INTERSECTING INTUITIONISTIC FUZZY DIRECTED HYPERGRAPHS

K. K. MYITHILI

Assistant Professor, PG Department of Mathematics, Vellalar College for Women, Erode-638012, Tamil Nadu, India.

E-mail: mathsmyth@gmail.com

ABSTRACT

If the edges of the Intuitionistic Fuzzy Directed Hypergraphs (IFDHGs) \(H = (V, E) \), are pairwise not disjoint, then \(H \) is said to be an intersecting IFDHG. The definitions like essentially intersecting, \(\diamond \) – intersecting and sequentially simple intersecting IFDHGs have been defined. Some of its properties have also been analyzed. Also it has been proved that the IFDHG \(H \) is strongly intersecting IFDHG if and only if \(H^{r, s_i} \subseteq Tr(H^{r, s_i}) \) for every \(H^{r, s_i} \in \mathcal{C}(H) \).

Keywords: Essentially intersecting, \(\diamond \) – intersecting, sequentially simple intersecting IFDHGs.

AMS Classification: 03E72.

1. INTRODUCTION

Lotif. A. Zadeh introduced Fuzzy sets (FSs) in 1985[15], which are generalization of crisp sets. K.T. Atanassov introduced the concept of Intuitionistic Fuzzy Sets (IFSs) as an extension of FSs in 1999[1]. These sets include not only the membership of the set but also the non-membership of the set along with the degree of uncertainty. In order to expand the concept in application base, the notion of graph theory was generalized to that of a hypergraph. Claude Berge [2] introduced the concept of graph and hypergraph in 1976. In this paper, a few extensions of concepts in fuzzy hypergraphs by John N. Mordeson and Premchand S. Nair [3] have been carried out.

The paper has been organized as follows:

Section 2 deals with the definitions of fuzzy hypergraph, intuitionistic fuzzy hypergraph, IFDHG and the notations used in this paper. In section 3, a study is made on essentially intersecting, \(\diamond \) – intersecting and sequentially simple intersecting IFDHGs. Some properties of newly proposed hypergraph concepts are also discussed and it has been proved that \(H \) is strongly intersecting if and only if \(H^{r, s_i} \) is intersecting IFDHG, \(\forall \ (r_i, s_i) \in F(H) \). Section 4, concludes the paper.

2. PRELIMINARIES

The notations used in this work are listed below:

- \(H = (V, E) \) - IFDHG with vertex set \(V \) and edge set \(E \)
- \(\langle \mu_i, \nu_i \rangle \) - degrees of membership and non-membership of the vertex
- \(\langle \mu_{ij}, \nu_{ij} \rangle \) - degrees of membership and non-membership of the edges
- \(\langle \mu_{ij}(v_i), \nu_{ij}(v_i) \rangle \) - degrees of membership and non-membership of the edges containing \(v_i \)
- \(h(H) \) - Height of a hypergraph \(H \)
- \(F(H) \) - Fundamental sequence of \(H \)
- \(\mathcal{C}(H) \) - Core set of \(H \)
- \(H^{(r_i, s_i)} \) - (\(r_i, s_i \)) - level of \(H \)
- \(IF_p(v) \) - IF power set of \(V \)
- \(Tr(H) \) - Intuitionistic fuzzy transversals (IFT) of \(H \)
In this section, definitions of intuitionistic fuzzy set, intuitionistic fuzzy graph, IFDHG has been dealt with.

Definition 2.1: [1] Let a set E be fixed. An *intuitionistic fuzzy set (IFS)* V in E is an object of the form $V = \{(v_i, \mu_i(v_i), \nu_i(v_i)) / v_i \in E\}$, where the function $\mu_i : E \to [0, 1]$ and $\nu_i : E \to [0, 1]$ determine the degree of membership and the degree of non-membership of the element $v_i \in E$, respectively and for every $v_i \in E, 0 \leq \mu_i(v_i) + \nu_i(v_i) \leq 1$. V is a fuzzy set in E.

