Volume 9, No. 1, Jan. - 2018 (Special Issue)

International Journal of Mathematical Archive-9(1), 2018, 238-244 MAAvailable online through www.ijma.info ISSN 2229 - 5046

INTERSECTING INTUITIONISTIC FUZZY DIRECTED HYPERGRAPHS

K. K. MYITHILI

Assistant Professor, PG Department of Mathematics, Vellalar College for Women, Erode-638012, Tamil Nadu, India.

E-mail: mathsmyth@gmail.com

ABSTRACT

If the edges of the Intuitionistic Fuzzy Directed Hypergraphs (IFDHGs) H = (V, E), are pairwise not disjoint, then H is said to be an intersecting IFDHG. The definitions like essentially intersecting, \Diamond — intersecting and sequentially simple intersecting IFDHGs has been defined. Some of its properties have also been analyzed. Also it has been proved that the IFDHG H is strongly intersecting IFDHG if and only if $H^{r_i,s_i} \subseteq Tr(H^{r_i,s_i})$ for every $H^{r_i,s_i} \in C(H)$.

Keywords: Essentially intersecting, \Diamond – intersecting, sequentially simple intersecting IFDHGs.

AMS Classification: 03E72.

1. INTRODUCTION

Lotif. A. Zadeh introduced Fuzzy sets (FSs) in 1985[15], which are generalization of crisp sets. K.T. Atanassov introduced the concept of Intuitionistic Fuzzy Sets (IFSs) as an extension of FSs in 1999[1]. These sets include not only the membership of the set but also the non-membership of the set along with the degree of uncertainty. In order to expand the concept in application base, the notion of graph theory was generalized to that of a hypergraph. Claude Berge [2] introduced the concept of graph and hypergraph in 1976. In this paper, a few extensions of concepts in fuzzy hypergraphs by John N. Mordeson and Premchand S. Nair [3] have been carried out.

The paper has been organized as follows:

Section 2 deals with the definitions of fuzzy hypergraph, intuitionistic fuzzy hypergraph, IFDHG and the notations used in this paper. In section 3, a study is made on essentially intersecting, δ – intersecting and sequentially simple intersecting IFDHGs. Some properties of newly proposed hypergraph concepts are also discussed and it has been proved that H is strongly intersecting if and only if H^{r_i, s_i} is intersecting IFDHG, $\forall \langle r_i, s_i \rangle \in F(H)$. Section 4, concludes the paper.

2. PRELIMINARIES

The notations used in this work are listed below:

H = (V, E) - IFDHG with vertex set V and edge set E

 $\langle \mu_i, \nu_i \rangle$ - degrees of membership and non-membership of the vertex

 $\langle \mu_{ij}, \nu_{ij} \rangle$ - degrees of membership and non-membership of the edges

 $\langle \mu_{ij}(v_i), \nu_{ij}(v_i) \rangle$ - degrees of membership and non-membership of the edges containing v_i

h(H) - Height of a hypergraph H F (H) - Fundamental sequence of H

C(H) - Core set of H $H^{(r_i,s_i)}$ - $\langle r_i, s_i \rangle$ - level of H $IF_p(v)$ - IF power set of V

Tr(H) - Intuitionistic fuzzy transversals (IFT) of H

International Journal of Mathematical Archive- 9(1), Jan. - 2018

238

CONFERENCE PAPER

$$Tr(H^{r_i,s_i})$$
 - $\langle r_i, s_i \rangle$ - level of $Tr(H)$
 H^{\square} - Skeleton of H

In this section, definitions of intuitionistic fuzzy set, intuitionistic fuzzy graph, IFDHG has been dealt with.

Definition 2.1: [1] Let a set E be fixed. An *intuitionistic fuzzy set (IFS)* V in E is an object of the form $V = \{\langle v_i, \mu_i(v_i), v_i(v_i) \rangle / v_i \in E\}$, where the function $\mu_i : E \to [0,1]$ and $v_i : E \to [0,1]$ determine the degree of membership and the degree of non-membership of the element $v_i \in E$, respectively and for every $v_i \in E$, $0 \le \mu_i(v_i) + v_i(v_i) \le 1$.

