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ABSTRACT

In this paper, we have defined and studied on geometrical interpretation of an analytic holomorphically projective
transformations in almost Kaehlerian spaces and several theorems have been obtained.
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1. INTRODUCTION

An almost Kaehlerian space is first of all an almost complex space, that is, a 2n-dimensional space with an almost
complex structure F";:

Fij Fhi = —Shj, (11)
And always admits a positive definite Riemannian metric tensor gj; satisfying:

Faj Fb| gah = g“’ (1.2)
From which

Fii = —Fij, (1.3)
Where g

Fii = F Qai (4)

And finally has the property that the differential form F; dg A dgi is closed, that is,
def
Fjin == ViFin + ViFyj + Vi F;; = 0
And finally has the property that the skew-symmetric Fy, is a Killing tensor

ijih + Vi th =0 (15)
From which

ViFi+ViF, =0 (1.6)
And  F=-V;F; =0 1.7

Here V denotes the operation of covariant differentiation with respect to the Riemannian connection {j "}

The Nijenhuis tensor Nh,-i is written in the form:
N =—4(V; F}) F+ 2G5 F +F{G"%—F' G". (1.8)

A contravariant almost analytic vector field is defined as a vector field V', satisfying Tachibana (1959):
£,F = Vo -FioVv"+FavV=0
Where £, stands for the Lie-derivative with respect to v'.

Let R"; be the Riemannian curvature tensor and put
Rji = Rrrji, Rkjih = Rrkji Orh R= Rji gJI and Sji = Frj Rrir
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Then the foIIowmg |dent|t|es are satisfied (YYano 1957)

Rrkjl F - R kijr Fru Rkjlr F h— RkjhrFI (1.9)

Rkjlh - RkjtrF F hs le - Rtr F F . (1.10)

Sii+Si=0,S; =S, FjF; S;i = -3 F" Ryji. (1.12)
The holomorphically projective curvature tensor P“k,., which will be briefly called HP-curvature tensor, is given by

Phkjl thjl (Rkl le 8hk + Sk| F i Sjl F Kkt 2 Skj I) (112)
We can obtaln the foIIowmg identities

"15=0, P'ggn=0, (1.13)

P i = 0 (1.14)

ijlFr—ijan Prlek——Prle (1.15)
From which, we have

P = 0, (1.16)

P';i Fi=0, Py F,= 0. (1.17)

A necessary and sufficient condition for Phkj, 0, is that the space is a space of constant holomorphically curvature
(Tashiro 1957), i.e., a space whose curvature tensor R" k,. takes the form

R ki = n(n+2) (gk| i & 8 k+ Fui F i FJI F k2 ij j) (1.18)
For a vector field V' and a tensor field a";, the following identities are known (Yano 1957)
£,V o=V £, 0= o £, " F— o\ £, {"} (1.19)
Vs §" 3=V £, 4"} = £, R _ (1.20)
Where £, denotes the operator of Lie-differentiation with respect to V',

A Killing vector or an infinitesimal isometry V'is defined by

£,0i=V; Vi +V;V; =0.
Here we shall |dent|fy a contravariant vectors V' with a covariant vector V; = g;, V'. Hence we shall say V; is a Killing
vector, or that p' is gradient, for example.

An infinitesimal affine transformation /' is defined by
£, {jhi} = V]' V; v+ thji V' =0.

We shall say a vector field V' an infinitesimal holomorphically projective transformation or, for simplicity, an HP-
transformation, if it satisfies

£,§" 3= p;8" +p; 8" —p, Fli—p, ',
Where p; is a certain vector and P, = F'i p,. In this case, we shall called p; the associated vector of the transformation,
If p; vanishes, then the HP-transformation reduces to an affine one.

Contracting the last equation with respect to h and i, we get
V] VT Vr = (n+2) p],
Which shows that the associated vector is gradient.