Definition 2.2: [14] Let E be fixed set and $V = \{(v_i, \mu_i(v_i), \nu_i(v_i)) / v_i \in E\}$ be an IFS. Six types of Cartesian products of n subsets V_1, V_2, \ldots, V_n of V over E are defined as

- $V_1 \times V_2 \times \ldots \times V_n = \{(v_1, v_2, \ldots, v_n) / v_i \in V_i, v_i \in V_i, \ldots, v_n \in V_n\}$
- $V_1 \times V_2 \times \ldots \times V_n = \{((v_1, v_2, \ldots, v_n)) \}$
- $V_1 \times V_2 \times \ldots \times V_n = \{((v_1, v_2, \ldots, v_n)) \}$
- $V_1 \times V_2 \times \ldots \times V_n = \{((v_1, v_2, \ldots, v_n)) \}$
- $V_1 \times V_2 \times \ldots \times V_n = \{((v_1, v_2, \ldots, v_n)) \}$

It must be noted that $v_i \in V_i$ is an IFS, where $s = 1, 2, 3, 4, 5, 6$.

Definition 2.3: [4] An *intuitionistic fuzzy graph (IFG)* is of the form $G = (V, E)$ where (i) $V = \{v_1, v_2, \ldots, v_n\}$ such that $\mu : E \to [0, 1]$ and $\nu : E \to [0, 1]$ denote the degrees of membership and non-membership of the vertex $v_i \in V$ respectively and

- $0 \leq \mu_i(v_i) + \nu_i(v_i) \leq 1$ for every $v_i \in V, i = 1, 2, 3, \ldots, n$.
- $\mu_i \leq \mu_i \forall v_i \in V$ where $\mu_i : V \times V \to [0, 1]$ and $v_i : V \times V \to [0, 1]$ are such that

$$\mu_i = \mu_i(v_i)$$

and $0 \leq \mu_i + \nu_i \leq 1$.

Definition 2.4: [5] An *intuitionistic fuzzy hypergraph (IFHG)* is an ordered pair $H = (V, E)$ where

- $V = \{v_1, v_2, \ldots, v_n\}$ is a finite set of intuitionistic fuzzy vertices,
- $E = (E_1, E_2, \ldots, E_m)$ is a family of crisp subsets of V.
- $E_j = \{(v_i, \mu_j(v_i), \nu_j(v_i)) : \mu_j(v_i), \nu_j(v_i) \geq 0 \text{ and } \mu_j(v_i), \nu_j(v_i) \leq 1, j = 1, 2, \ldots, m\}$,
- $E_j \neq \phi, j = 1, 2, 3, \ldots, m$.

Here, the hyperedges E_j are crisp sets of intuitionistic fuzzy vertices $\mu_i(v_i)$ and $\nu_i(v_i)$ denote the degrees of membership and non-membership of vertex v_i to edge E_j. Thus, the elements of the incidence matrix of IFHG are of the form $\{(v_i, \mu_j(v_i), \nu_j(v_i))\}$.

Note: The support of an IFS V in E is denoted by $\text{supp}(E_i) = \{v_i / \mu_j(v_i) > 0 \text{ and } \nu_j(v_i) > 0\}$.
Definition 2.5: [6] An IFDHG H is a pair (V,E), where V is a non-empty set of vertices and E is a set of intuitionistic fuzzy hyperarcs; an intuitionistic fuzzy hyperarc $E_i \in E$ is defined as a pair $(t(E_i), h(E_i))$, where $(E_i) \subset V$, with $t(E_i) \neq \emptyset$, is its tail, and $h(E_i) \supset V - t(E_i)$ is its head. A vertex s is said to be a source vertex in H if $h(E_i) \neq s$, for every $E_i \in E$. A vertex d is said to be a destination vertex in H if $d \neq t(E_i)$, for every $E_i \in E$.

