International Journal of Mathematical Archive-9(1), 2018, 18-22

IMA Available online through www.ijma.info ISSN 2229-5046

GEOMETRICAL INTERPRETATION
 OF AN ANALYTIC HP-TRANSFORMATIONS IN ALMOST KAEHLERIAN SPACES

U. S. NEGI
Department of Mathematics,
H.N.B. Garhwal (A Central) University, S.R.T. Campus Badshahi Thaul, Tehri Garhwal - 249 199, Uttarakhand, India.

(Received On: 12-11-17; Revised \& Accepted On: 17-12-17)

Abstract

In this paper, we have defined and studied on geometrical interpretation of an analytic holomorphically projective transformations in almost Kaehlerian spaces and several theorems have been obtained.

Key Words: Kaehlerian space, H-Projective, Recurrent, Symmetric, Transformation.
2010 MSC: 32C15, 46A13, 46M40, 53B35, 53C55.

1. INTRODUCTION

An almost Kaehlerian space is first of all an almost complex space, that is, a $2 n$-dimensional space with an almost complex structure $\mathrm{F}_{\mathrm{i}}^{\mathrm{h}}$:

$$
\begin{equation*}
F_{j}^{i} F_{i}^{\mathrm{h}}=-\delta_{j}^{\mathrm{h}}, \tag{1.1}
\end{equation*}
$$

And always admits a positive definite Riemannian metric tensor $\mathrm{g}_{\mathrm{j} \mathrm{i}}$ satisfying:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{j}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{b}} \mathrm{~g}_{\mathrm{ab}}=\mathrm{g}_{\mathrm{j}} \tag{1.2}
\end{equation*}
$$

From which

$$
\begin{equation*}
\mathrm{F}_{\mathrm{ji}}=-\mathrm{F}_{\mathrm{ij}}, \tag{1.3}
\end{equation*}
$$

Where

$$
\begin{equation*}
\stackrel{\text { def }}{\mathrm{F}_{\mathrm{ji}}}=\mathrm{F}_{\mathrm{j}}^{\mathrm{a}} \mathrm{~g}_{\mathrm{ai}} \tag{1.4}
\end{equation*}
$$

And finally has the property that the differential form $\mathrm{F}_{\mathrm{ji}} \mathrm{d}_{\xi}{ }^{\mathrm{j}} \wedge \mathrm{d}_{\xi}{ }^{\mathrm{i}}$ is closed, that is,

$$
\mathrm{F}_{\mathrm{jih}}==\nabla_{\mathrm{j}}^{\mathrm{def}} \mathrm{~F}_{\mathrm{ih}}+\nabla_{\mathrm{i}} \mathrm{~F}_{\mathrm{hj}}+\nabla_{\mathrm{h}} \mathrm{~F}_{\mathrm{ji}}=0
$$

And finally has the property that the skew-symmetric $\mathrm{F}_{\text {ih }}$ is a Killing tensor

$$
\begin{equation*}
\nabla_{\mathrm{j}} \mathrm{~F}_{\mathrm{ih}}+\nabla_{\mathrm{i}} \mathrm{~F}_{\mathrm{hj}}=0 \tag{1.5}
\end{equation*}
$$

From which

$$
\begin{equation*}
\nabla \mathrm{jF}_{\mathrm{i}}^{\mathrm{j}}+\nabla_{\mathrm{i}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}=0 \tag{1.6}
\end{equation*}
$$

And $\quad F_{i}=-\nabla_{j} F_{i}^{j}=0$
Here ∇ denotes the operation of covariant differentiation with respect to the Riemannian connection $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$.
The Nijenhuis tensor $\mathrm{N}^{\mathrm{h}}{ }_{\mathrm{ji}}$ is written in the form:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{ji}}^{\mathrm{h}}=-4\left(\nabla_{j} \mathrm{~F}_{\mathrm{i}}^{\mathrm{t}}\right) \mathrm{F}_{\mathrm{t}}^{\mathrm{h}}+2 \mathrm{G}_{\mathrm{ji}}^{\mathrm{t}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}+\mathrm{F}_{\mathrm{j}}^{\mathrm{t}} \mathrm{G}_{\mathrm{ti}}^{\mathrm{h}}-\mathrm{F}_{\mathrm{i}}^{\mathrm{t}} \mathrm{G}_{\mathrm{tj}}^{\mathrm{h}} \tag{1.8}
\end{equation*}
$$

