SOME PROPERTIES OF INTUITIONISTIC FUZZY BI-IDEALS OF NEAR RINGS

K. DHILIP KUMAR*1
Assistant Professor, Department of Mathematics,
SSM College of Arts & Science, Komarapalayam -638 183, Tamil Nadu, India.

M. RAMACHANDRAN2
Assistant Professor, Department of Mathematics,
Government Arts & Science College, Sathyamangalam -638 401, Tamil Nadu, India.

E-mail: dhilipkumarmaths@gmail.com1, dr.ramachandran64@gmail.com2

ABSTRACT

In this present paper, we introduce the concept of intuitionistic fuzzy bi-ideals of near-rings. Also we investigate some algebraic nature of intuitionistic fuzzy bi-ideals of near-rings and some related properties of these fuzzy substructures.

Keywords: Near-rings, Bi-ideals, Fuzzy bi-ideals, Intuitionistic fuzzy set, Intuitionistic fuzzy subring, Intuitionistic fuzzy ideal, Intuitionistic fuzzy bi-ideal.

Mathematics Subject Classification: 16D25; 03E72; 16Y30; 03F55.

1. INTRODUCTION

The notion of intuitionistic fuzzy set (IFS) was introduced by Atanassov [2] as a generalization of notion of fuzzy sets. The concept of near-rings was introduced by Pilz [9] and that of quasi-ideal in near ring was introduced by Yakabe [12]. The notion of bi-ideals was introduced by Chelvam and Ganesan [4].

In this paper we study the intuitionistic fuzzification of the notion of bi-ideals in near-rings. We show that every intuitionistic fuzzy bi-ideal of a near-ring is an intuitionistic fuzzy subnear-ring. We give characterizations of intuitionistic fuzzy bi-ideals in near-rings.

A near-ring is a non empty set N with two binary operations “+” and “.” such that

(i) (N,+) is a group not necessarily abelian
(ii) (N, .) is a semi group
(iii) (x + y).z = x.z + y.z , for all x, y, z∈N.

Precisely speaking it is a right near-ring because it satisfies the right distributive law. If the condition (iii) is replace by z(x + y) = z.x + z.y for all x, y, z∈N, then it is called left near-ring. We denote xy instead of x.y. A near-ring N is called zerosymmetric if x.0 = 0 for all x ∈N.

Given two subsets A and B of N, the product AB is defined as

AB = \{ab|a∈A, b∈B\}

A subgroup S of (N, +) is called left (right) N-subgroup of N if NS ≤S(SN ≤S). A subgroup M of (N, +) is called subnear-ring of N if MM ≤M. A subnear-ring M is called invariant in N if MN ≤ NM ≤ M.

2. PRELIMINARIES

Throughout this paper N stands for a right zero symmetric near-ring.

Definition 2.1: An ideal of a near-ring N is a subset I of N such that

(i) (I, +) is normal subgroup of (N, +)
(ii) 1 N ⊆I
(iii) y (x + i) – yx ∈ I for all x, y ∈ N and i ∈ I
Note that I is right ideal of N if I satisfies (i) and (ii), and I is left ideal of N if I satisfies (i) and (iii).

Definition 2.2: A subgroup Q of N is called a quasi-ideal of N if QN ∩ NQ = Q.

Proposition 2.3: Let Q be a quasi-ideal and M be a sub near-ring of a near-ring N then Q ∩ M is a quasi-ideal of N.

Proposition 2.4: Let N be a zero symmetric near-ring and Q be the subgroup of N. Then Q is a quasi-ideal of N if and only if QN ∩ NQ ⊆ Q.

Proof: Let n ∈ N, q ∈ Q be any element. As N is zero symmetric near-ring. Therefore nq = n(0 + q) = n0 ∈ N* Q implies NQ ⊆ N*Q so that NQ ∩ N*Q = NQ. Hence we have QN ∩ NQ ⊆ Q.

Definition 2.5: A subgroup B of N is called a bi-ideal of N if BNB ∩ (BN)*B ⊆ B.

Proposition 2.6: Let N be a zero symmetric near-ring and B be the subgroup of N. Then B is bi-ideal if and only if BNB ∩ (BN)*B ⊆ B.

Proof: Since N is a zero symmetric, therefore N ∩ N* B. Hence BNB = BNB ∩ BNB ⊆ BNB ∩ (BN)*B ⊆ B.

Proposition 2.7: Intersection of a bi-ideal B and a sub near-ring S of a near-ring is a bi-ideal of S.

Lemma 2.8: Let N be a zero symmetric near-ring and Q be a quasi-ideal in N. Then every Q is bi-ideal.