Definition 2.2: [14] Let E be fixed set and $V = \{\langle v_i, \mu_i(v_i), v_i(v_i) \rangle / v_i \in E\}$, be an IFS. Six types of Cartesian products of n subsets $V_1, V_2, ..., V_n$ of V over E are defined as

$$\begin{split} V_1 & \times_1 V_2 \times_1 \dots \times_1 V_n = \{((v_1, v_2 \dots v_n), \prod_{i=1}^n \mu_i, \prod_{i=1}^n v_i) | \ v_1 \in V_1, v_2 \in V_2 \dots v_n \in V_n\}, \\ V_{i_1} & \times_2 V_{i_2} \times_2 \dots \times_2 V_{i_n} = \{((v_1, v_2 \dots v_n), \sum_{i=1}^n \mu_i - \sum_{i=1}^n \mu_i \mu_j - \sum_{i\neq j\neq k} \mu_i \mu_j \mu_k - \dots + \\ (-1)^{n-2} \sum_{i\neq j\neq k\neq \dots \neq n} \mu_i \mu_j \mu_k \dots \mu_n + (-1)^{n-1} \prod_{i=1}^n \mu_i, \prod_{i=1}^n v_i | \ v_1 \in V_1, v_2 \in V_2, \dots v_n \in V_n\} \\ V_{i_1} & \times_3 V_{i_2} \times_3 \dots \times_3 V_{i_n} = \begin{cases} \langle (v_1, v_2 \dots v_n), \prod_{i=1}^n \mu_i, \sum_{i=1}^n v_i - \sum_{i\neq j}^n v_i v_j + \sum_{i\neq j\neq k}^n v_i v_j v_k \\ - \dots + (-1)^{n-2} \sum_{i\neq j\neq k\neq \dots \neq n} v_i v_j v_k \dots v_n + (-1)^{n-1} \prod_{i=1}^n v_i \rangle \\ v_1 & \times_4 V_{i_2} \times_4 \dots \times_4 V_{i_n} = \{\langle (v_1, v_2 \dots v_n), \min (\mu_1, \mu_2, \dots \mu_n), \max(v_1, v_2, \dots v_n) \rangle | \ v_1 \in V_1, v_2 \in V_2, \dots v_n \in V_n\} \\ V_{i_1} & \times_5 V_{i_2} \times_5 \dots \times_5 V_{i_n} = \{\langle (v_1, v_2 \dots v_n), \max (\mu_1, \mu_2, \dots \mu_n), \min(v_1, v_2, \dots v_n) \rangle | \ v_1 \in V_1, v_2 \in V_2, \dots v_n \in V_n\} \\ V_{i_1} & \times_6 V_{i_2} \times_6 \dots \times_6 V_{i_n} = \{\langle (v_1, v_2 \dots v_n), \sum_{i=1}^n \mu_i, \sum_{i=1}^n v_i \rangle | \ v_1 \in V_1, v_2 \in V_2, \dots v_n \in V_n\} \end{cases}$$
 It must be noted that $v_i \times_s v_j$ is an IFS, where $s = 1, 2, 3, 4, 5, 6$.

Definition 2.3: [4] An *intuitionistic fuzzy graph (IFG)* is of the form G = (V, E) where (i) $V = \{v_1, v_2, \dots v_n\}$ such that $\mu : E \to [0, 1]$ and $\nu : E \to [0, 1]$ denote the degrees of membership and non-membership of the vertex $v_i \in V$ respectively and

$$0 \le \mu_i(v_i) + \nu_i(v_i) \le 1 \tag{1}$$

for every $v_i \in V$, $i = 1,2,3 \dots n$.

(ii) $E \subseteq V \times V$ where $\mu_{ij}: V \times V \rightarrow [0,1]$ and $\nu_{ij}: V \times V \rightarrow [0,1]$ are such that

$$\mu_{ij} \le \mu_i \emptyset \mu_j \tag{2}$$

$$v_{ij} \le v_i \emptyset v_j \tag{3}$$

and
$$0 \le \mu_{ij} + \nu_{ij} \le 1$$
 (4)

¹subsets - crisp sense

where μ_{ij} and ν_{ij} are the degrees of membership and non-membership of the edge (v_i, v_j) ; the values of $\mu_i \emptyset \mu_j$ and $\nu_i \emptyset \nu_j$ can be determined by one of the cartesian products \times_s , s = 1,2,3,...6 for all i and j given in Definition 2.2.