A contravariant almost analytic vector field is defined as a vector field v^{i}, satisfying Tachibana (1959):
$£_{\mathrm{v}} \mathrm{F}_{\mathrm{i}}^{\mathrm{h}} \equiv \mathrm{v}^{\mathrm{j}} \partial_{\mathrm{j}} \mathrm{F}_{\mathrm{i}}^{\mathrm{h}}-\mathrm{F}_{\mathrm{i}}^{\mathrm{j}} \partial_{\mathrm{j}} \mathrm{v}^{\mathrm{h}}+\mathrm{F}_{\mathrm{j}}^{\mathrm{h}} \partial_{\mathrm{i}} \mathrm{v}^{\mathrm{j}}=0$,
Where $£_{\mathrm{v}}$ stands for the Lie-derivative with respect to v^{i}.
Let $\mathrm{R}^{\mathrm{h}}{ }_{\mathrm{kji}}$ be the Riemannian curvature tensor and put
$R_{j i}=R_{r j i}^{r}, R_{k j i h}=R^{r}{ }_{k j i} g_{r h}, R=R_{j i} g^{j i}$ and $S_{j i}=F^{r}{ }_{j} R_{r i}$,

> Corresponding Author: U. S. Negi, Department of Mathematics, H.N.B. Garhwal (A Central) University, S.R.T. Campus Badshahi Thaul, Tehri Garhwal - 249 199, Uttarakhand, India.

Then the following identities are satisfied (Yano 1957)

$$
\begin{align*}
& R_{k j i}^{r} F_{r}^{h}=R_{k j i j}^{h} F_{i}^{r}, \quad R_{k j i r} F_{h}^{r}=R_{k j h r} F_{i}^{r} \tag{1.9}\\
& R_{\text {kjih }}=R_{\text {kjtr }} F_{i}^{t} F_{h}^{r}, R_{j i}=R_{t r} F_{j}^{t} F_{i}^{r} \tag{1.10}\\
& \mathrm{~S}_{\mathrm{ji}}+\mathrm{S}_{\mathrm{ij}}=0, \mathrm{~S}_{\mathrm{ji}}=\mathrm{S}_{\mathrm{tr}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{t}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{r}}, \mathrm{~S}_{\mathrm{ji}}=-\frac{1}{2} \mathrm{~F}^{\mathrm{tr}} \mathrm{R}_{\mathrm{trji}} . \tag{1.11}
\end{align*}
$$

The holomorphically projective curvature tensor $\mathrm{P}^{\mathrm{h}}{ }_{\text {kii }}$, which will be briefly called HP-curvature tensor, is given by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{kji}}^{\mathrm{h}}=\mathrm{R}_{\mathrm{kji}}^{\mathrm{h}}+\frac{1}{n+2}\left(\mathrm{R}_{\mathrm{ki}} \delta_{\mathrm{j}}^{\mathrm{h}}-\mathrm{R}_{\mathrm{ji}} \delta^{\mathrm{h}}{ }_{\mathrm{k}}+\mathrm{S}_{\mathrm{ki}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}-\mathrm{S}_{\mathrm{ji}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}+2 \mathrm{~S}_{\mathrm{kj}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}\right) \tag{1.12}
\end{equation*}
$$

We can obtain the following identities

$$
\begin{align*}
& \left.\mathrm{P}_{\mathrm{r}}^{\mathrm{h}} \mathrm{k}\right) \mathrm{j}=0, \mathrm{P}_{[\mathrm{kji]}}^{\mathrm{h}}=0, \tag{1.13}\\
& \mathrm{P}_{\mathrm{rji}}^{\mathrm{r}}=0, \tag{1.14}\\
& \mathrm{P}_{\mathrm{kji}}^{\mathrm{r}} \mathrm{~F}_{\mathrm{r}}^{\mathrm{h}}=\mathrm{P}_{{ }_{\mathrm{kjr}}}^{\mathrm{h}} \mathrm{~F}_{\mathrm{i},}^{\mathrm{r}}, \mathrm{P}_{\mathrm{rji}}^{\mathrm{h}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{r}}==\mathrm{P}_{\mathrm{rki}}^{\mathrm{h}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{r}} \tag{1.15}
\end{align*}
$$

From which, we have

$$
\begin{align*}
& \mathrm{P}_{\mathrm{kjr}}^{\mathrm{r}}=0, \tag{1.16}\\
& \mathrm{P}_{\mathrm{rji}}^{\mathrm{t}} \mathrm{~F}_{\mathrm{t}}^{\mathrm{r}}=0, \mathrm{P}_{\mathrm{kjr}}^{\mathrm{t}} \mathrm{~F}_{\mathrm{t}}^{\mathrm{r}}=0 . \tag{1.17}
\end{align*}
$$