Definition 2.6: [7] Let H be an IFDHG, let $H^{r_i}_{\mathcal{C}} = (V^{r_i}_{\mathcal{C}}, E^{r_i}_{\mathcal{C}})$ be the (r_i, s_i)-level IFDHG of H. The sequence of real numbers $\{r_1, r_2, \ldots, r_n; s_1, s_2, \ldots, s_n\}$, such that $0 \leq r_i \leq h(H) \text{ and } 0 \leq s_i \leq h_v(H)$, satisfying the properties:

(i) If $r_i < s_i \leq 1$ and $0 \leq \beta \leq s_i$ then $E^{\beta}_{\mathcal{C}} = \emptyset$.

(ii) If $r_i + 1 \leq s_i$ then $E^{s_i}_{\mathcal{C}} = E^{r_i}_{\mathcal{C}}$.

(iii) $E^{s_i}_{\mathcal{C}} = E^{r_i}_{\mathcal{C}}$.

is called the fundamental sequence of H, and is denoted by $F(H)$. The core set of H is denoted by $C(H)$ and is defined by $C(H) = \{H^{r_1}_{\mathcal{C}}, H^{r_2}_{\mathcal{C}}, \ldots, H^{r_n}_{\mathcal{C}}\}$. The corresponding set of (r_i, s_i)-level hypergraphs $H^{r_1}_{\mathcal{C}} \subset H^{r_2}_{\mathcal{C}} \subset \ldots \subset H^{r_n}_{\mathcal{C}}$ is called the H-induced fundamental sequence and is denoted by $I(H)$. The (r_n, s_n)-level is called the support level of H and the $H^{r_n}_{\mathcal{C}}$ is called the support of H.

Definition 2.7: [7] Let H be an IFDHG and $C(H) = \{H^{r_1}_{\mathcal{C}}, H^{r_2}_{\mathcal{C}}, \ldots, H^{r_n}_{\mathcal{C}}\}$. H is said to be ordered if $C(H)$ is ordered. That is $H^{r_1}_{\mathcal{C}} \subset H^{r_2}_{\mathcal{C}} \subset \ldots \subset H^{r_n}_{\mathcal{C}}$. The IFDHG is said to be simply ordered if the sequence $\{H^{r_i}_{\mathcal{C}}/i = 1, 2, 3, \ldots, n\}$ is simply ordered, that is it is ordered and if whenever $E \not\in H^{r_1+1}_{\mathcal{C}} - H^{r_1}_{\mathcal{C}}$ then $E \not\in H^{r_2}_{\mathcal{C}}$.

Definition 2.8: [9] Let H be an IFDHG with core set $C(H) = \{H^{r_1}_{\mathcal{C}}, (V^{r_1}_{\mathcal{C}}, E^{r_1}_{\mathcal{C}})|i = 1, 2, \ldots, n\}$, where $E(H^{r_1}_{\mathcal{C}}) = E_i$ is the crisp edge set of the core hypergraph $H^{r_1}_{\mathcal{C}}$. Let $E(H)$ denote the crisp edge set of H defined by $E(H) = \bigcup E_i$. $H^{r_1}_{\mathcal{C}} \subset C(H) \subset E(H)$, a crisp hypergraph on V, is called core aggregate hypergraph of H and is denoted by $\mathfrak{H}(H) = (V, E(H))$.

Definition 2.9: [9] An IFDHG H is said to be an intersecting intuitionistic fuzzy directed hypergraph, if for each pair of intuitionistic fuzzy hyperedge $\{E_i, E_j\} \subseteq E$, $E_i \cap E_j \neq \emptyset$.

Definition 2.10: [9] Let H be an IFDHG and $C(H) = \{H^{r_1}_{\mathcal{C}}, (V^{r_1}_{\mathcal{C}}, E^{r_1}_{\mathcal{C}})|i = 1, 2, \ldots, n\}$, if $H^{r_1}_{\mathcal{C}}$ is an intersecting IFDHG for each $i = 1, 2, \ldots, n$ then H is a k-intersecting IFDHG.

Definition 2.11: [9] An IFDHG H is said to be strongly intersecting, if for any two edges E_i and E_j contain a common spike of height, $h = h(E_i) \wedge h(E_j)$.