Note: Throughout this paper, it is assumed that the fifth Cartesian product in Definition 2.2

 $V_{i_1} \times_5 V_{i_2} \times_5 ... \times_5 V_{i_n} = \{((v_1, v_2 ... v_n), \max(\mu_1, \mu_2, ... \mu_n), \min(v_1, v_2, ... v_n)) | v_1 \in V_1, v_2 \in V_2, ... v_n \in V_n\}$ is used to determine the degrees of membership μ_{ij} and non-membership v_{ij} of the edge e_{ij} .

Definition 2.4: [5] An intuitionistic fuzzy hypergraph (IFHG) is an ordered pair H = (V, E) where

- (i) $V = \{v_1, v_2, \dots, v_n\}$, is a finite set of intuitionistic fuzzy vertices,
- (ii) $E = \{E_1, E_2, \dots, E_m\}$ is a family of crisp subsets of V
- (iii) $E_j = \{(v_i, \mu_j(v_i), \nu_j(v_i)) : \mu_j(v_i), \nu_j(v_i) \ge 0 \text{ and } \mu_j(v_i), \nu_j(v_i) \le 1\}, j = 1, 2, \dots, m,$
- (iv) $E_i \neq \phi, j = 1,2,3, ... m$.

Here, the hyperedges E_j are crisp sets of intuitionistic fuzzy vertices $\mu_j(v_i)$ and $v_j(v_i)$ denote the degrees of membership and non-membership of vertex v_i to edge E_j . Thus, the elements of the incidence matrix of IFHG are of the form $(v_{ij}, \mu_j(v_i), v_j(v_i))$. The sets (V, E) are crisp sets.

Note: The support of an IFS V in E is denoted by $supp(E_i) = \{v_i/\mu_{ij}(v_i) > 0 \text{ and } v_{ij}(v_i) > 0\}.$

© 2018, IJMA. All Rights Reserved

Definition 2.5: [6] An IFDHG H is a pair (V,E), where V is a non - empty set of vertices and E is a set of intuitionistic fuzzy hyperarcs; an intuitionistic fuzzy hyperarc $E_i \in E$ is defined as a pair $t(E_i)$, $h(E_i)$, where $(E_i) \subset V$, with $t(E_i) \neq \phi$, is its tail, and $h(E_i) \in V - t(E_i)$ is its head. A vertex s is said to be a source vertex in H if $h(E_i) \neq s$, for every $E_i \in E$. A vertex d is said to be a destination vertex in H if $d \neq t(E_i)$, for every $E_i \in E$.

Definition 2.6: [7] Let H be an IFDHG, let $H^{r_i,s_i} = (V^{r_i,s_i}, E^{r_i,s_i})$ be the $\langle r_i, s_i \rangle$ -level IFDHG of H. The sequence of real numbers $\{r_1, r_2, \dots, r_n; s_1, s_2, \dots, s_n\}$, such that $0 \le r_i \le h_{\mu}(H)$ and $0 \le s_i \le h_{\nu}(H)$, satisfying the properties:

- (i) If $r_1 < \alpha \le 1$ and $0 \le \beta < s_1$ then $E^{\alpha,\beta} = \varphi$,
- (ii) If $r_i + 1 \le \alpha \le r_i$; $s_i \le \beta \le s_i + 1$ then $E^{\alpha,\beta} = E^{r_i,s_i}$
- (iii) $E^{r_i,s_i} \sqsubset E^{r_{i+1},s_{i+1}}$

is called the fundamental sequence of H, and is denoted by F(H). The core set of H is denoted by C(H) and is defined by $C(H) = \{H^{r_1,s_1}, H^{r_2,s_2}, \ldots, H^{r_n,s_n}\}$. The corresponding set of $\langle r_i, s_i \rangle$ - level hypergraphs $H^{r_1,s_1} \subset H^{r_2,s_2} \subset \ldots \subset H^{r_n,s_n}$ is called the H induced fundamental sequence and is denoted by I(H). The $\langle r_n, s_n \rangle$ - level is called the support level of H and the H^{r_n,s_n} is called the support of H.

Definition 2.7: [7] Let H be an IFDHG and $C(H) = \{H^{r_1,s_1}, H^{r_2,s_2}, \dots, H^{r_n,s_n}\}$. H is said to be ordered if C(H) is ordered. That is $H^{r_1,s_1} \subset H^{r_2,s_2} \subset \dots \subset H^{r_n,s_n}$. The IFDHG is said to be simply ordered if the sequence $\{H^{r_i,s_i}/i = 1,2,3...,n\}$ is simply ordered, that is if it is ordered and if whenever $E \in H^{r_{i+1},s_{i+1}} - H^{r_i,s_i}$ then $E \nsubseteq H^{r_i,s_i}$.