A necessary and sufficient condition for $\mathrm{P}^{\mathrm{h}}{ }_{\mathrm{kji}}=0$, is that the space is a space of constant holomorphically curvature (Tashiro 1957), i.e., a space whose curvature tensor $\mathrm{R}^{\mathrm{h}}{ }_{\text {kii }}$ takes the form

$$
\begin{equation*}
\mathrm{R}_{\mathrm{kji}}^{\mathrm{h}}=-\frac{R}{n(n+2)}\left(\mathrm{g}_{\mathrm{ki}} \delta_{\mathrm{i}}^{\mathrm{h}}-\mathrm{g}_{\mathrm{ji}} \delta_{\mathrm{k}}^{\mathrm{h}}+\mathrm{F}_{\mathrm{ki}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}-\mathrm{F}_{\mathrm{ji}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{h}}+2 \mathrm{~F}_{\mathrm{kj}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}\right) \tag{1.18}
\end{equation*}
$$

For a vector field V^{i} and a tensor field $\alpha_{\mathrm{i}}^{\mathrm{h}}$, the following identities are known (Yano 1957)

$$
\begin{align*}
& £_{v} \nabla_{j} \alpha^{\mathrm{h}}{ }_{\mathrm{i}}-\nabla_{j} £_{v} \alpha^{\mathrm{h}}{ }_{\mathrm{i}}=\alpha_{\mathrm{i}}^{\mathrm{r}} £_{v}\left\{_{\mathrm{j}}{ }_{\mathrm{H}}^{\mathrm{h}}{ }_{\mathrm{r}}\right\}-\alpha^{\mathrm{h}}{ }_{\mathrm{r}} £_{v}\left\{\left\{_{\mathrm{j}}{ }_{\mathrm{i}}\right\}\right. \tag{1.19}\\
& \nabla_{k} £_{v}\left\{\left\{_{\mathrm{j}}{ }^{\mathrm{h}}{ }_{\mathrm{i}}\right\}-\nabla_{j} £_{v}\left\{\left\{_{\mathrm{k}}{ }^{\mathrm{h}}{ }_{\mathrm{i}}\right\}=£_{v} \mathrm{R}^{\mathrm{h}}{ }_{\mathrm{k} j \mathrm{i}}\right.\right. \tag{1.20}
\end{align*}
$$

Where $£_{v}$ denotes the operator of Lie-differentiation with respect to V^{i}.
A Killing vector or an infinitesimal isometry V^{i} is defined by
$£_{v} \mathrm{~g}_{\mathrm{ji}}=\nabla_{j} \mathrm{~V}_{\mathrm{i}}+\nabla_{i} \mathrm{~V}_{\mathrm{j}}=0$.
Here we shall identify a contravariant vectors V^{i} with a covariant vector $V_{i}=g_{i r} V^{r}$. Hence we shall say V_{i} is a Killing vector, or that ρ^{i} is gradient, for example.

An infinitesimal affine transformation V^{i} is defined by

$$
£_{v}\left\{\left\{_{\mathrm{j}}{ }_{\mathrm{h}}{ }_{\mathrm{i}}=\nabla_{j} \nabla_{i} \mathrm{~V}^{\mathrm{h}}+\mathrm{R}_{\mathrm{r} j \mathrm{~h}}^{\mathrm{h}} \mathrm{~V}^{\mathrm{r}}=0\right.\right.
$$

We shall say a vector field V^{i} an infinitesimal holomorphically projective transformation or, for simplicity, an HPtransformation, if it satisfies

$$
£_{v}\left\{\left\{_{\mathrm{j}}{ }_{\mathrm{h}}^{\mathrm{h}}\right\}=\rho_{j} \delta_{\mathrm{i}}^{\mathrm{h}}+\rho_{i} \delta_{\mathrm{j}}^{\mathrm{h}}-\bar{\rho}_{J} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}-\bar{\rho}_{l} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}},\right.
$$

Where ρ_{i} is a certain vector and $\bar{\rho}_{l}=\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} \rho_{r}$. In this case, we shall called ρ_{i} the associated vector of the transformation, If ρ_{i} vanishes, then the HP-transformation reduces to an affine one.

Contracting the last equation with respect to h and i, we get

$$
\nabla_{j} \nabla_{r} \mathrm{~V}^{\mathrm{r}}=(\mathrm{n}+2) \rho_{j}
$$

Which shows that the associated vector is gradient.
A vector field V^{i} is called Contravariant analytic or, for simplicity, analytic, if it satisfies

$$
£_{v} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}} \equiv-\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} \nabla_{r} \mathrm{~V}^{\mathrm{h}}+\mathrm{F}_{\mathrm{r}}^{\mathrm{h}} \nabla_{i} \mathrm{~V}^{\mathrm{r}}=0
$$

2. GEOMETRICAL INTERPRETATION OF AN ANALYTIC HP-TRANSFORMATION

In a differentiable space M , we consider a tensor valued function V depending not only on a point P of M but also on k vectors $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{k}$ at the point and denote it by $\mathrm{V}\left(\mathrm{P}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}}\right)$. We assume that the value of this function V lies in the tensor space associated to the tangent space of M at P and that it depends differentially on its arguments.

