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ABSTRACT 
For any graph 𝐺 = (𝑉,𝐸), the block graph 𝐵(𝐺) of a graph 𝐺 is the graph whose set of vertices is the union of the set 
of blocks of 𝐺 in which two vertices are adjacent if and only if the corresponding blocks of 𝐺 are adjacent. A subset 𝐷𝑑  
of 𝑉[𝐵(𝐺)] is double dominating set of 𝐵(𝐺) if for every vertex 𝑣 ∈ 𝑉[𝐵(𝐺)], |𝑁[𝑣] ∩ 𝐷𝑑| ≥ 2, that is 𝑣 is in 𝐷𝑑 and 
has at least one neighbour in 𝐷𝑑  or 𝑣 is in 𝑉[𝐵(𝐺)] − 𝐷𝑑 and has at least two neighbours in 𝐷𝑑 . The block double 
dominating number 𝛾𝑑𝑑𝑏(𝐺) is a minimum cardinality of block double dominating set. In this paper, we establish upper 
and lower bounds on 𝛾𝑑𝑑𝑏(𝐺) in terms of elements of 𝐺 and other dominating parameters of 𝐺 are obtained. 
 
Subject Classification Number: 𝑨𝑴𝑺 − 05C69, 05C70.                                                  
 
Keyword: Block Graph/Dominating set/Strong split dominating set/Independent block domination/Total block 
domination/Strong split block domination/Double domination.  
 
 
1. INTRODUCTION  
 
The graphs considered here are simple and finite. Let 𝐺 be a graph with 𝑉 = 𝑉(𝐺) is the vertex set of 𝐺 and 𝐸 = 𝐸(𝐺) 
is the edge set of 𝐺. The neighbourhood of a vertex 𝑣 ∈ 𝑉 is defined by 𝑁(𝑣) = { 𝑢 ∈ 𝑉 𝑢𝑣⁄ ∈ 𝐸}. The close 
neighbourhood of a vertex v is 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The order |𝑉(𝐺)| of 𝐺 is denoted by 𝑝. The degree of 𝑣 is 𝑑(𝑣) =
|𝑁(𝑣)|. The maximum degree of a graph 𝐺 is denoted by ∆(𝐺) and the minimum degree is denoted by 𝛿(𝐺). A block 
graph 𝐵(𝐺) of a graph 𝐺 is the graph whose set of vertices is the union of the set of blocks of G in which two vertices 
are adjacent if and only if the corresponding blocks of  𝐺 are adjacent. Let 𝐺 = (𝑉,𝐸) be a graph. A set 𝐷 of vertices in 
a graph 𝐺 is called a dominating set of 𝐺 if every vertex in 𝑉 − 𝐷 is adjacent to some vertex in 𝐷. The domination 
number of 𝐺, denoted by 𝛾(𝐺) is the minimum cardinality of a dominating set. A total dominating set of 𝐺 is a subset 𝑆 
of 𝑉 such that each vertex in 𝑉 is adjacent to a vertex of 𝑆. The total domination number, denoted by 𝛾𝑡(𝐺) is the 
minimum cardinality of a total dominating set. A connected dominating set 𝐷 to be a dominating set 𝐷 whose induced 
subgraph < 𝐷 > is connected. The connected domination number 𝛾𝑐(𝐺) of a connected graph 𝐺 is minimum 
cardinality of a connected dominating set. A dominating set  𝐷 of  𝐺 is called strong split dominating set of  𝐺 if 
< 𝑉(𝐺) − 𝐷 > is totally disconnected with at least two vertices. The strong split domination number 𝛾𝑠𝑠(𝐺) is the 
minimum cardinality of minimal strong split dominating set. Introduction and study of 𝛾𝑠𝑠(𝐺) appears in [3]. Further 
strong split domination number of block graph 𝛾𝑠𝑠𝑏(𝐺) is introduced and studied by Muddebihal et al. [5]. A 
domination set 𝐼 ⊆ 𝑉[𝐵(𝐺) is called an independent block dominating set if induced subgraph < 𝐼 > is independent. 
The independent block domination number is denoted by 𝛾𝑖𝑏(𝐺) is the minimum cardinality of minimal independent 
block dominating set is introduced by Muddebihal et al. [6]. Edge dominating set 𝐹 ⊆ 𝐸 is such that every edge in 
𝐹 − 𝐸 must be adjacent to at least one edge in F. The edge domination number denoted as 𝛾 ′(𝐺) is the minimum 
cardinality of edge dominating set of G. Edge domination number was studied by S.L.Mitchell and Hedetniemi in [4]. 
A set 𝐷 subset of 𝑉[𝐵(𝐺)] is said to be a dominating set of 𝐵(𝐺), if every vertex not in 𝐷 is adjacent to a vertex in 𝐷 of 
𝐵(𝐺). The domination number of 𝐵(𝐺) is denoted by 𝛾[𝐵(𝐺)] is the minimum cardinality of a dominating set. The 
domination in graphs with many variations is now well studied in graph theory. The recent book of Chartrand and 
 

Corresponding Author: Suhas P. Gade*2 
2Department of Mathematics, Sangameshwar College, Solapur – 413001, Maharashtra, India. 

