}(\mu_A)$. Similarly we can show that L(ν_A , t) is also a bi-ideal of N for all $t \in \text{Im}(\nu_A)$.

Conversely suppose that $U(\mu_A, r)$ and $L(\nu_A, t)$ are bi-ideals of *N* for all $r \in Im(\mu_A)$ and $t \in Im(\nu_A)$ respectively. Suppose that $x, y \in N$ and $\mu_A(x-y) < \min\{\mu_A(x), \mu_A(y)\}$. Choose *r* such that $\mu_A(x-y) < r < \min\{\mu_A(x), \mu_A(y)\}$. Then we get $x, y \notin U(\mu_A, r)$ but $x-y \notin U(\mu_A, r)$, a contradiction.

Hence $\mu_A(x - y) \ge \min\{\mu_A(x), \mu_A(y)\}$. A similar argument shows that $\mu_A(xyz) \ge \min\{\mu_A(x), \mu_A(z)\}$ for all $x, y, z \in \mathbb{N}$. Likewise we can show that $\nu_A(x-y) \le \max\{\nu_A(x), \nu_A(y)\}$ and $\nu_A(xyz) \le \max\{\nu_A(x), \nu_A(z)\}$. Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N.

REFERENCES

- 1. Abou-Zaid S, on fuzzy sub near-rings, Fuzzy Sets & System, Vol., 81, 1996, pp., 383–393.
- 2. Atanassov K. T., Intuitionistic fuzzy sets, Fuzzy Sets and Syst. 20(1986), 87-96.
- 3. Biswas R., Intuitionistic fuzzy subgroups, Mathematical Forum, X (1989), 37-46.
- 4. Chelvam T. T. and Ganeasan N., On bi-ideals of near-rings, Indian J. pure appl. Math., 18 (11), 1987, pp., 1002-1005.
- 5. Hong S. M, Jun Y.J., Kim H.S., Fuzzy ideals in near-rings, Bull. Korean Math. Soc. Vol. 35, 1998, pp., 343-348.
- 6. Kim S.D. and Kim H.S., On fuzzy ideals of near-rings, Bull. Korean Math. Soc. 33(1996), No.4, pp., 593-601.
- 7. Liu W., Fuzzy invariants subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982), 133-139.
- 8. Manikantan T., Fuzzy bi-ideals of near-rings, The Journal of Fuzzy Mathematics, Vol. 17, 2009, pp., 1-13.
- 9. Pilz G., Near-rings, North Holland, Amsterdam, 1983.
- 10. Rosenfeld A., Fuzzy Groups, Journal of mathematical analysis and application, 35(1971), 512-517.
- 11. Sharma P.K., *Intuitionistic fuzzy ideal of a near-rings*, International Mathematics Forum, Vol. 7, 2012, no. 16, pp., 769-776.
- 12. Yakabe I., Quasi ideals in near-rings, Math. Rep. XIV-1, 1983, pp., 41-46.
- 13. Zadeh L. A., Fuzzy sets, Inform. and Control 8 (1965), 338-353.
- 14. Zhan Jianming and Ma Xueling, *Intuitionistic fuzzy ideals of near-rings*, Scientiae MathematicaeJaponicae Online, e-2004, pp., 289-293.

Source of support: Proceedings of UGC Funded International Conference on Intuitionistic Fuzzy Sets and Systems (ICIFSS-2018), Organized by: Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

International Conference dated 08-10 Jan. 2018, on Intuitionistic Fuzzy Sets and Systems (ICIFSS - 2018), Organized by Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.

213