Assuming the space M to be affinely connected, we take an arbitrary curve C : $x^{i}=x^{i}(t)$ and denote its successive derivatives by

$$
\begin{equation*}
\frac{\mathrm{dx}^{\mathrm{i}}}{\mathrm{dt}}, \frac{\mathrm{~d}^{2} \mathrm{x}^{\mathrm{i}}}{\mathrm{dt}^{2}}, \frac{\mathrm{~d}^{3} \mathrm{x}^{\mathrm{i}}}{\mathrm{dt}^{3}} \tag{2.1}
\end{equation*}
$$

Then if we substitute (2.1) into the function V instead of $u_{1}, \mathrm{u}_{2}, \ldots \ldots, \mathrm{u}_{\mathrm{k}}$. We have a family of tensors

$$
\mathrm{V}(\mathrm{C})=\mathrm{V}\left(\dot{x}, \frac{d x}{d t}, \ldots ., \frac{d^{k} x}{d t^{k}}\right)
$$

along the curve C .

U. S. Negi /Geometrical interpretation of an Analytic HP-Transformations in Almost Kaehlerian Spaces / IJMA-9(1), Jan.-2018.

Let V^{i} be an infinitesimal transformation, i.e., a vector field, and ' $\mathrm{x}^{i}=\mathrm{x}^{i}+\varepsilon v_{i}$ be the infinitesimal point transformation determined by v^{i}, ε being an infinitesimal constant. Given a curve $C: x^{i}=x^{i}(t)$, the image ' C of F is expressed by

$$
x^{i}=x^{i}(t)+\varepsilon V^{i}(x(t))
$$

We shall call the limiting value

$$
£_{v} \mathrm{~V}(\mathrm{C}) \equiv \lim _{\varepsilon \rightarrow 0} \frac{V\left(\prime_{C}\right)-'_{V}(C)}{\varepsilon}
$$

The Lie-derivative of $V(C)$ with respect to V^{i}, where we have denoted by ' $V(C)$ the family of tensors induced from $\mathrm{V}(\mathrm{C})$ by the transformation

$$
x^{k}=x^{i}+\varepsilon V^{i}
$$

In a Almost Kaehlerian space, a curve $\mathrm{x}^{\mathrm{i}}=\mathrm{x}^{\mathrm{i}}(\mathrm{t})$ defined by

$$
\frac{d^{2} x^{h}}{d t^{2}}+\left\{\begin{array}{cc}
h & i \tag{2.2}
\end{array}\right\} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=\alpha \frac{d x^{h}}{d t}+\beta F_{j}^{h} \frac{d x^{j}}{d t}
$$

is, by definition, a holomorphically planar curve, or an H-plane curve, where α and β are certain functions of t .
Let V^{i} be an infinitesimal transformation and assume that any ε the infinitesimal point transformation ' $x^{i}=x^{i} \varepsilon V^{i}$ maps any H-plane curves.

Now we ask for the condition that V^{i} preserve that H-plane curves. For such a vector V^{i} taking account of (2.2), we have

$$
£_{v}\left[\frac{d^{2} x^{h}}{d t^{2}}+\left\{\begin{array}{c}
h \tag{2.3}\\
j
\end{array} \quad i\right\} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}-\alpha \frac{d x^{h}}{d t}-\beta F_{j}^{h} \frac{d x^{j}}{d t}\right]=\gamma \frac{d x^{h}}{d t}+\delta F_{j}^{h} \frac{d x^{j}}{d t}
$$

along any H-plane curve, where γ and δ are certain functions of t .
Denoting the Lie-derivative of the Christoffel's symbols and the complex structure F^{h}, respectively, by

$$
\mathrm{t}_{\mathrm{ji}}^{\mathrm{h}}=£_{v}\left\{\begin{array}{c}
h \\
j i
\end{array}\right\}, \quad \alpha_{\mathrm{i}}^{\mathrm{h}}=£_{v} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}
$$

We have from (2.3)

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ji}}^{\mathrm{h}} \dot{x^{J}} \dot{x}^{l}+\alpha \dot{x^{h}}+\mathrm{b} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}} \dot{x^{J}}-\beta \alpha_{\mathrm{j}}^{\mathrm{h}} \dot{x^{J}}=0 \tag{2.4}
\end{equation*}
$$

Where we have put

$$
\mathfrak{a}=-\left(\gamma+£_{v} \alpha\right), \mathrm{b}=-\left(\delta+£_{v} \beta\right), \dot{x}=\frac{d x^{i}}{d t}
$$

Since the relation (2.4) holds for any H-plane curve C, it must hold identically for any values of x^{i} and \dot{x}^{l}.
By means of the definition of the H-plane curve, we see further that the identity (2.4) holds for any value of the coefficient β.