 
 

http://www.ijma.info/�


M. H. Muddebihal1 and Suhas P. Gade*2 / Block Double Domination in Graphs / IJMA- 9(1), Jan.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         2  

 
Lesniak [2] includes a chapter on domination. A thorough study of domination appears in [2]. A subset 𝐷𝑑  of 𝑉[𝐵(𝐺)] 
is double dominating set of 𝐵(𝐺) if for every vertex 𝑣 ∈ 𝑉[𝐵(𝐺)], |𝑁[𝑣] ∩ 𝐷𝑑| ≥ 2, that is 𝑣 is in 𝐷𝑑  and has at least 
one neighbour in 𝐷𝑑  or 𝑣 is in 𝑉[𝐵(𝐺)] − 𝐷𝑑 and has at least two neighbours in 𝐷𝑑 and it is denoted by 𝛾𝑑𝑑𝑏(𝐺). In 
this paper, we establish upper and lower bounds on 𝛾𝑑𝑑𝑏(𝐺) in terms of elements of 𝐺 and other dominating parameters 
of 𝐺 are obtained.                       
 
2. LOWER BOUNDS FOR 𝜸𝒅𝒅𝒃(𝑮). 
 
Here we establish lower bounds for 𝛾𝑑𝑑𝑏(𝐺) in terms of elements of 𝐺.   
 
Theorem 2.1: For any tree 𝑇 of order 𝑝, then 𝛾𝑑𝑑𝑏(𝑇) ≥ 𝛾𝑠𝑠(𝑇).  
 
Proof: Let  𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑛 } ⊆ 𝑉(𝑇) set of all non-end vertices. Suppose 𝐷′ ⊆ 𝐷 such that < 𝑉(𝑇) − 𝐷′ > is totally 
disconnected with at least two vertices then 𝐷′ is minimal strong split dominating set of 𝑇. For the double dominating 
set of block graph of a tree, we consider 𝐸1 = {𝑒1, 𝑒2, … , 𝑒𝑛} ⊆ 𝐸(𝑇), the non-end edges which form the set 𝐶 =
{ 𝑐1, 𝑐2, … , 𝑐𝑛 } ⊆ 𝑉[𝐵(𝑇)] be the cut set, since each block in 𝐵(𝑇) is complete, 𝐸2 = {𝑒1, 𝑒2, … , 𝑒𝑚} ⊆ {𝐸(𝑇) − 𝐸} are 
the block vertices in 𝐵(𝑇). Let 𝐸2′ ⊆ 𝐸2 and 𝐶1 ⊆ 𝐶 such that ∀𝑣 ∈ 𝑉[𝐵(𝐺)] − {𝐸2′ ∪ 𝐶1} is dominated by at two 
vertices of {𝐸2′ ∪ 𝐶1}. Then {𝐸2′ ∪ 𝐶1} is double dominated set of 𝐵(𝑇). Thus �𝐷′� ≤ �𝐸2′ ∪ 𝐶1�, which gives 𝛾𝑑𝑑𝑏(𝑇) ≥
𝛾𝑠𝑠(𝑇). 
 
Theorem 2.2: For any tree 𝑇 with maximum degree ∆(𝑇), then 𝑝 − ∆(𝑇) ≤ 𝛾𝑑𝑑𝑏(𝑇).  
 
Proof: Let 𝐴 = {𝐵1,𝐵2, … ,𝐵𝑛} be the set of blocks of  𝑇 and 𝑆 = { 𝑏1,𝑏2, 𝑏3, … , 𝑏𝑛 } be the set of vertices in 𝐵(𝑇) 
corresponding to the set 𝐴. Without loss of generality since |𝐴| = |𝑆|, let 𝑀 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑖} 1 ≤ 𝑖 ≤ 𝑛 be the set of 
cut vertices in 𝐵(𝑇) and 𝑀′  = �𝑏1𝑏2𝑏3, … , 𝑏𝑗� ⊆ 𝑉[𝐵(𝑇)]. Suppose 𝐷𝑑 =  { 𝑏1,𝑏2, 𝑏3, … , 𝑏𝑘  } ⊆ 𝑆 set of 𝐵(𝑇) such 
that |𝑁[𝑏] ∩ 𝐷𝑑| ≥ 2 ∀𝑣 ∈ 𝑉[𝐵(𝑇)] − 𝐷𝑑 . Since for any tree 𝑇, there exists at least one vertex 𝑣, deg(𝑣) = ∆(𝑇), 
∆(𝑇) < 𝑝 which gives 𝑝 − ∆(𝑇) > 0. It follows that 𝑝 − ∆(𝑇) ≤ 𝛾𝑑𝑑𝑏(𝑇).  
 
