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ABSTRACT 
In this paper, we have defined and studied on geometrical interpretation of an analytic holomorphically projective 
transformations in almost Kaehlerian spaces and several theorems have been obtained. 
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1. INTRODUCTION 
 
An almost Kaehlerian space is first of all an almost complex space, that is, a 2n-dimensional space with an almost 
complex structure Fh

i: 
Fi

j Fh
i = −δh

j,                                                                           (1.1) 
 
And always admits a positive definite Riemannian metric tensor gji satisfying: 

Fa
j Fb

i gab = gji,                                                                                              (1.2) 
 
From which 

Fji = −Fij,                                                                           (1.3) 
Where  def 

Fji = Fa
j gai                                                                                        (1.4) 

And finally has the property that the differential form  Fji dξ
j ^ dξ

i  is closed, that is,               
                          def 

Fjih == ∇jFih + ∇i Fhj + ∇h Fji = 0 
And finally has  the property that the skew-symmetric Fih  is a Killing tensor   

∇jFih + ∇i Fhj  = 0                                                                                                                                              (1.5) 
 
From which 

∇jFj
i +∇i Fh

j    = 0                                                                                                                                              (1.6) 
And        Fi = −∇j Fj

i   = 0                                                                           (1.7) 
Here ∇ denotes the operation of covariant differentiation with respect to the Riemannian connection {j 

h 
i}.  

 
The Nijenhuis tensor Nh

ji   is written in the form: 
Nh

ji = ─ 4 ( ∇𝑗 Ft
i ) Fh

t + 2Gt
ji Fh

i   + Ft
j Gh

ti ─ Ft
i  Gh

tj .                                                                                     (1.8) 
 
A contravariant almost analytic vector field is defined as a vector field vi, satisfying Tachibana (1959): 

£v Fh
i   ≡  vj

 ∂j Fh
i – Fj

i ∂j vh + Fh
j ∂i vj = 0, 

Where £v stands for the Lie-derivative with respect to vi.   
 
Let Rh

kji be the Riemannian curvature tensor and put 
Rji = Rr

rji , Rkjih = Rr
kji grh , R= Rji gji   and  Sji = Fr

j Rri, 
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Then the following identities are satisfied (Yano 1957) 

Rr
kji Fh

r = Rh
kjr Fr

i,   Rkjir Fr
h = Rkjhr Fr

i                                                                                                                                                                        (1.9) 
Rkjih  = Rkjtr Ft

i Fr
h, Rji = Rtr Ft

jFr
i                                                                                                                                  (1.10) 

Sji + Sij = 0, Sji = Str Ft
j Fr

i, Sji = ─ 1
2
  Ftr

 Rtrji.                                                                                                 (1.11) 
 
The holomorphically projective curvature tensor Ph

kji , which will be briefly called HP-curvature tensor, is given by 
Ph

kji = Rh
kji + 1

𝑛+2
 (Rki δh

j ─ Rji δh
k + Ski Fh

j ─ Sji Fh
k + 2 Skj Fh

i)                                                                     (1.12) 
 
We can obtain the following identities 

Ph
(kj)j = 0,  Ph

[kji] = 0,                                                                                                                                        (1.13) 
Pr

rji = 0,                                                                                                                                                           (1.14) 
Pr

kji Fh
r = Ph

kjr Fr
i,  Ph

rji Fr
k == Ph

rki Fr
j                                                                                                               (1.15) 

    
From which, we have 

Pr
kjr = 0,                                                                                                                                                           (1.16) 

Pt
rji Fr

t = 0, Pt
kjr Fr

t = 0.                                                                                                                                     (1.17) 
 
A necessary and sufficient condition for Ph

kji = 0, is that the space is a space of constant holomorphically curvature 
(Tashiro 1957), i.e., a space whose curvature tensor Rh

kji takes the form   
Rh

kji = ─ 𝑅
𝑛(𝑛+2)

 (gki δh
i ─ gji δh

k + Fki Fh
j ─ Fji Fh

k + 2 Fkj Fh
j)                                                                           (1.18) 

 
For a vector field Vi and a tensor field 𝛼h

i, the following identities are known (Yano 1957) 
£𝑣 ∇𝑗 αh

i ─ ∇𝑗  £𝑣 αh
i =  αr

i  £𝑣 {j 
h 

r} ─ αh
r  £𝑣 {j 

r 
i}                                                                                        (1.19) 

∇𝑘 £𝑣 {j 
h  

i} ─ ∇𝑗  £𝑣 {k 
h

 i} =  £𝑣 Rh
kji                                                                                                                       (1.20) 

Where  £𝑣 denotes the operator of Lie-differentiation with respect to Vi. 
 