Definition 2.12: [8] Let H be an IFDHG. A primitive k-coloring A of H is a partition $\{A_1, A_2, A_3, \ldots, A_k\}$ of V into k-subsets (colors) such that the support of each intuitionistic fuzzy hyperedge of H intersects at least two colors of A, except spike edges.

Definition 2.13: [8] The k-chromatic number of an IFDHG H is the minimal number $\chi_k(H)$, of colors needed to produce a primitive coloring of H. The chromatic number of H is the minimal number, $\chi(H)$, of colors needed to produce a K-coloring of H.

Theorem 2.1: [8] If H is an ordered IFDHG and A is a primitive coloring of H, then A is a K-coloring of H.

Theorem 2.2: [9] Let H be an IFDHG and suppose $C(H) = \{H^{r_1}_{\mathcal{C}}, (V^{r_1}_{\mathcal{C}}, E^{r_1}_{\mathcal{C}})|i = 1, 2, \ldots, n\}$. Then H is intersecting if and only if $H^{r_1}_{\mathcal{C}} = (V^{r_1}_{\mathcal{C}}, E^{r_1}_{\mathcal{C}})$ is intersecting.

Theorem 2.3: [9] Let H be an ordered IFDHG and let $C(H) = \{H^{r_1}_{\mathcal{C}}, (V^{r_1}_{\mathcal{C}}, E^{r_1}_{\mathcal{C}})|i = 1, 2, \ldots, n\}$, then H is intersecting if and only if H is K-intersecting.

Theorem 2.4: [9] If H^0 is intersecting, then H is strongly intersecting.

Definition 2.14: [8] A spike reduction of $E \in F(H)$, denoted by \overline{E}, is defined as $\overline{E}(v_i) = \max\{|r_i, s_i|/E^{r_i}_{\mathcal{C}}| \geq 2, 0 \leq r_i \leq E^{r_i}_{\mathcal{C}}(v_i), 0 \leq s_i \leq E^{r_i}_{\mathcal{C}}(v_i)|\}$. Note:

i) If $A = \emptyset$ then $\overline{E}(v_i) = 0$

ii) If E_i is spike, then $\overline{E} = \chi_0$

Definition 2.15: [8] Let H be an IFDHG and let $\bar{H} = (\bar{V}, \bar{E})$, where $\bar{E} = (\bar{E}_i|E\in E)$ and $\bar{V} = \cup E \in E \supp(\bar{E})$.\n
© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER
Theorem 2.5: [3] H is intersecting if and only if H is K-intersecting.

Theorem 2.6: [3] If H is a crisp intersecting hypergraph, then $\chi(H) \leq 3$.

Theorem 2.7: [3] A crisp hypergraph H is intersecting if and only if $H \subseteq Tr(H)$.

Theorem 2.8: [8] Let H be an IFDHG. Then H is strongly intersecting if and only if H is K-intersecting.

3. INTERSECTING IFDHG

Definition 3.1: Let H be an IFDHG. Then H is said to be essentially intersecting if \tilde{H} is intersecting. And H is said to be essentially strongly intersecting if \tilde{H} is strongly intersecting.

Example 3.1: Consider an IFDHG, H with the incidence matrix as given below:

$$H = \begin{pmatrix}
 (0.7, 0.1) & (0.1) & (0.1) & (0.5, 0.3) \\
 (0.7, 0.1) & (0.5, 0.2) & (0.5, 0.2) & (0.1) \\
 (0.7, 0.1) & (0.1) & (0.3, 0.4) & (0.1) \\
 (0.1) & (0.1) & (0.3, 0.4) & (0.5, 0.3)
\end{pmatrix}$$

The corresponding graph of IFDHG H is displayed in Figure 3.1.

Figure 3.2 depicts essentially intersecting IFDHG

$$H = \begin{pmatrix}
 (0.7, 0.1) & (0.1) & (0.5, 0.3) \\
 (0.7, 0.1) & (0.5, 0.2) & (0.1) \\
 (0.7, 0.1) & (0.3, 0.4) & (0.1) \\
 (0.1) & (0.3, 0.4) & (0.5, 0.3)
\end{pmatrix}$$

Figure 3.2: Essentially intersecting IFDHG
Definition 3.2: Let H be an IFDHG and $H^3 = (\tilde{H})^3$, then H is called $\emptyset - \text{intersecting}$ if H^3 is intersecting.