Theorem 2.3: For any connected (𝑝, 𝑞) graph 𝐺, then 𝛾𝑠𝑠𝑏(𝐺) ≤ 𝛾𝑑𝑑𝑏(𝐺).  
 
Proof: Let 𝐵 = {𝐵1 ,𝐵2, … ,𝐵𝑛} be the set of blocks in 𝐺 and  𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the set of vertices which 
corresponds to the blocks of 𝐵 in 𝐵(𝐺). Let 𝐶 = {𝑏1, 𝑏2, … , 𝑏𝑖} be the set of cutvertices in 𝐵(𝐺). Since each block in 
𝐵(𝐺)  is complete and each cutvertex is incident with at least two blocks. Let 𝐷 = 𝑉[𝐵(𝐺)] − 𝐶 and consider a set 
𝐷′ ⊂ 𝐶 such that 𝑉[𝐵(𝐺)] − {𝐷 ∪ 𝐷′} = 𝐹 where ∀ 𝑏𝑖 ∈ 𝐹 is an isolates. Hence |𝐹| = 𝛾𝑠𝑠𝑏(𝐺). Let 𝐷𝑑 = 𝐷 ∪ 𝐷′′,𝐷′′ ⊆
𝐶 such that ∀ 𝑣 ∈ 𝑉[𝐵(𝐺)] − {𝐷 ∪ 𝐷′′} is dominated by at least two vertices of { 𝐷 ∪ 𝐷′′}. Then { 𝐷 ∪ 𝐷′′} is double 
dominating set of 𝐵(𝐺). Thus �𝐷 ∪ 𝐷′� ≤ �𝐷 ∪ 𝐷′′�, which gives 𝛾𝑠𝑠𝑏(𝐺) ≤ 𝛾𝑑𝑑𝑏(𝐺). 
 
Theorem 2.4: For any connected (𝑝, 𝑞) graph 𝐺, then 𝛾𝑑𝑑𝑏(𝐺) + 𝛾𝑐(𝐺) ≥ 𝑝 + 𝛾(𝐺) − ∆(𝐺).  
 
Proof: Le 𝐺 be a connected graph and 𝑉 = �𝑣1, 𝑣2, … , 𝑣𝑝� be the set of vertices of 𝐺. Suppose that there exists a 
minimal set of vertices 𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑘} ⊆ 𝑉(𝐺) such that 𝑁[𝑣𝑖] = 𝑉(𝐺) ∀ 𝑣𝑖 ∈ 𝑉1, 1 ≤ 𝑖 ≤ 𝑘. Then 𝑉1 forms a 
minimal dominating set of 𝐺. Further, if the subgraph < 𝑉1 > has exactly one component then 𝑉1 is itself is a connected 
dominating set of  𝐺. Suppose 𝑉1 has more than one component then attach the minimal set of vertices 𝑉2 of 𝑉(𝐺) − 𝑉1 
which are every in 𝑢 − 𝑤 path  ∀ 𝑢,𝑤 ∈ 𝑉1 gives a single component 𝑉3 = 𝑉1 ∪ 𝑉2. Clearly 𝑉3 form a minimal 𝛾𝑐 set 
of 𝐺. Let 𝐵 = {𝐵1 ,𝐵2, … ,𝐵𝑛} be the blocks of 𝐺 and let 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the vertices corresponding to the blocks 
of 𝐺. Let 𝑀′ = {𝑏1, 𝑏2, … , 𝑏𝑖} be the set of cut vertices in 𝐵(𝐺) which are non-end blocks in 𝐺 and 𝑀′′ = �𝑏1, 𝑏2, … , 𝑏𝑗� 
be the set of all end vertices in 𝐵(𝐺). Let 𝐷𝑑 = 𝐻 ∪ 𝑀′′ where 𝐻 ⊆ 𝑀 be the double dominating  set of 𝐵(𝐺) such that 
|𝑁[𝑏] ∩ 𝐷𝑑| ≥ 2 ∀ 𝑏 ∈ 𝑉[𝐵(𝐺)] − 𝐷𝑑 . Since for any graph 𝐺, there exists at least one vertex 𝑣 ∈ 𝑉(𝐺) with deg(𝑣) =
∆(𝐺), it follows that |𝐷𝑑| ∪ |𝑉3| ≥ |𝑉(𝐺)| ∪ |𝑉1| − ∆(𝐺). Hence 𝛾𝑑𝑑𝑏(𝐺) + 𝛾𝑐(𝐺) ≥ 𝑝 + 𝛾(𝐺) − ∆(𝐺).  
 