A Killing vector or an infinitesimal isometry Vi is defined by 

£𝑣 gji = ∇𝑗   Vi  + ∇𝑖  Vj  = 0. 
Here we shall identify a contravariant vectors Vi with a covariant vector Vi = gir Vr. Hence we shall say Vi is a Killing 
vector, or that  𝜌𝑖 is gradient, for example. 
 
An infinitesimal affine transformation Vi is defined by  

£𝑣 {j 
h 

i} = ∇𝑗  ∇𝑖  Vh  + Rh
r ji Vr = 0. 

 
We shall say a vector field Vi an infinitesimal holomorphically projective transformation or, for simplicity, an HP-
transformation, if it satisfies 

£𝑣 {j 
h 

i} =  𝜌𝑗δh
i + 𝜌𝑖  δh

j ─ 𝜌𝚥�  Fh
i ─ 𝜌𝚤�  Fh

j, 
Where 𝜌𝑖 is a certain vector and 𝜌𝚤�  = Fr

i 𝜌𝑟. In this case, we shall called 𝜌𝑖 the associated vector of the transformation, 
If 𝜌𝑖 vanishes, then the HP-transformation reduces to an affine one. 
 
Contracting the last equation with respect to h and i, we get  

∇𝑗 ∇𝑟  Vr = (n+2) 𝜌𝑗 , 
Which shows that the associated vector is gradient. 
  
A vector field Vi is called Contravariant analytic or, for simplicity, analytic, if it satisfies  

£𝑣 Fh
i ≡ ─ Fr

i  ∇𝑟  Vh + Fh
r ∇𝑖 Vr = 0. 

  
2.  GEOMETRICAL INTERPRETATION OF AN ANALYTIC HP-TRANSFORMATION 
 
In a differentiable space M, we consider a tensor valued function V depending not only on a point P of M but also on k 
vectors u1,u2,….,uk at the point and denote it by V(P, u1,u2,….,uk). We assume that the value of this function V lies in 
the tensor space associated to the tangent space of M at P and that it depends differentially on its arguments. 
 
Assuming the space M to be affinely connected, we take an arbitrary curve C: xi = xi (t) and denote its successive 
derivatives by  

dxi

dt   
,    d2xi

dt2  ,   d
3xi

dt3
                                                                                                                                                 (2.1) 

Then if we substitute (2.1) into the function V instead of u1, u2,……, uk. We have a family of tensors 

V(C) = V  � 𝑥  ,̇ 𝑑𝑥
𝑑𝑡

  , … . ., 𝑑𝑘𝑥
𝑑𝑡𝑘

 � 
along the curve C. 
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Let Vi be an infinitesimal transformation, i.e., a vector field, and ‘xi = xi + 𝜀𝑣𝑖  be the infinitesimal point transformation 
determined by vi , ε being an infinitesimal constant. Given a curve C: xi = xi (t), the image ‘C of F is expressed by  

xi = xi (t) + ε Vi (x(t)). 
 
We shall call the limiting value  

£𝑣 V(C) ≡ lim𝜀→0    𝑉(′𝐶) −  ′𝑉(𝐶) 
𝜀

 
 
The Lie-derivative of V(C) with respect to Vi, where we have denoted by ‘V(C) the family of tensors induced from 
V(C) by the transformation  

‘xk = xi + ε Vi 
 
In a Almost Kaehlerian space, a curve xi = xi (t) defined by  

  𝑑2𝑥ℎ

𝑑𝑡2
+ � ℎ

𝑗 𝑖�  𝑑𝑥
𝑗

𝑑𝑡
  𝑑𝑥

𝑖

𝑑𝑡
 = 𝛼 𝑑𝑥ℎ

𝑑𝑡
+ 𝛽𝐹𝑗ℎ  𝑑𝑥

𝑗

𝑑𝑡
                                                                                                      (2.2) 

is, by definition, a holomorphically planar curve, or an H-plane curve, where  α and β are certain functions of t.    
 
Let Vi be an infinitesimal transformation and assume that any ε the infinitesimal point transformation ‘xi = xi ε Vi maps 
any H-plane curves. 
 