Definition 2.8: [9] Let H be an IFDHG with core set $C(H) = \{H^{r_i s_i} = (V^{r_i s_i}, E^{r_i s_i}) | i = 1, 2, ... n\}$, where $E(H^{r_i s_i}) = E_i$ is the crisp edge set of the core hypergraph $H^{r_i s_i}$. Let E(H) denote the crisp edge set of H defined by $E(H) = \bigcup \{E_i/E_i = E(H^{r_i s_i}); H^{r_i s_i} \in C(H)\}$. E(H), a crisp hypergraph on V, is called *core aggregate hypergraph* of H and is denoted by $\mathcal{H}(H) = (V, E(H))$.

Definition 2.9: [9] An IFDHG H is said to be an *intersecting intuitionistic fuzzy directed hypergraph*, if for each pair of intuitionistic fuzzy hyperedge $\{E_i, E_i\} \subseteq E$, $E_i \cap E_j \neq \phi$.

Definition 2.10: [9] Let H be an IFDHG and $C(H) = \{H^{r_i s_i} = (V^{r_i s_i}, E^{r_i s_i})/i = 1, 2, ...n\}$, if $H^{r_i s_i}$ is an intersecting IFDHG for each i = 1, 2, ..., n then H is K-intersecting IFDHG.

Definition 2.11: [9] An IFDHG H is said to be *strongly intersecting*, if for any two edges E_i and E_j contain a common spike of height, $h = h(E_i) \wedge h(E_i)$.

Definition 2.12: [8] Let H be an IFDHG. A primitive k-coloring A of H is a partition $\{A_1, A_2, A_3, \ldots, A_k\}$ of V into k-subsets (colors) such that the support of each intuitionistic fuzzy hyperedge of H intersects at least two colors of A, except spike edges.

Definition 2.13: [8] The *k-chromatic number* of an IFDHG H is the minimal number $\chi_k(H)$, of colors needed to produce a primitive coloring of H. The *chromatic number* of H is the minimal number, $\chi(H)$, of colors needed to produce a K-coloring of H.

Theorem 2.1: [8] If H is an ordered IFDHG and A is a primitive coloring of H, then A is a K - coloring of H.

Theorem 2.2: [9] Let H be an IFDHG and suppose $C(H) = \{H^{r_i,s_i} = (V^{r_i,s_i}, E^{r_i,s_i})/i = 1, 2, ...n\}$. Then H is intersecting if and only if $H^{r_n,s_n} = (V^{r_n,s_n}, E^{r_n,s_n})$ is intersecting.

Theorem 2.3: [9] Let H be an ordered IFDHG and let $C(H) = \{H^{r_i s_i} = (V^{r_i s_i}, E^{r_i s_i})/i = 1, 2, ...n\}$, then H is intersecting if and only if H is K-intersecting.

Theorem 2.4: [9] If H^{\square} is intersecting, then H is strongly intersecting.

Definition 2.14: [8] A *spike reduction* of $E_i \in F_{\wp}(V)$, denoted by \check{E} is defined as

 $|E(v_i) = \max_i \{ \langle r_i, s_i \rangle / |E_i^{r_i s_i}| \ge 2, (0 \le r_i \le E_u(v_i), 0 \le s_i \le E_v(v_i) \} \}.$

Note:

- i) If $A = \emptyset$ then $\check{E}(v_i) = 0$
- ii) If E_i is spike, then $\check{E} = \chi_0$.

Definition 2.15: [8] Let H be an IFDHG and let $\check{H} = (\check{V}, \check{E})$, where $\check{E} = \{\check{E}_i | E_i \in E\}$ and $\check{V} = \bigcup_{\check{E}_i \in \check{E}} supp(\check{E})$.

© 2018, IJMA. All Rights Reserved

240

CONFERENCE PAPER

Theorem 2.5: [3] *H* is intersecting if and only if *H* is *K*-intersecting.

Theorem 2.6: [3] If H is a crisp intersecting hypergraph, then $\chi(H) \leq 3$.

Theorem 2.7: [3] A crisp hypergraph H is intersecting if and only if $H \subseteq Tr(H)$.

Theorem 2.8: [8] Let *H* be an IFDHG. Then *H* is strongly intersecting if and only if *H* is *K*-intersecting.