Theorem 2.5: If 𝐺 is a graph with ∆(𝐺) ≥ 𝑘 ≥ 2, then 𝛾𝑑𝑑𝑏(𝐺) ≥ 𝛾(𝐺) + ∆(𝐺) − 2. 
 
Proof: Let 𝐷𝑑 be a minimum double dominating set in 𝐵(𝐺), let 𝑢 ∈ 𝑉[𝐵(𝐺)]−𝐷𝑑  and let 𝐷𝑑 = {𝑣1, 𝑣2, … , 𝑣𝑘} be 
distinct vertices in 𝐷𝑑  which dominates u. Since ∆(𝐺) ≥ 𝑘 ≥ 2 and 𝑉[𝐵(𝐺)] − 𝐷𝑑 ≠ 𝜑, 𝐷𝑑  is a double dominating set 
each vertex in 𝑉[𝐵(𝐺)] − 𝐷𝑑dominated by at least one vertex in 𝐷𝑑 − {𝑣2, … , 𝑣𝑘}. Therefore, since u dominates each 
vertex in {𝑣2, … , 𝑣𝑘}, we know that the set 𝐷′ = 𝐷𝑑 − {𝑣2, … , 𝑣𝑘} ∪ {𝑢} is a dominating set in 𝐵(𝐺). Therefore 
𝛾(𝐺) ≤ �𝐷′� = 𝛾𝑑𝑑𝑏(𝐺) − (𝑘 − 1) + 1 = 𝛾𝑑𝑑𝑏(𝐺) − 𝑘 + 2, which gives 𝛾𝑑𝑑𝑏(𝐺) ≥ 𝛾(𝐺) + ∆(𝐺) − 2.                                                                                              
 
3. UPPER BOUNDS FOR 𝜸𝒅𝒅𝒃(𝑮).  
 
Here we establish upper bounds for 𝛾𝑑𝑑𝑏(𝐺) in terms of elements of 𝐺.   
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Theorem 3.1: For any connected (𝑝, 𝑞) graph 𝐺 with n number of blocks, then 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝑛.  
 
Proof: Let 𝐺 be a graph with 𝑝 ≥ 3 vertices and 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑝  } be the set of vertices of 𝐺. Let 
𝐴 = { 𝐵1,𝐵2, … ,𝐵𝑛 } be the set of blocks of 𝐺 and let 𝑀 = { 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 } be the corresponding vertices in 𝐵(𝐺) 
respectively. Let 𝑀′ =  {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑖} 1 ≤ 𝑖 < 𝑛 be the set of cut vertices in 𝐵(𝐺) and 𝑀′′ =  �𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑗� 1 ≤
𝑖 < 𝑛 be the block vertex set in 𝐵(𝐺). For the double dominating set of 𝐵(𝐺), we consider 𝐷𝑑 = 𝐾 ∪ 𝐻, 𝐾 ⊆ 𝑀′, 
𝐻 ⊆ 𝑀′′ be the sets such that for any vertex 𝑣 ∈ 𝑉[𝐵(𝐺)] − {𝐾 ∪ 𝐻} is dominated by least two vertices in 𝐵(𝐺). Then 
{𝐾 ∪ 𝐻} is double dominating set of 𝐵(𝐺).Thus |𝐷𝑑| = |𝐾 ∪ 𝐻| ≤ |𝑀|. Since 𝑀 = 𝑀′ ∪ 𝑀′′. Hence 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝑛. 
 
Theorem 3.2: For any connected (𝑝, 𝑞) graph 𝐺, then 𝛾𝑑𝑑𝑏(𝐺) + 𝛾𝑖𝑏(𝐺) ≤ 𝑝 + 1.  
 