A vector field V' is called Contravariant analytic or, for simplicity, analytic, if it satisfies
£,FN=—Fi v, V'+F. v, V' =0.

2. GEOMETRICAL INTERPRETATION OF AN ANALYTIC HP-TRANSFORMATION

In a differentiable space M, we consider a tensor valued function V depending not only on a point P of M but also on k
vectors ug Up,....,Ux at the point and denote it by V(P, uyUs,.....,uy). We assume that the value of this function V lies in
the tensor space associated to the tangent space of M at P and that it depends differentially on its arguments.

Assuming the space M to be affinely connected, we take an arbitrary curve C: x' = x' (t) and denote its successive
derivatives by
dx!  d%x!  a3x

ad @il (2.1)
dt ’ dt? de3
Then if we substitute (2.1) into the function V instead of u; uy....... , Ux. We have a family of tensors
_ .odx dkx
V(C)—V(X,E,,m)

along the curve C.
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Let V' be an infinitesimal transformation, i.e., a vector field, and ‘X' = X' + ev; be the infinitesimal point transformation
determined by V', & being an infinitesimal constant. Given a curve C: x' = X' (t), the image C of F is expressed by
X'=x'(t) + & V' (x(1)).

We shall call the limiting value

£, V(C) = lim,_,, 2=
The Lie-derivative of V(C) with respect to V', where we have denoted by 'V(C) the family of tensors induced from
V(C) by the transformation

K=x+gV

In a Almost Kaehlerian space, a curve x =X (t) defined by

d2xh h ) ax) ax' _ Fh dx)

e +{,- i};;- L+ B, (2:2)
is, by definition, a holomorphically planar curve, or an H-plane curve, where o and B are certain functions of't.

Let V' be an infinitesimal transformation and assume that any & the infinitesimal point transformation x' = x' ¢ V' maps
any H-plane curves.

Now we ask for the condition that V' preserve that H-plane curves. For such a vector V' taking account of (2.2), we
have

d2xh h )ax) daxt Fh axl,_ h dx)
£ [dtz {] i}? @ __‘3 “at + SF; “at (2:3)

along any H-plane curve, where y and 3 are certain functlons of't.

Denoting the Lie-derivative of the Christoffel’s symbols and the complex structure F";, respectively, by
h
thji = EV{I' l} 5 (xhi =£, Fhi:

We have from (2.3)

thji xJ )él+(1xh+thj x‘]—ﬁ(lhj x)=0 (24)
Where we have put _

0= —(y+ £,a).b=—@+£, ), x=

Since the relation (2.4) holds for any H-plane curve C, it must hold identically for any values of x' and x* .

By means of the definition of the H-plane curve, we see further that the identity (2.4) holds for any value of the
coefficient f.

Taking account of these arguments, we can easily see that relation
a“,x'z— foxh +gFyx, (2.5)
thj, x) xt= p xh +q Fh x7, (2.6)
hold for any values x'and x* , Where f,g,p and q are certain functions of x' and x*.

Let a be a tensor on V such that F'; o+ o F': = 0, we obtain by means of (2.5)
o = £, F=0. 2.7

On the other hand, If we substitute (2.7) and V; Fji = 0 into the identify
ViEy P — £y VPP = FP £y {;" 3-Ff £v{;"}

Then we get
t FP = tf, FJ. (2.8)

From (2.6) and (2.8), taking account of the fact that
th = o8P + a18h - ocJF aF
Where ocl |s certain vector and o, = Frar, we get
]1 = £V{J I} - p]8{1 + p18] - pJ FP - F_)ithr ) (29)
Where p; is a certain vector field. Therefore, the infinitesimal transformation V' is an analytic HP-transformation.

Conversely, it is obvious that an analytic HP-transformation preserves the H-plane curves.
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Thus we have the following:

Theorem 2.1: In an almost Kaehlerian space, an infinitesimal transformation preserves the H-plane curves, if and only
if it is an analytic HP-transformation.