Note:
(i) For our convenience, assume $F(H^3) = \{r_1^i, r_2^i, \ldots, r_m^i, s_1^i, s_2^i, \ldots, s_k^i\}$, where $0 \leq r_i \leq h_u(H)$ and $0 \leq s_i \leq h_v(H)$ and
(ii) $F(\tilde{H}) = \{r_1, r_2, \ldots, r_m, s_1, s_2, \ldots, s_m\}$, where $0 \leq r_1 \leq h_u(H)$ and $0 \leq s_1 \leq h_v(H)$.

Theorem 3.1: If H is $\emptyset - \text{intersecting IFDHG}$, then H is essentially strongly intersecting IFDHG.

Note: In general, the converse need not be true.

Theorem 3.2: If H is ordered and essentially intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: Assume \tilde{H} exists, then $\chi(H) = 1$. Let $(\tilde{H})^{r_m \cdot s_m} \in C(\tilde{H})$, where $(r_m, s_m) \in F(H)$ will be the smallest value. Since \tilde{H} is intersecting IFDHG, it follows from theorem 2.2 that $(\tilde{H})^{r_m \cdot s_m}$ is also intersecting. Hence by theorem 2.6 $\chi((\tilde{H})^{r_m \cdot s_m}) \leq 3$. Also since H is ordered, \tilde{H} is also ordered. By definition 2.13 and theorem 2.1 it follows that, $\chi((\tilde{H})^{r_m \cdot s_m}) \leq 3$ and by definition 2.14, $\chi(\tilde{H}) \leq 3$. Hence, $\chi(H) = \chi(\tilde{H})$.

Theorem 3.3: If H is elementary and essentially intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: Since H is ordered, the result is obvious from theorem 3.2.

Theorem 3.4: If H is of the form $\mu \otimes H$ and essentially intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: The result is obvious, since H is elementary.

Theorem 3.5: If H is $\emptyset - \text{intersecting IFDHG}$, then $\chi(H) \leq 3$.

Proof: Given H^3 is intersecting. Also H^3 is elementary. Hence by theorem 3.3 $\chi(H) \leq 3 \implies \chi(H^3) \leq 3$. Since $\chi(H^3) = \chi(\tilde{H}) = \chi(\tilde{H})$. The result follows obviously.

Note: Since $H = \tilde{H}$, K – coloring of skeleton F^3, of H may not be extendible to K – coloring of H, or if extendible, then it may not use the new colors. Therefore, if $H = \tilde{H}$ then $\chi(H^3) < \chi(H)$.

Definition 3.3: Let $H = \{v_i \in IP(V) | i = 1, 2, \ldots, n\}$ is a finite collection of intuitionistic fuzzy subsets of V and let $0 \leq r_i \leq h_u(H)$ and $0 \leq s_i \leq h_v(H)$. Then $H_{(r,s)} = \{v \in IP(V) | h(v) = (r_i, s_i)\}$ denotes the set of edges in K of height (r_i, s_i). In general, $H^{r \cdot s}$ denotes the partial IFDHG of $H = (V, E)$ with the edge set $E^{r \cdot s}$ provided $E^{r \cdot s} \neq \emptyset$.

Definition 3.4: Let $H_i = (V_i, E_i)$, $i = 1, 2$ be an IFDHG. Then $H_1 \subseteq H_2$ if every edge of H_1 contains an edge H_2.

Theorem 3.6: H is strongly intersecting IFDHG if and only if $H^{r \cdot s} \subseteq Tr(H^{r \cdot s})$ for every $H^{r \cdot s} \in C(H)$.