Proof: Let 𝐴 = { 𝐵1 ,𝐵2, … ,𝐵𝑛 } be the set of blocks of 𝐺 and let 𝑀 = { 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛 } be the set of vertices 
corresponding to the blocks of  𝐴 in 𝐵(𝐺). Let 𝑀′ = { 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑖  } 1 ≤ 𝑖 < 𝑛 be the set of cut vertices in 𝐵(𝐺) and 
𝑀′′ = { 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑗  } 1 ≤ 𝑗 < 𝑛 be the block vertices in 𝐵(𝐺). Where 𝑀 = 𝑀′ ∪𝑀′′. Let 𝐼 = 𝐻1 ∪ 𝐻2 ,𝐻1 ⊂ 𝑀′ and 
𝐻2 ⊂ 𝑀′′ be the independent dominating set such that the induced subgraph < 𝐻1 ∪ 𝐻2 > is disconnected and also 
every 𝑏 ∈ 𝐼 is at a distance at least 2 a part from other vertices of 𝐼. Clearly |𝐻1 ∪ 𝐻2 | = |𝐼| = 𝛾𝑖𝑏(𝐺). Let               
𝐷𝑑 =  { 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑘  } ⊆ 𝐾 ∪ 𝐻, 𝐾 ⊆ 𝑀′ and 𝐻 ⊆ 𝑀′′ in 𝐵(𝐺), which covers all the vertices in 𝐵(𝐺) and for every 
vertex 𝑣 ∈ 𝑉[𝐵(𝐺)] − 𝐷𝑑 is adjacent to at least two vertices of 𝐷𝑑 . Clearly 𝐻1 ∪ 𝐻2 ⊂ 𝐾 ∪ 𝐻. Thus |𝐻1 ∪ 𝐻2 | <
|𝐾 ∪ 𝐻| < 𝑝. It follows that |𝐻1 ∪ 𝐻2 | + |𝐾 ∪ 𝐻| < 𝑝 + 1. Hence 𝛾𝑑𝑑𝑏(𝐺) + 𝛾𝑖𝑏(𝐺) ≤ 𝑝 + 1. 
 
Theorem 3.3: For any nontrivial tree 𝑇 with 𝑝 ≥ 3 vertices and 𝐶 cutvertices, then 𝛾𝑑𝑑𝑏(𝑇) ≤ 𝐶 + 1. 
 
Proof: Let 𝐴 = {𝑣1, 𝑣2, … , 𝑣𝑖} be the set of all cut vertices in 𝑇 with |𝐴| = 𝐶. Let 𝐵 = {𝐵1,𝐵2, … ,𝐵𝑛} be the set of 
blocks of 𝑇 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the corresponding block vertices of the set 𝐵 in 𝐵(𝑇). Now let,                    
𝐷𝑑 = { 𝑏1, 𝑏2, … , 𝑏𝑘 } ⊆ 𝑉[𝐵(𝑇)] in 𝐵(𝑇) be the minimal set of vertices which covers all the vertices in 𝐵(𝑇) such that 
for any vertex 𝑣 ∈ 𝑉[𝐵(𝑇)] − 𝐷𝑑  is adjacent to at least two vertices of 𝐷𝑑 , then 𝐷𝑑 itself is a double dominating set of 
𝐵(𝑇). Since any tree 𝑇 contains at least one cutvertex, it follows that |𝐷𝑑| ≤ 𝐶 + 1. Hence 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝐶 + 1. 
 
Theorem 3.4: For any connected (𝑝, 𝑞) graph 𝐺, then 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝑑𝑖𝑎𝑚(𝐺). 
 
Proof: Let any two vertices 𝑢 and 𝑣 belongs to 𝑉(𝐺) which constitutes the longest path in 𝐺.Then 𝑑𝑖𝑠𝑡(𝑢, 𝑣) =
𝑑𝑖𝑎𝑚(𝐺). Let 𝐵 = {𝐵1,𝐵2 , … ,𝐵𝑛} be the set of blocks in 𝐺 and let 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the set of vertices which 
corresponds to the blocks of 𝐵 in 𝐵(𝐺). For the double dominating set of 𝐵(𝐺), we consider 𝐷𝑑 = { 𝑏1, 𝑏2, … , 𝑏𝑘  } ⊆
𝑉[𝐵(𝐺)]. Suppose 𝐷𝑑  covers all the vertices of 𝐵(𝐺) and ∀𝑣 ∈ 𝑉[𝐵(𝐺)] − 𝐷𝑑 is dominated by at least two vertices of 
𝐷𝑑 . Then  𝐷𝑑  is double dominating set of 𝐵(𝐺). Since |𝐷𝑑| ≥ 2 and the diameteral path includes at least two vertices. 
It follows that 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝑑𝑖𝑎𝑚(𝐺). 
 
Theorem 3.5: For any connected (𝑝, 𝑞) graph 𝐺, with 𝑝 ≥ 3, then 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝛾𝑡[𝐵(𝐺)] + ∆(𝐺). 
 