3. SOME PROPERTIES OF HP-TRANSFORMATIONS.

Let V' be an HP-transformation, then it holds
£v{;"i }= ViV + R}VT = ;87 — i8] — piF — piF. (3.1)

Transvecting (3.1) with g, we have

V'V V4 RBVT =0, (3.2)
Hence, by virtue of the well known theorem on an analytic vectors, Yano (1957), Lichnerowiez (1957), we have the
following:

Theorem 3.1: In a compact almost Kaehlerian space an HP-transformation is analytic.

In a compact almost Kaehlerian space, M, it holds that
Ju(R;VIVdo 2 0

For an analytic vector V! , where do denote the volume element of M and the equality holds when and when only V!
is parallel. Therefore, if the Ricci’s from R;; &' is negative definite, then there exists no non-trivial HP-transformation
provided that the space is compact.

Taking account of the identity (1.19), we have for a vector field V'
£, F! = ViEF! = FI£,{;" }-FIE.{; 3,

Which implies
ViEF! = FPE( 3-FIE (",

Because of V]-Fih = 0. If the vector field V' is an HP-transformation, it is easily verified that the right hand-side of the
last equation vanishes. Thus we have the following theorems by the virtue of Obata’s theorem, gives Obata (1956)

Theorem 3.2: In an irreducible almost Kaehlerian space admitting no quaternion structure, any HP-transformation is
analytic.

Theorem 3.3: In an irreducible almost Kaehlerian space having non-vanishing Ricci tensor any HP-transformation is
analytic.

Theorem 3.4: In an irreducible almost Kaehlerian Einstein space if its scalar curvature is non-vanishing, any HP-
transformation is analytic.

Now, we shall find some formulae on analytic HP-transformation which will be useful in the further study.

Let V' be an HP-transformation. Substituting (3.1) into the identity
£vgji — EvVigii = Srifvl k' i} + 8 Evi k' i}

We find
ViEy 8ji = pj 8ki + Pi8kj — Pj Fii — Pi Fiy + 2pxk gji- (3.3)

If we substitute (3.1) into (1.20), then we have
£vR}ﬁji = 8V pi — SRV pi — F Vi pi+ FRV; i — (Vi B — V5 px) FT (3.4)

Contracting the last equation with respect to h and k we find

Now we shall assume that \/' is an analytic HP-transformation. Then we have EvRji = Ey(R Ff FH)

By virtue of (2.1). Hence from (3.5) it follows

Vi pi = F F{ V. pe. (3.6)
Since n > 2. The last equation also is written in the form:

EyFP = —FI V. p" +FP Vv, p" = 0,
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Which shows that p' is analytic. Moreover, according to (3.6) we have
Vipi + Vipj= F(Vp, — Ff F§ V, ps) = 0, (3.7)

Which means that p® is a Killing vector. Thus we get the following:

Theorem 3.5: If a vector p; is the associated vector of an analytic HP-transformation, then p' is analytic and p' is a
Killing vector.

Now, from (3.5) and (3.6) it follows
£vRji = —(n+2)V;p;, (3.8)

From which we have

On the other hand, from (3.4) and (3.7) we get
EyRYy; = 8'Vi p; — 81 V; py — F'Vi i+ FRV; p; — 2F1Vy . (3.10)

If we substitute (3.8) and (3.9) into (3.10). Then we can verify Ishihara (1957)
£yPy; = 0. (3.11)

In the next place, substitute (3.1) and (3.8) into the identify
£vVikRji — ViEy R = =Ry Ev{ " 3 — R £v{«"i },

We have

Vi Rji=—(n + 2)V\V; p; — Ry pj — Ry pi + SkibjtSkiPi—2Ripi- (3.12)
Hence we put

1

Py = E(VkRji — ViRy) (3.13)
It holds

£vPyi=Pi Pr- (3.14)
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