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ABSTRACT  
Let 𝐺 =  (𝑉, 𝐸) be a connected graph.  The hyper-Zagreb index is defined as 𝐻𝑍(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)]2𝑢𝑣∈𝐸(𝐺) .   
In this paper, comparison of the hyper-Zagreb index and other degree based topological indices like the Forgotten 
index, Zagreb and Banhatti indices of some derived graphs such as line graph, subdivision graph, vertex-semitotal 
graph, edge-semitotal graph and total graph are obtained.  In addition, exact values of some standard graphs of above 
derived graphs are presented.   
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1. INTRODUCTION 

 
All graphs considered in this paper are finite, connected, undirected without loops and multiple edges. Any undefined 
term in this paper may be found in Kulli [17].  Let 𝐺 be a simple connected graph with vertex set 𝑉(𝐺) and edge set 
𝐸(𝐺).  The degree  𝑑𝐺(𝑣) of a vertex v is the number of vertices adjacent to 𝑣. The edge connecting the vertices 𝑢 and 
𝑣 will be denoted by 𝑢𝑣. Let 𝑑𝐺(𝑒) denotes the degree of an edge 𝑒 in 𝐺, which is defined by                              
𝑑𝐺(𝑒) = 𝑑𝐺(𝑢)+𝑑𝐺(𝑣) − 2 with 𝑒 =  𝑢𝑣.  
 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. In Chemical 
Science, the physico-chemical properties of chemical compounds are often modelled by means of molecular graph 
based structure descriptors, which are also referred to as topological indices, see [21]. 
 
The first two Zagreb indices was introduced by Gutman and Trinajstic [13] to take account of the contributions of pairs 
of adjacent vertices. For their history, applications, and mathematical properties, see [3], [9], [11], [12] and the 
references cited therein. The first and second Zagreb indices of G are defined as 𝑀1(𝐺) = ∑ 𝑑𝐺(𝑣)2𝑣∈𝑉(𝐺)  or                            
𝑀1(𝐺) = ∑ 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)𝑢𝑣∈𝐸(𝐺)  and 𝑀2(𝐺) = ∑ [𝑑𝐺(𝑢).𝑑𝐺(𝑣)]𝑢𝑣∈𝐸(𝐺) . Followed by the First Zagreb index of a 
graph G, Shirdel et al. [8] was introduced the hyper-Zagreb index of G defined as HZ(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑣)]2.𝑢𝑣∈𝐸(𝐺)  
In [5], Furtula and Gutman was introduced the so-called forgotten topological index F, defined as                         
F(𝐺) = ∑ 𝑑𝐺(𝑣)3𝑣∈𝑉(𝐺) = ∑  (𝑑𝐺(𝑢))2 + (𝑑(𝐺(𝑣))2𝑢𝑣∈𝐸(𝐺) .  
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In [18], Kulli introduced the first and second K Banhatti indices, intending to take into account the contributions of 
pairs of incident elements. The first and second K Banhatti indices of a graph G are defined as                            
𝐵1(𝐺) = ∑ 𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)𝑢𝑒  and 𝐵2(𝐺) = ∑ 𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)𝑢𝑒 , respectively, where 𝑢𝑒 means that the vertex 𝑢 and 
edge 𝑒 are incident in G.  The Banhatti and Zagreb indices are closely related, see [10].  Recently many other indices 
were studied, for example, in [4] and [19]. 
 
2. EXISTING RESULTS OF DEGREE BASED INDICES 

 
To prove our main results, we make use of the following results in sequel. 
 
Theorem 2.1: [10] For any graph 𝐺, the first Banhatti index and second Banhatti indices are related to the first Zagreb 
index and Hyper Zagreb indices as  

(i) 𝐵1(𝐺) = 3𝑀1(𝐺) − 4 |𝐸(𝐺)|  
(ii) 𝐵2(𝐺) = 𝐻𝑍(𝐺) − 2𝑀1(𝐺). 

 
Let G be a standard graph of path Pn ; n ≥ 2 and complete bipartite graph Kr,,s; 1 ≤ 𝑟 ≤ 𝑠. Also, in r-regular graph G, if 
r =2, then G is a cycle Cn ; n ≥ 3 and if r = n−1, then G is a complete graph Kn; n ≥ 3vertices. 
 