Proof: Let 𝐴 = {𝑣1, 𝑣2, … , 𝑣𝑖} ⊆ 𝑉(𝐺) be the set of all vertices with degree ≥ 2, 1 ≤ 𝑖 ≤ 𝑛. Then there exists at least 
one vertex 𝑣 ∈ 𝐴 of maximum degree ∆(𝐺). Let 𝐵 = {𝐵1,𝐵2, … ,𝐵𝑛} be the set of blocks of 𝐺 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} 
be the set of vertices which corresponds to the blocks of 𝐵 in 𝐵(𝐺). Let 𝐷 = { 𝑏1, 𝑏2, … , 𝑏𝑖  } ⊆ 𝑉[𝐵(𝐺)]. Suppose that 
𝐷 covers all the vertices in 𝐵(𝐺) and if the subgraph < 𝐷 > has no isolated vertex, then 𝐷 itself is a minimal total 
dominating set of 𝐵(𝐺). Now let 𝐷𝑑 = { 𝑏1, 𝑏2, … , 𝑏𝑘 } ⊆ 𝑉[𝐵(𝐺)] be the minimal set of vertices which covers all the 
vertices in 𝐵(𝐺) and any vertex 𝑣 ∈ 𝑉[𝐵(𝐺)] − 𝐷𝑑, is dominated by at least two vertices of 𝐷𝑑 . Then 𝐷𝑑  is double 
dominating set of 𝐵(𝐺). Thus |𝐷𝑑| ≤ |𝐷| + ∆(𝐺), which gives 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝛾𝑡[𝐵(𝐺)] + ∆(𝐺). 
 
Theorem 3.6: For any tree 𝑇, then 𝛾𝑑𝑑𝑏(𝐺) + 𝛾(𝑇) ≤ 𝑛(𝑇) + ∆(𝑇). 
 
Proof: Let 𝑉 = �𝑣1, 𝑣2, … , 𝑣𝑝� be the set of vertices of 𝑇. Let 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑖}, 1 ≤ 𝑖 ≤ 𝑝 be a minimal dominating 
set of 𝑇 such that |𝐷| = 𝛾(𝐺). Now we consider 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the set of vertices of 𝐵(𝑇) corresponding to the 
blocks  𝐵 = {𝐵1,𝐵2 , … ,𝐵𝑛} of 𝑇. Since for any tree T, there exists at least one vertex 𝑣, deg(𝑣) = ∆(𝐺). Let            
𝑀′ = {𝑏1, 𝑏2, … , 𝑏𝑖}, 1 ≤ 𝑖 ≤ 𝑛 such that 𝑀′ ⊆ 𝑀 and  ∀ 𝑏𝑖 ∈ 𝑀′ are the non-end block in 𝑇 which gives cutvertices in 
𝐵(𝑇) corresponding to end blocks in 𝑇 and 𝑀′′ ⊆ 𝑀. Now we consider 𝐾 ⊆ 𝑀 and 𝑀′′. Since 𝐾 ∪ 𝑀′′ ⊆ 𝑉[𝐵(𝑇)] then 
∀ 𝑣 ∈ 𝑉[𝐵(𝑇) − {𝐾 ∪𝑀′′} is dominated by at least two vertices of {𝐾 ∪𝑀′′}. Clearly {𝐾 ∪ 𝑀′′} forms a double 
dominating set of 𝐵(𝑇). Therefore it follows that �𝐾 ∪ 𝑀′′� + |𝐷| ≤ �𝑀′′� + ∆(𝑇), which gives 𝛾𝑑𝑑𝑏(𝐺) + 𝛾(𝑇) ≤
𝑛(𝑇) + ∆(𝑇). 
 
Theorem 3.7: If every non-end vertex of a tree 𝑇 is adjacent to at least one end vertex, then 𝛾𝑑𝑑𝑏(𝑇) ≤ 2𝑝 − 2𝑚(𝑇), 
where 𝑚(𝑇) is the number of end vertices in 𝑇. 
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Proof: Let 𝐹 = {𝑣1, 𝑣2, … , 𝑣𝑚} ⊆ 𝑉(𝑇) be the set of all end vertices with |𝐹| = 𝑚. Let 𝐵 = {𝐵1,𝐵2 , … ,𝐵𝑛} be the 
blocks of 𝑇 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the block vertices in 𝐵(𝑇). Let 𝑀′ = {𝑏1, 𝑏2, … , 𝑏𝑖} ⊆ 𝑉[𝐵(𝑇)] be the cut set 
and 𝑀′′ ⊆ 𝑉[𝐵(𝑇)] −𝑀′ be the set of end block vertices. Since {𝐵} = 𝑉[𝐵(𝑇)]. Let  𝐷𝑑 = 𝐾 ∪𝑀′′ = {𝑏1, 𝑏2, … , 𝑏𝑘} ⊆
𝑉[𝐵(𝑇)],𝐾 ⊆ 𝑀 be the minimal set of vertices which covers all the vertices in 𝐵(𝑇) such that if any vertex 𝑣 ∈
𝑉[𝐵(𝑇)] − 𝐷𝑑  there exists at least two vertices of �𝑏𝑖 , 𝑏𝑗� ∈ 𝐷𝑑  which are adjacent to at least one vertex of 𝐷 and at 
least two vertices of 𝑉[𝐵(𝑇)] − 𝐷𝑑 . Therefore 𝐷𝑑  forms a double dominating set of 𝐵(𝑇). If 𝑀′′ = 𝜑 then               
𝐷𝑑 = {𝑏1, 𝑏2, … , 𝑏𝑖} ⊆ 𝐾 ⊆ 𝑀 forms 𝛾𝑑𝑑𝑏-set in 𝐵(𝑇). If 𝑀′′ ≠ 𝜑 then 𝐷𝑑 = 𝐾 ∪𝑀′ forms 𝛾𝑑𝑑𝑏-set in 𝐵(𝑇). Hence in 
all cases �𝐾 ∪ 𝑀′� ≤ 2|𝑉(𝑇)| − 2�𝑀′′� which gives 𝛾𝑑𝑑𝑏(𝑇) ≤ 2𝑝 − 2𝑚(𝑇). 
 