3. INTERSECTING IFDHG

Definition 3.1: Let H be an IFDHG. Then H is said to be *essentially intersecting* if \check{H} is intersecting. And H is said to be *essentially strongly intersecting* if \check{H} is strongly intersecting.

Example 3.1: Consider an IFDHG, *H* with the incidence matrix as given below:

$$H = \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{matrix} \begin{pmatrix} \langle 0.7, 0.1 \rangle & \langle 0.1 \rangle & \langle 0.1 \rangle & \langle 0.5, 0.3 \rangle \\ \langle 0.7, 0.1 \rangle & \langle 0.5, 0.2 \rangle & \langle 0.5, 0.2 \rangle & \langle 0.1 \rangle \\ \langle 0.7, 0.1 \rangle & \langle 0.1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.1 \rangle \\ \langle 0.1 \rangle & \langle 0.1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.5, 0.3 \rangle \end{matrix}$$

The corresponding graph of IFDHG *H* is displayed in Figure 3.1.

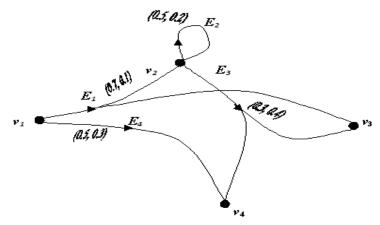


Figure-3.1: Intersecting IFDHG

Figure 3.2 depicts essentially intersecting IFDHG

$$H = \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{matrix} \begin{pmatrix} \langle 0.7, 0.1 \rangle & \langle 0.1 \rangle & \langle 0.5, 0.3 \rangle \\ \langle 0.7, 0.1 \rangle & \langle 0.5, 0.2 \rangle & \langle 0,1 \rangle \\ \langle 0.7, 0.1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.1 \rangle \\ \langle 0,1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.5, 0.3 \rangle \end{matrix}$$

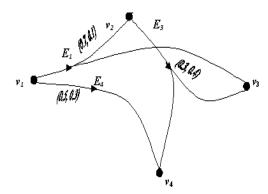


Figure-3.2: Essentially intersecting IFDHG

Definition 3.2: Let *H* be an IFDHG and $H^{\Diamond} = (\widecheck{H})^{\square}$, then *H* is called \Diamond – *intersecting* if H^{\Diamond} is intersecting.

Note:

- (i) For our convenience, assume $F(H^{\emptyset}) = \{r_1^s, r_2^s, \dots, r_k^s; s_1^s, s_2^s, \dots, s_k^s\}$, where $0 \le r_i \le h_{\mu}(H)$ and $0 \le s_i \le h_{\nu}(H)$ and
- (ii) $F(H) = \{r_1, r_2, \dots, r_m; s_1, s_2, \dots, s_m\}$, where $0 \le r_i \le h_u(H)$ and $0 \le s_i \le h_v(H)$.

Theorem 3.1: If H is \Diamond – intersecting IFDHG, then H is essentially strongly intersecting IFDHG.

Note: In general, the converse need not be true.

Theorem 3.2: If *H* is ordered and essentially intersecting *IFDHG*, then $\chi(H) \leq 3$.

Proof: Assume \check{H} exists, then $\chi(H)=1$. Let $\bigl(\check{H}\bigr)^{r_m,s_m} \in \mathcal{C}\bigl(\check{H}\bigr)$, where $\langle r_m,s_m \rangle \in F(H)$ will be the smallest value. Since \check{H} is intersecting IFDHG, it follows from theorem 2.2 that $\bigl(\check{H}\bigr)^{r_m,s_m}$ is also intersecting. Hence by theorem 2.6 $\chi(\bigl(\check{H}\bigr)^{r_m,s_m}) \leq 3$. Also since H is ordered, \check{H} is also ordered. By definition 2.13 and theorem 2.1 it follows that, $\chi\bigl(\bigl(\check{H}\bigr)^{r_m,s_m}\bigr) \leq 3$ and by definition 2.14, $\chi\bigl(\check{H}\bigr) \leq 3$. Hence, $\chi(H)=\chi\bigl(\check{H}\bigr)$.

Theorem 3.3: If *H* is elementary and essentially intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: Since *H* is ordered, the result is obvious from theorem 3.2.

Theorem 3.4: If H is of the form $\mu \otimes H$ and essentially intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: The result is obvious, since *H* is elementary.

Theorem 3.5: If *H* is \Diamond – intersecting IFDHG, then $\chi(H) \leq 3$.