Proposition 2.2:  [3, 12] Let G be some standard class of graphs. Then  

(i) 𝑀1(𝑃𝑛) = 4𝑛 − 6 for n ≥ 2 vertices 
(ii) 𝑀1(𝐶𝑛) = 4𝑛 for n ≥ 3 vertices 
(iii) 𝑀1(𝐾𝑛) = 𝑛(𝑛 − 1)2 for n ≥ 3 vertices 
(iv) 𝑀1(𝐺) = 𝑛𝑟2, where G is a r-regular graph 
(v) 𝑀1�𝐾𝑟,𝑠� = 𝑟𝑠(𝑟 + 𝑠) for 1 ≤ 𝑟 ≤ 𝑠 vertices.  

 
Proposition 2.3: [8] Let G be some standard class of graphs. Then 

(i) 𝐻𝑍(𝑃𝑛) = 16𝑛 − 30 for n ≥ 2 vertices 
(ii) 𝐻𝑍(𝐶𝑛) = 16𝑛 for n ≥ 3 vertices 
(iii) 𝐻𝑍(𝐾𝑛) = 2𝑛(𝑛 − 1)3 for n ≥ 3 vertices 
(iv) 𝐻𝑍(𝐺) = 2𝑛𝑟3, where G is a r-regular graph 
(v) 𝐻𝑍�𝐾𝑟,𝑠� = 𝑟𝑠(𝑟 + 𝑠)2 for 1 ≤ 𝑟 ≤ 𝑠 vertices.  

 
3. SOME DERIVED GRAPHS 

 
The Line graph 𝐿(𝐺) is the graph with vertex set 𝑉(𝐿(𝐺))  =  𝐸(𝐺) and whose vertices correspond to the edges of G 
with two vertices being adjacent if and only if the corresponding edges in G have a vertex in common to, see [15]. 
 
The Subdivision graph 𝑆(𝐺) is the graph obtained from 𝐺 by replacing each of its edges by a path of length two, or 
equivalently, by inserting an additional vertex into each edge of a graph G, see [14]. 
 
The Vertex-Semitotal graph 𝑇1(𝐺) with vertex set 𝑉(𝐺) ∪ 𝐸(𝐺) and edge set E(S(G)) ⋃ E(G) is the graph obtained 
from G by adding a new vertex corresponding to each edge of G and by joining each new vertex to the end vertices of 
the edge corresponding to it, see [6].  
 
The Edge-Semitotal graph 𝑇2(𝐺) with vertex set 𝑉(𝐺) ∪ 𝐸(𝐺) and edge set E(S(G)) ⋃ E(L(G))  is the graph obtained 
from G by inserting a new vertex into each edge of G and by joining with edges those pairs of these new vertices which 
lie on adjacent edges of G, see [7]. 
 
The Total graph of a graph 𝐺 denoted by 𝑇(𝐺) with vertex set V(G) ∪ E(G) and any two vertices of 𝑇(𝐺) are adjacent 
if and only if they are either incident or adjacent in G, see [2]. 
 
Different Topological indices of some derived graphs have been studied by Basavanagoud et al. [2], Khalifeh et al. 
[16] and Nilanjan De [20].  In view of these references, some of the existing results as follows.  
 
Proposition 3.1:  
1) Let 𝐿(𝐺) be the line graph of a graph G.  Then 

(i) 𝑉(𝐿(𝐺))  =  𝐸(𝐺) 
(ii) |𝐸(𝐿(𝐺))| = 1

2
𝑀1(𝐺) − |𝐸(𝐺)|. 

2) Let 𝑆(𝐺) be the subdivision graph of a graph G.  Then 
(i) 𝑀1(𝑆(𝐺)) = 𝑀1(𝐺) + 4|𝐸(𝐺)| 
(ii) |𝐸(𝑆(𝐺))| = 2|𝐸(𝐺)|.  
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3) Let 𝑇1(𝐺) be the vertex semi-total graph of a graph G.  Then 

(i) 𝑀1(𝑇1(𝐺)) = 4 𝑀1(𝐺) + 4|𝐸(𝐺)| 
(ii) |𝐸(𝑇1(𝐺))| = 3|𝐸(𝐺)|.  

4) Let 𝑇1(𝐺) be the edge semi-total graph of a graph G.  Then 
(i) 𝑀1(𝑇2(𝐺)) = 𝑀1(𝐺) + 𝑀1�𝐿(𝐺)� + 8�𝐸�𝐿(𝐺)�� + 8|𝐸(𝐺)| 
(ii) |𝐸(𝑇2(𝐺))| = |𝐸(𝐺)| + 1

2
𝑀1(𝐺) . 