Taking account of these arguments, we can easily see that relation

$$
\begin{align*}
& \mathfrak{a}^{\mathrm{h}}{ }_{\mathrm{j}}^{\dot{x}}=\mathrm{f} \dot{x^{h}}+\mathrm{g} \mathrm{~F}^{\mathrm{h}}{ }_{\mathrm{j}} \dot{x^{J}}, \tag{2.5}\\
& \mathrm{t}_{\mathrm{j} \mathrm{i}} \dot{x}^{J} \dot{x}^{l}=\mathrm{p} \dot{x}^{h}+\mathrm{qF}^{\mathrm{h}} \dot{x}^{j}, \tag{2.6}
\end{align*}
$$

hold for any values x^{i} and \dot{x}^{l}, where $\mathrm{f}, \mathrm{g}, \mathrm{p}$ and q are certain functions of x^{i} and \dot{x}^{l}.
Let $\alpha_{\mathrm{j}}^{\mathrm{i}}$ be a tensor on V such that $\mathrm{F}_{\mathrm{j}}^{\mathrm{r}} \alpha_{\mathrm{r}}^{\mathrm{i}}+\alpha_{\mathrm{j}}^{\mathrm{r}} \mathrm{F}_{\mathrm{r}}^{\mathrm{i}}=0$, we obtain by means of (2.5)

$$
\begin{equation*}
\alpha_{i}^{\mathrm{h}} \equiv £_{v} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}=0 \tag{2.7}
\end{equation*}
$$

On the other hand, If we substitute (2.7) and $\nabla_{j} \mathrm{~F}_{\mathrm{j}}^{\mathrm{j}}=0$ into the identify

$$
\nabla_{j} £_{V} F_{i}^{h}-£_{V} \nabla_{j} F_{i}^{h}=F_{r}^{h} £_{V}\left\{{ }_{j}{ }^{\mathrm{r}}{ }_{\mathrm{i}}\right\}-\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} £_{\mathrm{V}}\left\{_{\mathrm{j}}{ }^{\mathrm{h}}{ }_{\mathrm{r}}\right\}
$$

Then we get

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ji}}^{\mathrm{r}} \mathrm{~F}_{\mathrm{r}}^{\mathrm{h}}=\mathrm{t}_{\mathrm{jr}}^{\mathrm{h}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{r}} \tag{2.8}
\end{equation*}
$$

From (2.6) and (2.8), taking account of the fact that

$$
\mathrm{t}_{\mathrm{ji}}^{\mathrm{h}}=\alpha_{\mathrm{j}} \delta_{\mathrm{i}}^{\mathrm{h}}+\alpha_{\mathrm{i}} \delta_{\mathrm{j}}^{\mathrm{h}}-\bar{\alpha}_{\mathrm{i}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{j}}-\bar{\alpha}_{\mathrm{i}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}
$$

Where α_{i} is certain vector and $\bar{\alpha}_{\mathrm{I}}=\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} \alpha_{\mathrm{r}}$, we get

$$
\begin{equation*}
\mathrm{t}_{\mathrm{j} i}^{\mathrm{h}}=£_{\mathrm{V}}\left\{{ }_{\mathrm{j}}^{\mathrm{h}}{ }_{\mathrm{i}}\right\}=\rho_{\mathrm{j}} \delta_{\mathrm{i}}^{\mathrm{h}}+\rho_{\mathrm{i}} \delta_{\mathrm{j}}^{\mathrm{h}}-\bar{\rho}_{\mathrm{j}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}-\bar{\rho}_{\mathrm{i}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}}, \tag{2.9}
\end{equation*}
$$

Where ρ_{i} is a certain vector field. Therefore, the infinitesimal transformation V^{i} is an analytic HP-transformation.
Conversely, it is obvious that an analytic HP-transformation preserves the H-plane curves.

Thus we have the following:
Theorem 2.1: In an almost Kaehlerian space, an infinitesimal transformation preserves the H-plane curves, if and only if it is an analytic HP-transformation.