Proof: Let Q be a quasi ideal in a zero symmetric near-ring N. Then (Q, +) is a subgroup of N and QN ∩ NQ ⊆ Q. Now, QNQ ⊆ QN and QNQ ⊆ NQ. Thus, QNQ ⊆ QN ∩ NQ ⊆ Q. Hence Q is bi-ideal of N.

Definition 2.9: Let X be a non-empty set. A mapping μ : X → [0, 1] is a fuzzy set in X. The complement of μ, denoted by μ′, is the fuzzy set in X given by μ′(x) = 1 − μ(x) for all x ∈ X. For any I ⊆ X, μI denotes the characteristic function of I.

Definition 2.10: For any fuzzy set μ in X and r ∈ [0, 1], we define two sets, U(μ, r) = {x ∈ X | μ(x) ≥ r} and L(μ, r) = {x ∈ X | μ(x) ≤ r}, which are called an upper and lower r-level cut of μ respectively and can be used to characterize μ.

Definition 2.11: A fuzzy set μ in N is a fuzzy subnear-ring of N if for all x, y ∈ N,
(i) μ(x − y) ≥ min{μ(x), μ(y)}
(ii) μ(x+y) ≥ μ(x), μ(y).

Definition 2.12: A fuzzy set μ in N is a fuzzy bi-ideal of N if for all x, y ∈ N,
(i) μ(x − y) ≥ min{μ(x), μ(y)}
(ii) μ(x+y) ≥ min{μ(x), μ(y)} for all x, y, z ∈ N.

3. INTUITIONISTIC FUZZY SETS AND BI-IDEALS

Definition 3.1: An intuitionistic fuzzy set A in a non-empty set X is an object having the form A = \{(x, μ(x), ν(x)) | x ∈ X\}, where the functions μ, ν: X → [0, 1] denote the degree of membership and the degree of non-membership of each element x ∈ X in the set A, respectively, and 0 ≤ μ(x) + ν(x) ≤ 1 for all x ∈ X.

For the sake of simplicity, we shall use the symbol A = (μ, ν) for the intuitionistic fuzzy set A = \{(x, μ(x), ν(x)) | x ∈ X\}.

Definition 3.2: An intuitionistic fuzzy set A = (μ, ν) of a group (G, +) is said to be an intuitionistic fuzzy subgroup of G if for all x, y ∈ G
(i) μ(x+y) ≥ min{μ(x), μ(y)}
(ii) μ(x−y) = μ(x)
(iii) ν(x+y) ≤ max{ν(x), ν(y)}
(iv) ν(x−y) = ν(x)

Equivalently, μ(x-y) ≥ min{μ(x), μ(y)} and ν(x-y) ≤ max{ν(x), ν(y)} for all x, y ∈ G.
Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic fuzzy subset of a near-ring N. We define the product of A and B as $AB = (\mu_{AB}, \nu_{AB})$. If $S \subseteq N$, then, we define the characteristic function χ_S on N is defined as

$$
\chi_S(x) = \begin{cases}
(1,0) & \text{if } x \in S \\
(0,1) & \text{if } x \in N \setminus S
\end{cases}
$$

The characteristic function on N is χ_N and $\chi_N(x) = (1, 0)$ for all $x \in N$.

Definition 3.3: An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an intuitionistic fuzzy subnear-ring of N if for all $x, y \in N$,

1. $\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\}$
2. $\mu_A(xy) \geq \min\{\mu_A(x), \mu_A(y)\}$
3. $\nu_A(x - y) \leq \max\{\nu_A(x), \nu_A(y)\}$
4. $\nu_A(xy) \leq \max\{\nu_A(x), \nu_A(y)\}$.

Definition 3.4: An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in N is an intuitionistic fuzzy bi-ideal of N if for all $x, y, z \in N$,

1. $\mu_A(x - y) \geq \min\{\mu_A(x), \mu_A(y)\}$
2. $\mu_A(xy) \geq \min\{\mu_A(x), \mu_A(y)\}$
3. $\nu_A(x - y) \leq \max\{\nu_A(x), \nu_A(y)\}$
4. $\nu_A(xy) \leq \max\{\nu_A(x), \nu_A(y)\}$.

Lemma 3.5: Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy set in N. Then A is an intuitionistic fuzzy bi-ideal of N if and only if the fuzzy sets μ_A and ν_A are fuzzy bi-ideals of N.

Proof: If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N, then clearly μ_A is a fuzzy bi-ideal of N.

For all $x, y \in N$,

$$
\nu^\prime_A(x - y) = 1 - \nu_A(x - y)
\geq 1 - \max\{\nu_A(x), \nu_A(y)\}
\geq \min/1 - \nu_A(x), 1 - \nu_A(y)
\geq \min/\nu^\prime_A(x), \nu^\prime_A(y).
$$

For all $x, y, z \in N$,

$$
\nu^\prime_A(xyz) = 1 - \nu_A(xyz)
\geq 1 - \max\{\nu_A(x), \nu_A(y)\}
\geq \min/1 - \nu_A(x), 1 - \nu_A(z)
\geq \min/\nu^\prime_A(x), \nu^\prime_A(z).
$$

Thus ν^\prime_A is a fuzzy bi-ideal of N.