Proof: By theorem 2.8, definition 2.11 and theorem 2.7 it is obvious that H is strongly intersecting IFDHG $\iff H$ is K – intersecting IFDHG $\iff H^{r \cdot s}$ is intersecting for all $H^{r \cdot s} \in C(H)$ $\iff H^{r \cdot s} \subseteq Tr(H^{r \cdot s})$ for every $H^{r \cdot s} \in C(H)$.

Theorem 3.7: H is strongly intersecting IFDHG if and only if for every $(r_i, s_i) \in F(H), H^{r \cdot s} \mid (r_i, s_i) \subseteq Tr(H^{r \cdot s})$.

Proof: Let for every $(r_i, s_i) \in F(H), H^{r \cdot s} \mid (r_i, s_i) \subseteq Tr(H^{r \cdot s})$. For each $H^{r \cdot s} \in C(H)$, the edge set $E(H^{r \cdot s}) = \{E^{r \cdot s} \mid E^{r \cdot s} \subseteq Tr(H^{r \cdot s})\} \subseteq \{E^{r \cdot s} \mid E^{r \cdot s} \subseteq Tr(H^{r \cdot s})\}$. Hence, $H^{r \cdot s} \subseteq Tr(H^{r \cdot s})$ for all $H^{r \cdot s} \in C(H)$ and by theorem 3.6, H is strongly intersecting IFDHG.

Conversely, let H is strongly intersecting IFDHG. And suppose $E^{r \cdot s} \mid (r_i, s_i)$ where (r_i, s_i) the largest member of $F(H)$ be. Let $H^{r \cdot s} \in C(H)$.

To Prove: $E^{r \cdot s}$ is the transversal of $H^{r \cdot s}$.
Let $E \in H^r_{\gamma \beta}$. Then there exists an edge E_i of H such that $E_i^r = E$. Since, H is strongly intersecting IFDHG, there is a spike s_i with height $h(s_i) = h(E) \wedge h(E_i) = h(E_i)$. \(\geq (r_i, s_i).\) And support of \(v\), which is contained in both E and E_i. Hence, $\forall E \in E \cap E^r_{\gamma \beta}$. Thus E is a transversal of H and therefore it contains a member of $Tr(H)$. Therefore, $H^r_{\gamma \beta} |_{(r_i, s_i)} \subseteq Tr(H^r_{\gamma \beta})$.

By theorem 2.8, it is true that H is K – intersecting IFDHG. Again by the same theorem, it follows that $H^r_{\beta \gamma}$ is strongly intersecting. Hence, $H^r_{\beta \gamma} |_{(r_i, s_i)} \subseteq Tr(H^r_{\beta \gamma})$ for every $(r_i, s_i) e F(H)$.

Theorem 3.8: Let H be an IFDHG with $C(H) = \{H^r_{\gamma \beta}((r_i, s_i)) e F(H)\}$. Then $H^r_{\beta \gamma} \subseteq Tr(H^r_{\beta \gamma})$ for every $H^r_{\beta \gamma} e C(H)$ if and only if $H^r_{\beta \gamma} |_{(r_i, s_i)} \subseteq Tr(H^r_{\beta \gamma})$ for every $(r_i, s_i) e F(H)$.

Proof: By theorem 3.6 and 3.7, the proof is obvious.

Theorem 3.9: H is strongly intersecting IFDHG if and only if $H^r_{\beta \gamma}$ is intersecting for every $(r_i, s_i) e F(H)$.

Proof: By theorem 2.2 and 2.8, the following equivalencies holds good.

$H^r_{\beta \gamma}$ is intersecting for every $(r_i, s_i) e F(H) \iff E(H^r_{\beta \gamma})$ is intersecting for each $H^r_{\gamma \beta} e C(H)$ \[\iff H$ is K – intersecting IFDHG \[\iff H$ is strongly intersecting IFDHG.

Definition 3.5: An IFDHG is said to be non-trivial if it has at least one edge E such that $|support(E)| \geq 2$.