Proof: Given H^{\Diamond} is intersecting. Also H^{\Diamond} is elementary. Hence by theorem 3.3 $\chi(H) \leq 3 \Rightarrow \chi(H^{\Diamond}) \leq 3$. Since $\chi(H^{\Diamond}) = \chi(H) = \chi(H)$. The result follows obviously.

Note: Since $H = \widecheck{H}$, K – coloring of skeleton H^{\square} , of H may not be extendible to K – coloring of H, or if extendible, then it may not use the new colors. Therefore, if $H = \widecheck{H}$ then $\chi(H^{\square}) < \chi(H)$.

Definition 3.3: Let $H = \{v_i \in IF_{\wp}(V) | i = 1, 2, ..., n\}$ is a finite collection of intuitionistic fuzzy subsets of V and let $0 \le r_i \le h_{\mu}(H)$ and $0 \le s_i \le h_{\nu}(H)$. Then $H|_{\langle r_i, s_i \rangle} = \{v \in F_{\wp}(V) | h(v) = \langle r_i, s_i \rangle\}$ denotes the set of edges in K of height $\langle r_i, s_i \rangle$. In general, H^{r_i, s_i} denotes the partial IFDHG of H = (V, E) with the edge set E^{r_i, s_i} provided $E^{r_i, s_i} \ne \emptyset$.

Definition 3.4: Let $H_i = (V_i, E_i)$, i = 1,2 be an IFDHG. Then $H_1 \subseteq H_2$ if every edge of H_1 contains an edge H_2 .

Theorem 3.6: H is strongly intersecting IFDHG if and only if $H^{r_i,s_i} \subseteq Tr(H^{r_i,s_i})$ for every $H^{r_i,s_i} \in C(H)$.

```
Proof: By theorem 2.8, definition 2.11 and theorem 2.7 it is obvious that H is strongly intersecting IFDHG \iff H is K – intersecting IFDHG \iff H^{r_i,s_i} is intersecting for all H^{r_i,s_i} \in C(H) \iff H^{r_i,s_i} \subseteq Tr(H^{r_i,s_i}) for every \langle r_i, s_i \rangle \in F(H), H^{r_i,s_i} \in C(H).
```

Theorem 3.7: H is strongly intersecting IFDHG if and only if for every $\langle r_i, s_i \rangle \in F(H)$, $H^{r_i, s_i}|_{\langle r_i, s_i \rangle} \subseteq Tr(H^{r_i, s_i})$.

Proof: Let for every $\langle r_i, s_i \rangle \in F(H), H^{r_i s_i}|_{\langle r_i, s_i \rangle} \subseteq Tr(H^{r_i s_i})$. For each $H^{r_i s_i} \in \mathcal{C}(H)$, the edge set $E(H^{r_i s_i}) = \{E^{r_i s_i} | E \in H^{r_i s_i}|_{\langle r_i, s_i \rangle}\} \subseteq \{\{\tau^{r_i s_i} | \tau \in Tr(H^{r_i s_i})\} = Tr(E(H^{r_i s_i}))\}$. Hence, $H^{r_i s_i} \subseteq Tr(H^{r_i s_i})$ for all $H^{r_i s_i} \in \mathcal{C}(H)$ and by theorem 3.6, H is strongly intersecting IFDHG.

Conversely, let H is strongly intersecting IFDHG. And suppose $E \in H|_{\langle r_i, s_i \rangle}$ where $\langle r_i, s_i \rangle$ the largest member of F (H) be. Let $H^{r_i, s_i} \in C(H)$.

To Prove: E^{r_i,s_i} is the transversal of H^{r_i,s_i} .

© 2018, IJMA. All Rights Reserved

242

Let $E \in H^{r_i, s_i}$. Then there exists an edge E_1 of H such that $E_1^{r_i, s_i} = E$. Since, H is strongly intersecting IFDHG, there is a spike σ_v with height $h(\sigma_v) = h(E) \wedge h(E_1) = h(E_1) \geq \langle r_i, s_i \rangle$. And support of $\{v\}$, which is contained in both E and E_1 . Hence, $v \in E \cap E^{r_i s_i}$. Thus E is a transversal of H and therefore it contains a member of Tr(H). Therefore, $H^{r_i,s_i}|_{\langle r_i,s_i\rangle} \subseteq Tr(H^{r_i,s_i}).$

By theorem 2.8, it is true that H is K – intersecting IFDHG. Again by the same theorem, it follows that H^{r_i,s_i} is strongly intersecting. Hence, $H^{r_i,s_i}|_{\langle r_i,s_i\rangle} \subseteq Tr(H^{r_i,s_i})$ for every $\langle r_i,s_i\rangle \in F(H)$.