5) Let 𝑇(𝐺) be the total graph of a graph G.  Then 
(i) 𝑀1(𝑇(𝐺)) = 4𝑀1(𝐺) + 𝑀1�𝐿(𝐺)� + 8�𝐸�𝐿(𝐺)�� + 4|𝐸(𝐺)| 
(ii) |𝐸(𝑇2(𝐺))| = 2|𝐸(𝐺)| + 1

2
𝑀1(𝐺).   

 
Proposition 3.2:  Let G be a graph of order n and size m. Then   

(i) 𝐻𝑍(𝐺) = 𝐹(𝐺) + 2 𝑀2(𝐺)    
(ii) 𝐹(𝑆(𝐺))  =  𝐹(𝐺)  +  8|𝐸(𝐺)| 
(iii) 𝑀2(𝑆(𝐺))  =  2𝑀1(𝐺). 

 
4. MAIN RESULTS 

 
Proposition 4.1:  
1) Let 𝑆(𝐺) be the subdivision graph of a graph G. Then   

(i) 𝑀1(𝑆(𝐺)) = 𝑛𝑟(𝑟 + 2), where G is a r-regular graph 
(ii) 𝑀1(𝑆(𝑃𝑛) ) = 8𝑛 − 10 
(iii) 𝑀1�𝑆(𝐾𝑟,𝑠)� = 𝑟𝑠(𝑟 + 𝑠 + 4) for 1 ≤ 𝑟 ≤ 𝑠 vertices.  

2) Let 𝑇1(𝐺) be the vertex semi-total graph of a graph G. Then   
(i) 𝑀1(𝑇1(𝐺)) = 2𝑛𝑟(2𝑟 + 1), where G is a r-regular graph 
(ii) 𝑀1(𝑇1(𝑃𝑛)) = 20𝑛 − 28 
(iii) 𝑀1�𝑇1(𝐾𝑟,𝑠)� = 4𝑟𝑠(𝑟 + 𝑠 + 1) for 1 ≤ 𝑟 ≤ 𝑠 vertices. 

3) Let 𝑇2(𝐺) be the edge semi-total graph of a graph G. Then   
(i) 𝑀1(𝑇2(𝐺)) = 2𝑛𝑟3 + 𝑛𝑟2, where G is a r-regular graph 
(ii) 𝑀1(𝑇2(𝑃𝑛)) = 20𝑛 − 36 
(iii) 𝑀1�𝑇2(𝐾𝑟,𝑠)� = 𝑟𝑠(𝑟2 + 𝑠2 + 𝑟 + 𝑠 + 2𝑟𝑠) for 1 ≤ 𝑟 ≤ 𝑠 vertices.  

4) Let 𝑇(𝐺) be a total graph of a graph G. Then   
(i) 𝑀1(𝑇(𝐺)) = 2𝑛𝑟2(𝑟 + 2), where G is a r-regular graph 
(ii) 𝑀1(𝑇(𝑃𝑛)) = 32𝑛 − 54 
(iii) 𝑀1�𝑇(𝐾𝑟,𝑠)� = 𝑟𝑠(𝑟2 + 𝑠2 + 4𝑟 + 4𝑠 + 2𝑟𝑠) for 1 ≤ 𝑟 ≤ 𝑠 vertices.  

 
Proof: From Propositions 2. 2 and 3.1, the results are immediate. 
 
Proposition 4.2:  