3. SOME PROPERTIES OF HP-TRANSFORMATIONS.

Let V^{i} be an HP-transformation, then it holds

$$
\begin{equation*}
£_{\mathrm{V}}\left\{{ }_{\mathrm{j}}{ }_{\mathrm{h}}^{\mathrm{h}}\right\} \equiv \nabla_{\mathrm{j}} \nabla_{\mathrm{i}} \mathrm{~V}^{\mathrm{h}}+\mathrm{R}_{\mathrm{rji}}^{\mathrm{h}} \mathrm{~V}^{\mathrm{r}}=\rho_{\mathrm{j}} \delta_{\mathrm{i}}^{\mathrm{h}}-\rho_{\mathrm{i}} \delta_{\mathrm{j}}^{\mathrm{h}}-\bar{\rho}_{\mathrm{j}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}-\bar{\rho}_{\mathrm{i}} \mathrm{~F}_{\mathrm{j}}^{\mathrm{h}} . \tag{3.1}
\end{equation*}
$$

Transvecting (3.1) with g^{ji}, we have

$$
\begin{equation*}
\nabla^{\mathrm{r}} \nabla_{\mathrm{r}} V^{\prime \mathrm{i}}+\mathrm{R}_{\mathrm{r}}^{\mathrm{h}} V^{\mathrm{r}}=0 \tag{3.2}
\end{equation*}
$$

Hence, by virtue of the well known theorem on an analytic vectors, Yano (1957), Lichnerowiez (1957), we have the following:

Theorem 3.1: In a compact almost Kaehlerian space an HP-transformation is analytic.
In a compact almost Kaehlerian space, M, it holds that

$$
\int_{\mathrm{M}}\left(\mathrm{R}_{\mathrm{ji}} \mathrm{~V}^{\mathrm{j}} \mathrm{~V}^{\mathrm{i}}\right) d \sigma \geqq 0
$$

For an analytic vector V^{i}, where $\boldsymbol{d} \boldsymbol{\sigma}$ denote the volume element of M and the equality holds when and when only V^{i} is parallel. Therefore, if the Ricci's from $\mathrm{R}_{\mathrm{ji}} \xi^{\mathrm{j}} \xi^{i}$ is negative definite, then there exists no non-trivial HP-transformation provided that the space is compact.

Taking account of the identity (1.19), we have for a vector field V^{i}

$$
E_{\mathrm{v}} \nabla_{\mathrm{j}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}-\nabla_{\mathrm{j}} E_{\mathrm{v}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}=\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} E_{\mathrm{v}}\left\{{ }_{\mathrm{j}}{ }^{\mathrm{h}}{ }_{\mathrm{r}}\right\}-\mathrm{F}_{\mathrm{r}}^{\mathrm{h}} E_{\mathrm{v}}\left\{_{\mathrm{j}}^{\mathrm{r}}{ }_{i}\right\}
$$

Which implies

$$
\nabla_{\mathrm{j}} E_{\mathrm{v}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}=\mathrm{F}_{\mathrm{r}}^{\mathrm{h}} E_{\mathrm{v}}\left\{{ }_{\mathrm{j}}^{\mathrm{r}}{ }_{\mathrm{i}}\right\}-\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} E_{\mathrm{v}}\left\{{ }_{\mathrm{j}}{ }^{\mathrm{h}}{ }_{\mathrm{r}}\right\}
$$

Because of $\nabla_{j} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}}=0$. If the vector field V^{i} is an HP-transformation, it is easily verified that the right hand-side of the last equation vanishes. Thus we have the following theorems by the virtue of Obata's theorem, gives Obata (1956)

Theorem 3.2: In an irreducible almost Kaehlerian space admitting no quaternion structure, any HP-transformation is analytic.

Theorem 3.3: In an irreducible almost Kaehlerian space having non-vanishing Ricci tensor any HP-transformation is analytic.

Theorem 3.4: In an irreducible almost Kaehlerian Einstein space if its scalar curvature is non-vanishing, any HPtransformation is analytic.

Now, we shall find some formulae on analytic HP-transformation which will be useful in the further study.
Let V^{i} be an HP-transformation. Substituting (3.1) into the identity

$$
£_{\mathrm{V}} \mathrm{~g}_{\mathrm{ji}}-£_{\mathrm{V}} \nabla_{\mathrm{k}} \mathrm{~g}_{\mathrm{ji}}=\mathrm{g}_{\mathrm{ri}} £_{\mathrm{V}}\left\{{ }_{\mathrm{k}}{ }^{\mathrm{r}}\right\}
$$