Theorem 3.8: Let H be an IFDHG with $C(H) = \{H^{r_i,s_i} | \langle r_i, s_i \rangle \in F(H) \}$. Then $H^{r_i,s_i} \subseteq Tr(H^{r_i,s_i})$ for every $H^{r_i,s_i} \in C(H)$ if and only if $H^{r_i,s_i}|_{\langle r_i,s_i\rangle} \subseteq Tr(H^{r_i,s_i})$ for every $\langle r_i,s_i\rangle \epsilon F(H)$.

Proof: By theorem 3.6 and 3.7, the proof is obvious.

Theorem 3.9: H is strongly intersecting IFDHG if and only if H^{r_i,s_i} is intersecting for every $\langle r_i, s_i \rangle \epsilon F(H)$.

Proof: By theorem 2.2 and 2.8, the following equivalencies holds good. H^{r_i,s_i} is intersecting for every $\langle r_i, s_i \rangle \in F(H) \Leftrightarrow E(H^{r_i,s_i})$ is intersecting for each $H^{r_i,s_i} \in C(H)$ \Leftrightarrow *H* is *K* – intersecting IFDHG \Leftrightarrow H is strongly intersecting IFDHG.

Definition 3.5: An IFDHG is said to be *non-trivial* if it has at least one edge E such that $|supp(E)| \ge 2$.

Definition 3.6: An IFDHG is said to be sequentially simple if $C(H) = \{H^{r_i, s_i} = (V^{r_i, s_i}, E^{r_i, s_i}) | (r_i, s_i) \in F(H) \text{ satisfies } \}$ the property that if $E \in E^{r_{i+1},s_{i+1}} \setminus E^{r_i,s_i}$, then $E \nsubseteq V^{r_i,s_i}$ where $0 \le r_i \le h_\mu(H)$ and $0 \le s_i \le h_\nu(H)$. H is said to be essentially sequentially simple if \check{H} is sequentially simple.

Theorem 3.10: If *H* is an ordered IFDHG. Then the following statements holds:

- i) If H is intersecting if and only if H^{\square} is intersecting.
- ii) \check{H} is intersecting if and only if H^{\diamond} is intersecting.

Proof: Since $H^{\emptyset} = (\check{H})^{\square}$ and \check{H} is ordered whenever H is non-trivial ordered IFDHG (ii) is true. Also since H is ordered, $supp(H) = \bigcup \{E(H^{r_i s_i}) | H^{r_i s_i} \in C(H)\}$. Thus, $supp(H^{\square}) \subseteq supp(H)$. Again by construction of H^{\square} , every member of the edge set $E(H^{r_i,s_i})$ is either a member or it contains a member of $supp(H^{\square})$. Hence, for any two edges $E_1.E_2 \subseteq supp(H)$ there exists corresponding edges $E_1', E_2' \subseteq supp(H^{\square})$ such that $E_1' \subseteq E_1$ and $E_2' \subseteq E_2$. Therefore, $supp(H^{\square})$ is intersecting $\Leftrightarrow supp(H)$ is intersecting. Hence (i) is proved.

Theorem 3.11: Let *H* be an IFDHG. Then the following conditions holds good.

- i) If H^{\square} is intersecting, then H is strongly intersecting.
- ii) If H^{δ} is intersecting, then \widecheck{H} is strongly intersecting.

Proof: It is obvious that the edge E in the core hypergraph $H^{r_i,s_i} \in C(H)$ contains a member of $supp(H^{\square})$ by the construction process explained in [8] and also by H^{\square} is elementary. Hence, if $supp(H^{\square})$ is intersecting, then every core hypergraph, H^{r_i,s_i} of H is also intersecting. Therefore, H is K – intersecting and by theorem 2.8, H is strongly intersecting.

Example 3.2: Consider an IFDHG, *H* with the incidence matrix as given below:

consider an IFDHG,
$$H$$
 with the incidence matrix as given by E_1 and E_2 and E_3 and E_4 are v_1 and v_2 and v_3 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 are v_4 and v_4 are v_4 are v_4 are v_4 and v_4 are v_4 are v_4 are v_4 and v_4 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 are v_4 and v_4 are v_4 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 and v_4 are v_4 are v_4 are v_4 are v_4 are v_4 and v_4 are v_4 and v_4 are v_4 are v_4 are v_4

In example 3.2, *H* is strongly intersecting.