Conversely, suppose that μ_A and ν^\prime_A are fuzzy bi-ideals of N, then clearly the conditions (i) and (ii) of Definition 3.4 are valid.

Now for all $x, y \in N$,

$$1 - \nu_A(x - y) = \nu^\prime_A(x - y)
\geq \min/\nu^\prime_A(x), \nu^\prime_A(y)
\geq 1 - \max/\nu_A(x), \nu_A(y).
$$

Therefore $\nu_A(x - y) \leq \max/\nu_A(x), \nu_A(y)$.

For all $x, y, z \in N$,

$$1 - \nu_A(xyz) = \nu^\prime_A(xyz)
\geq \min/\nu^\prime_A(x), \nu^\prime_A(z)
\geq 1 - \max/\nu_A(x), \nu_A(z).
$$

Thus $\nu_A(xyz) \leq \max/\nu_A(x), \nu_A(z)$.

Thus $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of N.
Theorem 3.6: Let \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy set in \(N \). Then \(A \) is an intuitionistic fuzzy bi-ideal of \(N \) if and only if \(A = (\mu_A, \mu'_A) \) and \(A = (\nu_A, \nu'_A) \) are intuitionistic fuzzy bi-ideals of \(N \).

Proof: If \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy bi-ideal of \(N \), then \(\mu_A = (\mu'_A)^* \) and \(\nu_A = (\nu'_A)^* \) are fuzzy bi-ideals of \(N \), from Lemma 3.5. Therefore \(A = (\mu_A, \mu'_A) \) and \(A = (\nu_A, \nu'_A) \) are intuitionistic fuzzy bi-ideals of \(N \).

Conversely, if \(A \) and \(A \) are intuitionistic fuzzy bi-ideals of \(N \), then the fuzzy sets \(\mu_A \) and \(\nu'_A \) are fuzzy bi-ideals of \(N \). Therefore \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy bi-ideal of \(N \).

Theorem 3.7: Let \(A = (\mu_A, \nu_A) \) be an intuitionistic fuzzy subset of \(N \). Then \(A \) is a fuzzy bi-ideal of \(N \) if and only if all the non-empty sets \(U(\mu_A, r) \) and \(V(\nu_A, t) \) are bi-ideals of \(N \) for all \(r \in \text{Im}(\mu_A) \) and \(t \in \text{Im}(\nu_A) \) respectively.

Proof: Suppose that \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy bi-ideal of \(N \). For \(x, y \in U(\mu_A, r) \), we have \(\mu_A(x-y) \geq \min(\mu_A(x), \mu_A(y)) \). Hence, \(x-y \in U(\mu_A, r) \). Let \(x, z \in U(\mu_A, r) \) and \(y \in N \). Then \(\mu_A(xyz) \geq \min(\mu_A(x), \mu_A(z)) \) for all \(x, y, z \in U(\mu_A, r) \).

Hence \(U(\mu_A, r) \) is a bi-ideal of \(N \) for all \(r \in \text{Im}(\mu_A) \). Similarly, we can show that \(L(\nu_A, t) \) is also a bi-ideal of \(N \) for all \(t \in \text{Im}(\nu_A) \).

Conversely suppose that \(U(\mu_A, r) \) and \(L(\nu_A, t) \) are bi-ideals of \(N \) for all \(r \in \text{Im}(\mu_A) \) and \(t \in \text{Im}(\nu_A) \) respectively. Suppose that \(x, y \in N \) and \(\mu_A(x-y) < \min(\mu_A(x), \mu_A(y)) \). Choose \(r \) such that \(\mu_A(x-y) < r < \min(\mu_A(x), \mu_A(y)) \). Then we get \(x-y \in U(\mu_A, r) \) but \(x-y \notin U(\mu_A, r) \), a contradiction.

Hence \(\mu_A(x-y) \geq \min(\mu_A(x), \mu_A(y)) \). A similar argument shows that \(\nu_A(xyz) \geq \min(\nu_A(x), \nu_A(z)) \) for all \(x, y, z \in N \). Likewise we can show that \(\nu_A(x-y) \geq \max(\nu_A(x), \nu_A(y)) \) and \(\nu_A(xyz) \geq \max(\nu_A(x), \nu_A(z)) \). Hence \(A = (\mu_A, \nu_A) \) is an intuitionistic fuzzy bi-ideal of \(N \).

REFERENCES