We find

$$
\begin{equation*}
\nabla_{\mathrm{k}} \varepsilon_{\mathrm{V}} g_{\mathrm{ji}}=\rho_{\mathrm{j}} g_{\mathrm{ki}}+\rho_{\mathrm{i}} \mathrm{~g}_{\mathrm{kj}}-\bar{\rho}_{\mathrm{j}} \mathrm{~F}_{\mathrm{ki}}-\bar{\rho}_{\mathrm{i}} \mathrm{~F}_{\mathrm{kj}}+2 \rho_{\mathrm{k}} g_{\mathrm{ji}} . \tag{3.3}
\end{equation*}
$$

If we substitute (3.1) into (1.20), then we have

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{R}_{\mathrm{kji}}^{\mathrm{h}}=\delta_{\mathrm{j}}^{\mathrm{h}} \nabla_{\mathrm{k}} \rho_{\mathrm{i}}-\delta_{\mathrm{k}}^{\mathrm{h}} \nabla_{\mathrm{j}} \rho_{\mathrm{i}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{h}} \nabla_{\mathrm{k}} \bar{\rho}_{\mathrm{i}}+\mathrm{F}_{\mathrm{k}}^{\mathrm{h}} \nabla_{\mathrm{j}} \bar{\rho}_{\mathrm{i}}-\left(\nabla_{\mathrm{k}} \bar{\rho}_{\mathrm{j}}-\nabla_{\mathrm{j}} \bar{\rho}_{\mathrm{k}}\right) \mathrm{F}_{\mathrm{i}}^{\mathrm{h}}, \tag{3.4}
\end{equation*}
$$

Contracting the last equation with respect to h and k we find

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{R}_{\mathrm{ji}}=-\mathrm{n} \nabla_{\mathrm{j}} \rho_{\mathrm{i}}-2 \mathrm{~F}_{\mathrm{j}}^{\mathrm{r}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{t}} \nabla_{\mathrm{r}} \rho_{\mathrm{t}} \tag{3.5}
\end{equation*}
$$

Now we shall assume that V^{i} is an analytic HP-transformation. Then we have $£_{V} R_{j i}=£_{V}\left(R_{r t} F_{j}^{r} F_{i}^{t}\right)$
By virtue of (2.1). Hence from (3.5) it follows

$$
\begin{equation*}
\nabla_{\mathrm{j}} \rho_{\mathrm{i}}=\mathrm{F}_{\mathrm{j}}^{\mathrm{r}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{t}} \nabla_{\mathrm{r}} \rho_{\mathrm{t}} \tag{3.6}
\end{equation*}
$$

Since $\mathrm{n}>2$. The last equation also is written in the form:

$$
£_{\mathrm{V}} \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}} \equiv-\mathrm{F}_{\mathrm{i}}^{\mathrm{r}} \nabla_{\mathrm{r}} \rho^{\mathrm{h}}+\mathrm{F}_{\mathrm{r}}^{\mathrm{h}} \nabla_{\mathrm{i}} \rho^{\mathrm{r}}=0,
$$

Which shows that ρ^{i} is analytic. Moreover, according to (3.6) we have

$$
\begin{equation*}
\nabla_{\mathrm{j}} \bar{\rho}_{\mathrm{i}}+\nabla_{\mathrm{i}} \bar{\rho}_{\mathrm{j}}=\mathrm{F}_{\mathrm{i}}^{\mathrm{r}}\left(\nabla_{\mathrm{j}} \rho_{\mathrm{r}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{t}} \mathrm{~F}_{\mathrm{r}}^{\mathrm{s}} \nabla_{\mathrm{t}} \rho_{\mathrm{s}}\right)=0, \tag{3.7}
\end{equation*}
$$

Which means that $\bar{\rho}^{i}$ is a Killing vector. Thus we get the following:
Theorem 3.5: If a vector ρ_{i} is the associated vector of an analytic HP-transformation, then ρ^{i} is analytic and $\bar{\rho}^{i}$ is a Killing vector.

Now, from (3.5) and (3.6) it follows

$$
\begin{equation*}
E_{\mathrm{V}} \mathrm{R}_{\mathrm{ji}}=-(\mathrm{n}+2) \nabla_{\mathrm{j}} \rho_{\mathrm{i}} \tag{3.8}
\end{equation*}
$$

From which we have

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{~S}_{\mathrm{ji}}=(\mathrm{n}+2) \nabla_{\mathrm{j}} \bar{\rho}_{\mathrm{i}} . \tag{3.9}
\end{equation*}
$$