The incidence matrix for H^{\square} is

$$H = \begin{matrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{matrix} \begin{pmatrix} \langle 0.7, 0.1 \rangle & \langle 0,1 \rangle & \langle 0,1 \rangle & \langle 0.5, 0.4 \rangle \\ \langle 0.1 \rangle & \langle 0.5, 0.2 \rangle & \langle 0,1 \rangle & \langle 0,1 \rangle \\ \langle 0.7, 0.1 \rangle & \langle 0,1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0,1 \rangle \\ \langle 0,1 \rangle & \langle 0,1 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.5, 0.2 \rangle \end{matrix}$$

Here, H^{\square} is not intersecting.

4. CONCLUSION

In this paper, an attempt has been made to study the intersecting intuitionistic fuzzy directed hypergraphs. Also, essentially intersecting, δ – intersecting and sequentially simple intersecting IFDHGs have been defined. Some of its properties have also been analyzed. Also it has been proved that the IFDHG H is strongly intersecting IFDHG if and only if $H^{r_i,s_i} \subseteq Tr(H^{r_i,s_i})$ for every $H^{r_i,s_i} \in C(H)$.

5. REFERENCES

- 1. Atanassov. K. T, Intuitionistic fuzzy sets Theory and Applications, New York, Physica-verlag, Berlin (1999).
- 2. Berge .C, Graphs and Hypergraphs, North-Holland, NewYork, 1976.
- 3. Mordeson N. John, Nair S. Premchand, Fuzzy graphs and fuzzy hypergraphs, New York, Physica-verlag, (2000).
- 4. Parvathi. R and Karunambigai. M. G, *Intuitionistic fuzzy graphs*, Proceedings of 9th Fuzzy Days International Conference on Computational Intelligence, Advances in soft computing: Computational Intelligence, Theory and Applications, Springer-Verlag, 20(2006), 139-150.
- 5. Parvathi. R, Thilagavathi. S and Karunambigai. M. G, *Intuitionistic fuzzy hypergraph*, Bulgarian Academy of Sciences, Cybernetics and Information Technologies, Vol.9 (2009), No.2,46-53.
- 6. Parvathi. R, Thilagavathi. S, *Intuitionistic fuzzy directed hypergraphs*, Advances in Fuzzy Sets and Systems 14(1), 2013, 39-52.
- 7. Parvathi. R, Myithili. K. K and Akram. M, *Certain types of intuitionistic fuzzy directed hypergraphs*, International Journal of Cybernatics and Machine Learning, http://link.springer.com/article/10.1007/s13042-014-0253-1 (2014), 1-9.
- 8. Parvathi. R and Myithili. K. K, *Coloring of intuitionistic fuzzy directed hypergraphs*, International Journal of Computer Applications, 6(3), 2016, 159-166.
- 9. Parvathi. R and Myithili. K. K, *Chromatic values of intuitionistic fuzzy directed hypergraph colorings*, International Journal of Soft Computing and Engineering, 6(1), 2016, 32-37.
- Rosenfeld. A, Fuzzy graphs, Fuzzy sets and their applications, L.A.Zadeh, K.S.Fu and M.Shimura Eds., Academic Press, NewYork, 1975, 77-95.
- 11. Roy H. Goetschel Jr., *Introduction to fuzzy hypergraphs and hebbian structures*, Fuzzy Sets and Systems, 76 (1995), 113-130.
- 12. Roy H. Goetschel Jr., William L.Craine and William Voxman, *Fuzzy transversals of fuzzy hypergraphs*, Fuzzy Sets and Systems, 84 (1996), 235-254.
- 13. Roy H. Goetschel Jr., Fuzzy colorings of fuzzy hypergraphs, Fuzzy Sets and Systems, 94 (1998), 185-204.
- 14. Tony Shannon. A, Atanassov. K, *A first step to a theory of the intuitionistic fuzzy graphs*, Proceedings of the First Workshop on Fuzzy Based Expert Systems (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 59-61.
- 15. L.A.Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.

Source of support: Proceedings of UGC Funded International Conference on Intuitionistic Fuzzy Sets and Systems (ICIFSS-2018), Organized by: Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.