Theorem 3.8: If 𝑣 be an end vertex of a connected block graph 𝐵(𝐺), then 𝑣 is in every 𝛾𝑑𝑑𝑏  set of 𝐵(𝐺).  
 
Proof: Let 𝐵 = {𝐵1 ,𝐵2, … ,𝐵𝑛} be the set of blocks of 𝐺 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the corresponding block vertices in 
𝐵(𝐺). Suppose 𝐷𝑑  be a minimum block double dominating set of 𝐵(𝐺). Assume that there exists an end vertex 𝑣 ∈
𝑉[𝐵(𝐺)] − 𝐷𝑑. Then 𝑣 should be adjacent to at least one vertex of 𝑉[𝐵(𝐺)]−𝐷𝑑 and at least one vertex of 𝐷𝑑  this 
implies that |𝑁(𝑣)| > 1, which gives a contradiction. Hence 𝑣 ∉ 𝑉[𝐵(𝐺)] − 𝐷𝑑  and 𝑣 is in every 𝛾𝑑𝑑𝑏-set of 𝐵(𝐺). 
 
Theorem 3.9: If 𝐷𝑑  is a 𝛾𝑑𝑑𝑏  set of a graph 𝐺, then every vertex in 𝑉[𝐵(𝐺)] − 𝐷𝑑 is dominated by at least two vertices 
in 𝐷𝑑 . 
 
Proof: Let 𝐷𝑑 be a minimum double dominating set in 𝐵(𝐺) and assume that every vertex in 𝐵−𝐷𝑑  is dominated by 
three or more vertices. Le 𝑢 ∈ 𝑉[𝐵(𝐺)] − 𝐷𝑑  and let v and w be two vertices in 𝐷𝑑 which dominate u. It follows from 
our assumption that every vertex in 𝑉[𝐵(𝐺)] − 𝐷𝑑 is dominated by at least one vertex in 𝐷𝑑 − {𝑣,𝑤}. Therefore the set 
𝐷′ = 𝐷𝑑 − {𝑣,𝑤} ∪ {𝑢} is a dominating set. But since �𝐷′� < |𝐷𝑑|, which is contradiction to the assumption that 𝐷𝑑 is 
a minimum dominating set.  
 
Theorem 3.10: Let 𝐷𝑑  is a 𝛾𝑑𝑑𝑏  set of 𝑃𝑛 with n number of blocks, then 𝛾𝑑𝑑𝑏(𝑃𝑛) ≤ 2(𝑛+1)

3
. 

 
Proof: Let 𝐷𝑑 be a double dominating set of 𝐵(𝑃𝑛). For every vertex v of degree 2, either v or its two neighbours are in 
𝐷𝑑 . So 𝑉[𝐵(𝐺)] − 𝐷𝑑 is an independent set, by definition of double dominating set every vertex of 𝐷𝑑  has exactly one 
neighbour in 𝑉[𝐵(𝐺)] − 𝐷𝑑. Thus |𝐷𝑑| − 2 = 2|𝑉[𝐵(𝑃𝑛)] − 𝐷𝑑| = 3|𝑉[𝐵(𝑃𝑛)] − 𝐷𝑑| + 2. Hence 𝛾𝑑𝑑𝑏(𝑃𝑛) ≤ 2(𝑛+1)

3
.  

 
Theorem 3.11: For any connected (𝑝, 𝑞) graph 𝐺, then 𝛾𝑑𝑑𝑏(𝐺) + 𝛾(𝐺) ≤ 𝑝 + 𝛾𝑐(𝐺) − 1.  
 