Definition 3.6: An IFDHG is said to be sequentially simple if $C(H) = \{H^r_{\gamma \beta}((r_i, s_i)) e F(H)\}$ satisfies the property that if $E \in (E_{r_{i+1} \gamma_{i+1}} \setminus E_{r_i \gamma_i})$, then $E \nsubseteq V^r_{\gamma \beta}$ where $0 \leq r_i \leq h_{\mu}(H)$ and $0 \leq s_i \leq h_{\nu}(H)$. H is said to be essentially sequentially simple if H is sequentially simple.

Theorem 3.10: If H is an ordered IFDHG. Then the following statements holds:

i) H is intersecting if and only if H^δ is intersecting.

ii) \overline{H} is intersecting if and only if H^δ is intersecting.

Proof: Since $H^\delta = (\overline{H})^\gamma$ and \overline{H} is ordered whenever H is non-trivial ordered IFDHG (ii) is true. Also since H is ordered, $support(H) = \cup \{E^r_{(r_{i+1} \gamma_{i+1})}((r_i, s_i)) e F(H)\}$. Thus, $support(H^\delta) \subseteq support(H)$. Again by construction of H^δ, every member of the edge set $E^r_{(r_{i+1} \gamma_{i+1})}$ is either a member or it contains a member of $support(H^\delta)$. Hence, for any two edges $E_1, E_2 \subseteq support(H)$ there exists corresponding edges $E_1^', E_2^' \subseteq support(H^\delta)$ such that $E_1^' \subseteq E_1$ and $E_2^' \subseteq E_2$. Therefore, $support(H^\delta)$ is intersecting $\iff support(H)$ is intersecting. Hence (i) is proved.

Theorem 3.11: Let H be an IFDHG. Then the following conditions holds good.

i) If H^δ is intersecting, then H is strongly intersecting.

ii) If H^δ is intersecting, then \overline{H} is strongly intersecting.

Proof: It is obvious that the edge E in the core hypergraph $H^r_{\gamma \beta} e C(H)$ contains a member of $support(H^\delta)$ by the construction process explained in [8] and also by H^δ is elementary. Hence, if $support(H^\delta)$ is intersecting, then every core hypergraph, $H^r_{\gamma \beta}$ of H is also intersecting. Therefore, H is K – intersecting and by theorem 2.8, H is strongly intersecting.

Example 3.2: Consider an IFDHG, H with the incidence matrix as given below:

$$
\begin{array}{cccc}
E_1 & E_2 & E_3 & E_4 \\
\begin{array}{c}
\begin{pmatrix}
0.7,0.1 \\
0.7,0.1 \\
0.7,0.1 \\
0.1
\end{pmatrix}
\end{array} & \begin{array}{c}
(0,1) \\
(0.5,0.2) \\
(0.2,0.1) \\
(0.1)
\end{array} & \begin{array}{c}
(0,1) \\
(0.5,0.2) \\
(0.2,0.1) \\
(0.1)
\end{array} & \begin{array}{c}
(0.5,0.4) \\
(0.3,0.4) \\
(0.5,0.2) \\
(0.1)
\end{array}
\end{array}
$$

In example 3.2, H is strongly intersecting.
The incidence matrix for H^Ω is

$$
\begin{bmatrix}
E_1 & E_2 & E_3 & E_4 \\
 v_1 & (0.7,0.1) & (0.1) & (0.1) & (0.5,0.4) \\
v_2 & (0.1) & (0.5,0.2) & (0.1) & (0.1) \\
v_3 & (0.7,0.1) & (0.1) & (0.3,0.4) & (0.1) \\
v_4 & (0.1) & (0.1) & (0.3,0.4) & (0.5,0.2)
\end{bmatrix}
$$

Here, H^Ω is not intersecting.

4. CONCLUSION

In this paper, an attempt has been made to study the intersecting intuitionistic fuzzy directed hypergraphs. Also, essentially intersecting, \triangledown intersecting and sequentially simple intersecting IFDHGs have been defined. Some of its properties have also been analyzed. Also it has been proved that the IFDHG H is strongly intersecting IFDHG if and only if $H^{\Omega,\triangledown} \subseteq Ty(H^{\Omega,\triangledown})$ for every $H^{\Omega,\triangledown} \in C(H)$.

5. REFERENCES