Now we ask for the condition that Vi preserve that H-plane curves. For such a vector Vi taking account of (2.2), we 
have  

£𝑣[𝑑
2𝑥ℎ

𝑑𝑡2
+ � ℎ

𝑗 𝑖�
𝑑𝑥𝑗

𝑑𝑡
  𝑑𝑥

𝑖

𝑑𝑡
 ─ 𝛼 𝑑𝑥ℎ

𝑑𝑡
 ─ 𝛽𝐹𝑗ℎ  𝑑𝑥

𝑗

𝑑𝑡
]= 𝛾 𝑑𝑥ℎ

𝑑𝑡
+  𝛿𝐹𝑗ℎ  𝑑𝑥

𝑗

𝑑𝑡
                                                                  (2.3) 

 along any H-plane curve, where γ and δ are certain functions of t. 
 
Denoting the Lie-derivative of the Christoffel’s symbols and the complex structure Fh

i, respectively, by    

th
ji = £𝑣 �

ℎ
𝑗  𝑖� ,    α

h
i = £𝑣 Fh

i , 

 
We have from (2.3) 

th
ji  𝑥𝚥̇ 𝑥𝚤̇  + α 𝑥ℎ̇ + b Fh

j 𝑥𝚥̇ ─ β αh
j 𝑥𝚥̇ = 0                                                                                                        (2.4) 

Where we have put 

𝔞 =  −( 𝛾 +  £𝑣 𝛼 ), b = ─ (δ + £𝑣 𝛽 ), 𝑥̇ = 𝑑𝑥
𝑖

𝑑𝑡
 

 
Since the relation (2.4) holds for any H-plane curve C, it must hold identically for any values of xi and  𝑥𝚤̇  . 
 
By means of the definition of the H-plane curve, we see further that the identity (2.4) holds for any value of the 
coefficient β. 
 
Taking account of these arguments, we can easily see that relation 

𝔞h
j 𝑥𝚥̇ =    f    𝑥 ℎ  ̇  + g Fh

j 𝑥𝚥̇,                                                                                                                             (2.5) 
th

ji 𝑥𝚥̇ 𝑥𝚤̇  = p 𝑥ℎ̇    + q Fh
j  𝑥𝚥̇ ,                        (2.6) 

hold for any values xi and 𝑥𝚤̇  , where  f,g,p and q are certain functions of xi and 𝑥𝚤̇ . 
 
Let αi

j be a tensor on V such that Fr
j αi

r + αr
j Fi

r = 0, we obtain by means of (2.5) 
αh

i  ≡   £𝑣  Fh
i = 0.                                                                                                                                              (2.7) 

 
On the other hand, If we substitute (2.7) and  ∇j Fji = 0  into the identify  

∇j £V Fi h − £V ∇j Fih = Frh £V { j 
r
 i }−Fir £V { j 

h
 r}, 

 
Then we get 

tji r Frh = tjrh  Fir.                                                                                                                                                   (2.8) 
 
From (2.6) and (2.8), taking account of the fact that 

tjih = αjδih + αiδjh − α�jFi
j − α�iFjh, 

Where  αi is certain vector and α�I = Firαr, we get 
 tjih = £V{ j h 

i } =  ρjδih + ρiδjh − ρ�j Fih − ρ� iFjh,                                                                                                                                                      (2.9) 
Where  ρi  is a certain vector field. Therefore, the infinitesimal transformation Vi is an analytic HP-transformation. 
 
Conversely, it is obvious that an analytic HP-transformation preserves the H-plane curves. 
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Thus we have the following: 
 
Theorem 2.1: In an almost Kaehlerian space, an infinitesimal transformation preserves the H-plane curves, if and only 
if it is an analytic HP-transformation.  
 
3. SOME PROPERTIES OF HP-TRANSFORMATIONS.  
 
Let Vi be an HP-transformation, then it holds 

£V{ j h i } ≡  ∇j∇iVh + Rrji
h Vr = ρjδih − ρiδjh − ρ� jFih − ρ�iFjh.                                                                           (3.1) 

  
Transvecting (3.1) with gji, we have 

∇r∇rV′i + Rr
hVr = 0.                                                                                                                                        (3.2) 

Hence, by virtue of the well known theorem on an analytic vectors, Yano (1957), Lichnerowiez (1957), we have the 
following: 
 
Theorem 3.1:  In a compact almost Kaehlerian space an HP-transformation is analytic. 
 