Proof: Let 𝐺 be a connected graph with 𝑉 = �𝑣1, 𝑣2, … , 𝑣𝑝�, the set of vertices of 𝐺. Suppose 𝑉1 = {𝑣1, 𝑣2, … , 𝑣𝑖} ⊆
𝑉(𝐺) be the set of all non end vertices in G and assume there exists a minimal set of vertices 𝑉2 = �𝑣1, 𝑣2, … , 𝑣𝑗� ⊆ 𝑉1 
such that 𝑁[𝑣𝑘] = 𝑉1(𝐺),∀ 𝑣𝑘 ∈ 𝑉2, 1 ≤ 𝑘 ≤ 𝑛. Then 𝑉2 forms a minimal dominating set of 𝐺. Suppose 𝑉2 has more 
than one component then attached the minimal set of vertices 𝑉2 of 𝑉1 − 𝑉2, which are in every 𝑢 − 𝑤 path ∀ 𝑢,𝑤 ∈ 𝑉2 
gives a single component 𝑉3 = 𝑉2 ∪ 𝑉1. Clearly 𝑉3, forms a minimal 𝛾𝑐 set of 𝐺. Let 𝐵 = {𝐵1,𝐵2, … ,𝐵𝑛} be the set of 
blocks of 𝐺 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the corresponding block vertices in 𝐵(𝐺) Let 𝑀′ = {𝑏1, 𝑏2, … , 𝑏𝑖} ⊆ 𝑉[𝐵(𝑇)] 
be the cut set and 𝑀′′ ⊆ 𝑉[𝐵(𝐺)] −𝑀′ be the set of end block vertices. Let  𝐷𝑑 = 𝐾 ∪ 𝑀′′ = {𝑏1, 𝑏2, … , 𝑏𝑘} ⊆
𝑉[𝐵(𝑇)], 𝐾 ⊆ 𝑀 be the minimal set of vertices which covers all the vertices in 𝐵(𝑇) such that |𝑁[𝑏] ∩ 𝐷𝑑| ≥ 2  ∀ 𝑏 ∈
𝑉[𝐵(𝐺)] − 𝐷𝑑. It follows that |𝐷𝑑| ∪ |𝑉1| ≤ |𝑉| ∪ |𝑉3| − 1. Hence 𝛾𝑑𝑑𝑏(𝐺) + 𝛾(𝐺) ≤ 𝑝 + 𝛾𝑐(𝐺) − 1. 
 
Theorem 3.12: For any(𝑝, 𝑞) graph 𝐺 with 𝐶 be the number of cut vertices, then 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝛾(𝐺) + 𝛾 ′(𝐺) + �𝐶

2
� 

 
Proof: Let be 𝐺 a connected graph with 𝑝 ≥ 3 vertices of 𝐺 and 𝑉 = �𝑣1, 𝑣2, … , 𝑣𝑝� be the set of vertices of  𝐺. Let 
𝐵 = {𝐵1,𝐵2, … ,𝐵𝑛} be the blocks of 𝐺 and 𝑀 = {𝑏1, 𝑏2, … , 𝑏𝑛} be the block vertices in 𝐵(𝑇). Let 
𝑀′ = {𝑏1, 𝑏2, … , 𝑏𝑖} ⊆ 𝑉[𝐵(𝐺)] be the cut set and 𝑀′′ ⊆ 𝑉[𝐵(𝐺)] −𝑀′ be the set of end block vertices. Since {𝐵} =
𝑉[𝐵(𝐺)]. 𝐷 = {𝑣1, 𝑣2, … , 𝑣𝑚} where 𝑚 < 𝑝 be a dominating set of 𝐺 such that 𝛾(𝐺) = |𝐷|. Let F be minimal edge 
dominating set of 𝐺. Suppose 𝐸 − 𝐹 is not an edge dominating set. Then there exists an edge 𝑓 such that 𝑓 ∈ 𝐹 is 
adjacent to any edge in 𝐸 − 𝐹. Since 𝐺 has no isolated edges then 𝑓 is dominated by at least one edge in 𝐹 − {𝑓}. Thus 
𝐹 − {𝑓} is an edge dominating set, a contradiction to the minimality of 𝐹. Therefore F is edge dominating set, such that 
|𝐹| = 𝛾 ′(𝐺). Let 𝐷𝑑 = 𝐾 ∪𝑀′′ where 𝐾 ⊆ 𝑀 be the double dominating set of 𝐵(𝐺) such that |𝑁[𝑏] ∩ 𝐷𝑑| ≥ 2 ∀ 𝑏 ∈
𝑉[𝐵(𝐺)]−𝐷𝑑 and which covers all the vertices in 𝐵(𝐺). Then by the definition of 𝐵(𝐺) which gives �𝐾 ∪ 𝑀′′� ≤ |𝐷| +
|𝐹| + �𝐶

2
�. Hence 𝛾𝑑𝑑𝑏(𝐺) ≤ 𝛾(𝐺) + 𝛾 ′(𝐺) + �𝐶

2
�. 
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