On the other hand, from (3.4) and (3.7) we get

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{R}_{\mathrm{kji}}^{\mathrm{h}}=\delta_{\mathrm{j}}^{\mathrm{h}} \nabla_{\mathrm{k}} \rho_{\mathrm{i}}-\delta_{\mathrm{k}}^{\mathrm{h}} \nabla_{\mathrm{j}} \rho_{\mathrm{i}}-\mathrm{F}_{\mathrm{j}}^{\mathrm{h}} \nabla_{\mathrm{k}} \bar{\rho}_{\mathrm{I}}+\mathrm{F}_{\mathrm{k}}^{\mathrm{h}} \nabla_{\mathrm{j}} \rho_{\mathrm{i}}-2 \mathrm{~F}_{\mathrm{i}}^{\mathrm{h}} \nabla_{\mathrm{k}} \bar{\rho}_{\mathrm{j}} . \tag{3.10}
\end{equation*}
$$

If we substitute (3.8) and (3.9) into (3.10). Then we can verify Ishihara (1957)

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{P}_{\mathrm{kji}}^{\mathrm{h}}=0 \tag{3.11}
\end{equation*}
$$

In the next place, substitute (3.1) and (3.8) into the identify

$$
£_{\mathrm{V}} \nabla_{\mathrm{k}} \mathrm{R}_{\mathrm{ji}}-\nabla_{\mathrm{k}} £_{\mathrm{V}} \mathrm{R}_{\mathrm{ji}}=-\mathrm{R}_{\mathrm{rt}} £_{\mathrm{V}}\left\{\mathrm{k}_{\mathrm{k}}^{\mathrm{r}}{ }_{\mathrm{j}}\right\}-\mathrm{R}_{\mathrm{jr}} £_{\mathrm{V}}\left\{\mathrm{k}_{\mathrm{k}}^{\mathrm{r}}{ }_{\mathrm{i}}\right\},
$$

We have

$$
\begin{equation*}
\nabla_{k} R_{j i}=-(n+2) \nabla_{k} \nabla_{j} \rho_{i}-R_{k i} \rho_{j}-R_{k j} \rho_{i}+S_{k i} \bar{\rho}_{j}+S_{k j} \bar{\rho}_{\mathrm{i}}-2 R_{\mathrm{ji}} \rho_{\mathrm{k}} . \tag{3.12}
\end{equation*}
$$

Hence we put

$$
\begin{equation*}
\mathrm{P}_{\mathrm{kji}}=\frac{1}{\mathrm{n}+2}\left(\nabla_{\mathrm{k}} \mathrm{R}_{\mathrm{ji}}-\nabla_{\mathrm{j}} \mathrm{R}_{\mathrm{ki}}\right) . \tag{3.13}
\end{equation*}
$$

It holds

$$
\begin{equation*}
£_{\mathrm{V}} \mathrm{P}_{\mathrm{kji}}=\mathrm{P}_{\mathrm{kji}}^{\mathrm{r}} \rho_{\mathrm{r}} . \tag{3.14}
\end{equation*}
$$

REFERENCES

1. Otsuki, T. and Tashiro, Y. (1954): on curves in Kaehlerian spaces, Math. Jour. Okayama Univ., 4, 57.
2. Otaba, M. (1956): Affine transformations in an almost complex manifold with a natural connection, Jour. Math. Soc., Japan, 8, 345.
3. Lichnerowicz, A. (1957): Surles transformations analytiques des varieties Kaehleriannes compacts, C.R. Paris, pp.244-301.
4. Ishihara, S. (1957): Holomorphically projective changes and there groups in an almost complex manifold, Tohoku Math. Jour., 9, pp. 273-297.
5. Tashiro, Y. (1957): On a holomorphically projective correspondence in an almost complex space, Math, Jour. Okayama Univ., 6, 147.
6. Yano, K. (1957): Lie derivatives and its applications, Amsterdam.
7. Yano, K. and Nagano, T. (1957): Some theorems on projective and conformal transformations, Indag. Math., 14, 45.
8. Tachibana, S.: On almost analytic vectors in certain almost Hermition manifolds, Tohoku Math. Journ., 11, (1959), pp. 351-363.
9. Sumitomo, T. (1959): Projective and conformal transformations in compact Riemannian manifolds, tensor, 9, 113.
10. Negi, U.S. and Rawat Aparna (2009): Some theorems on almost Kaehlerian spaces with recurrent and symmetric projective curvature Tensors. ACTA Ciencia Indica, Vol. XXXVM, No 3, pp. 947-951.
11. Negi, U. S. and Rawat Aparna (2012): Some theorems on Holomorphically Projective transformations in Tachibana spaces. International Journal of Mathematical Archive-3(5), pp. 2099-2108.
12. Negi.U.S. (Jan-June., 2017), Union and Special curves on a Kaehlerian hyper-surface, Aryabhatta Journal of Mathematics \& Informatics Vol. 9, No. 1, pp.01-04,

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