In a compact almost Kaehlerian space, M, it holds that 

∫M (RjiVjVi)𝑑𝜎 ≧ 0 
 
For an analytic vector  Vi  , where  𝒅𝝈  denote the volume element of M and the equality holds when and when only  Vi  
is parallel. Therefore, if the Ricci’s from Rji ξjξi is negative definite, then there exists no non-trivial HP-transformation 
provided that the space is compact. 
 
Taking account of the identity (1.19), we have for a vector field Vi    

£v∇j Fih − ∇j£vFih = Fir£v{ j h r }−Frh£v{ j 
r
 i}, 

Which implies 
∇j£vFih = Frh£v{ j 

r
 i}−Fir£v{ j h r}, 

 
Because of ∇jFih = 0. If the vector field Vi is an HP-transformation, it is easily verified that the right hand-side of the 
last equation vanishes. Thus we have the following theorems by the virtue of Obata’s theorem, gives Obata (1956)  
 
Theorem 3.2: In an irreducible almost Kaehlerian space admitting no quaternion structure, any HP-transformation is 
analytic.  
 
Theorem 3.3: In an irreducible almost Kaehlerian space having non-vanishing Ricci tensor any HP-transformation is 
analytic. 
 
Theorem 3.4: In an irreducible almost Kaehlerian Einstein space if its scalar curvature is non-vanishing, any HP-
transformation is analytic. 
 
Now, we shall find some formulae on analytic HP-transformation which will be useful in the further study.  
 
Let Vi be an HP-transformation. Substituting (3.1) into the identity 

£Vgji − £V∇kgji = gri£V{ k 
r 

j} + gjr £V{ k 
r 

i}, 
 
We find 

∇k£V gji = ρj gki + ρigkj − ρ�j Fki − ρ�i Fkj + 2ρk gji.                                                                                      (3.3) 
 
If we substitute (3.1) into (1.20), then we have 

 £VRkji
h = δjh∇k  ρi − δkh ∇j ρi − Fjh ∇k  ρ�i + Fk 

h∇j ρ� i  ─ ( ∇k  ρ� j   ─  ∇j ρ�k ) Fi  h ,                                                    (3.4) 
 
Contracting the last equation with respect to h and k we find 

£VRji = −n ∇j ρi − 2Fjr Fit ∇r  ρt                                                                                                                     (3.5) 
 
Now we shall assume that Vi is an analytic HP-transformation. Then we have £VRji = £V(Rrt Fjr Fit) 
 
By virtue of (2.1). Hence from (3.5) it follows 

∇j  ρi =  Fjr Fit  ∇r ρt.                                                                                                                                         (3.6) 
Since n > 2. The last equation also is written in the form: 

£V Fih ≡ −Fir ∇r ρh + Frh ∇i ρr = 0, 
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Which shows that ρi is analytic. Moreover, according to (3.6) we have 

 ∇jρ�i +  ∇i ρ� j = Fir�∇jρr − Fjt Frs ∇t ρs� = 0,                                                                                                                                                         (3.7) 
 
Which means that  𝜌̅𝑖  is a Killing vector. Thus we get the following: 
 
Theorem 3.5:  If a vector ρi is the associated vector of an analytic HP-transformation, then ρi is analytic and  ρ�i is a 
Killing vector. 
 
Now, from (3.5) and (3.6) it follows 

£V Rji = −(n + 2)∇j ρi ,                                                                                                                                  (3.8) 
 
From which we have  

£VSji = (n + 2)∇j ρ� i .                                                                                                                                      (3.9) 
 
On the other hand, from (3.4) and (3.7) we get 

£VRkji
h = δjh∇k ρi − δkh ∇j ρi − Fjh∇k ρ� I + Fkh ∇j ρi − 2Fih∇k ρ� j.                                                                     (3.10) 

 
If we substitute (3.8) and (3.9) into (3.10). Then we can verify Ishihara (1957) 

£VPkjih   = 0.                                                                                                                                                       (3.11) 
 
In the next place, substitute (3.1) and (3.8) into the identify 

£V∇kRji − ∇k£V Rji = −Rrt £V{ k 
r 

j } ─  Rjr £V{ k 
r 

i }, 
 
We have 

∇k Rji=−(n + 2)∇k∇j ρi − Rki ρj − Rkj ρi + Skiρ� j+Skjρ� i−2Rjiρk.                                                               (3.12)            
 
Hence we put 

Pkji = 1
n+2

�∇kRji − ∇jRki�.                                                                                                                            (3.13) 
It holds      

£VPkji=Pkjir   ρr.                                                                                                                                                    (3.14) 
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