(i) 𝐻𝑍�𝐿(𝐺)� = 8𝑛𝑟(𝑟 − 1)3, where G is a r-regular graph 
(ii) 𝐻𝑍 �𝐿�𝐾𝑟,𝑠�� = 2𝑟𝑠(𝑟 + 𝑠 − 2)3 for 1 ≤ 𝑟 ≤ 𝑠 vertices. 
(iii) 𝐻𝑍�𝑆(𝐺)� = 𝑛𝑟(𝑟 + 2)2, where 𝐺 is a r-regular graph. 
(iv) 𝐻𝑍�𝑆(𝑃𝑛)� = 32𝑛 − 46 
(v) 𝐻𝑍 �𝑆�𝐾𝑟,𝑠�� = 𝑟𝑠(𝑟2 + 𝑠2 + 4𝑟 + 4𝑠 + 8) for 1 ≤ 𝑟 ≤ 𝑠 vertices. 
(vi) 𝐻𝑍�𝑇1(𝐺)� = 4𝑛𝑟(𝑟 + 1)2 + 8𝑛𝑟3, where 𝐺 is a r-regular graph. 
(vii) 𝐻𝑍�𝑇1(𝑃𝑛)� = 136𝑛 − 232 
(viii) 𝐻𝑍 �𝑇1�𝐾𝑟,𝑠�� = 4𝑟𝑠(2𝑟2 + 2𝑠2 + 2𝑟 + 2𝑠 + 2𝑟𝑠 + 2) for 1 ≤ 𝑟 ≤ 𝑠 vertices 
(ix) 𝐻𝑍�𝑇2(𝐺)� = 9𝑛𝑟3 + 8𝑛𝑟3(𝑟 − 1), where 𝐺 is a r-regular graph 
(x) 𝐻𝑍�𝑇2(𝑃𝑛)� = 136𝑛 − 292 
(xi) 𝐻𝑍 �𝑇2�𝐾𝑟,𝑠�� = 𝑟𝑠(2𝑟3 + 2𝑠3 + 2𝑟2𝑠 + 2𝑟𝑠2 + 𝑟2 + 𝑠2) for 1 ≤ 𝑟 ≤ 𝑠 vertices 
(xii) 𝐻𝑍�𝑇(𝐺)� = 8𝑛𝑟3(𝑟 + 2), where 𝐺 is a r-regular graph. 
(xiii) 𝐻𝑍�𝑇(𝑃𝑛)� = 256𝑛 − 514 
(xiv) 𝐻𝑍 �𝑇�𝐾𝑟,𝑠�� = 𝑟𝑠(2𝑟3 + 2𝑠3 + 6𝑟2𝑠 + 6𝑟𝑠2 + 10𝑠2 + 10𝑟2 + 12𝑟𝑠) for 1 ≤ 𝑟 ≤ 𝑠 vertices. 

 
Proof: 
(i) We have, 𝐻𝑍�𝐿(𝐺)� = ∑  [𝑑𝐿(𝐺)(𝑢) + 𝑑𝐿(𝐺)(𝑣)]2𝑢𝑣∈ 𝐸(𝐿(𝐺)) .  Since the line graph of a r - regular graph is 

(2𝑟 − 2) – regular.  Hence   𝐻𝑍�𝐿(𝐺)� = 𝑛𝑟
2

(𝑟 − 1)(4𝑟 − 4)2 = 8𝑛𝑟(𝑟 − 1)3. 
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 (ii)  Since the line graph of complete bipartite graph 𝐾𝑟,   𝑠 is a (𝑟 + 𝑠 − 2)-regular graph and 
        �𝐸(𝐿(𝐾𝑟,𝑠)� = 𝑟𝑠

2
 (𝑟 + 𝑠 − 2).  Hence the result follows. 

(iii)  We have, 𝐻𝑍�𝑆(𝐺)� = ∑  [𝑑𝑆(𝐺)(𝑢) + 𝑑𝑆(𝐺)(𝑣)]2𝑢𝑣∈ 𝐸(𝑆(𝐺)) .  In 𝑆(𝐺), there is an edge partition 
        𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑆(𝐺)):𝑑𝑆(𝐺)(𝑢) = 2,𝑑𝑆(𝐺)(𝑣) = 𝑟�; |𝐸1| = 𝑛𝑟.      
        Therefore  𝐻𝑍�𝑆(𝐺)� = 𝑛𝑟(𝑟 + 2)2. 
(iv)   In 𝑆(𝑃𝑛),  there are two edge partitions,                
         𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑆(𝑃𝑛)):𝑑𝑆(𝑃𝑛)(𝑢) = 1,𝑑𝑆(𝑃𝑛)(𝑣) = 2�; |𝐸1| = 2     

𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑆(𝑃𝑛)):𝑑𝑆(𝑃𝑛)(𝑢) = 2,𝑑𝑆(𝑃𝑛)(𝑣) = 2�; |𝐸2| = 2(𝑛 − 2).     
         Therefore, 𝐻𝑍�𝑆(𝑃𝑛)� = ∑  �𝑑𝑆(𝑃𝑛)(𝑢) + 𝑑𝑆(𝑃𝑛)(𝑣)�2𝑢𝑣∈ 𝐸�𝑆(𝑃𝑛)�  
                   = 2(1 + 2)2 + 2(𝑛 − 2)(2 + 2)2 = 32𝑛 − 46.  
 (v)  In 𝑆�𝐾𝑟,   𝑠�,  there are two edge partitions, 

𝐸1 = {𝑢𝑣 ∈ 𝐸 �𝑆�𝐾𝑟,𝑠)�:𝑑𝑆�𝐾𝑟,𝑠�(𝑢) = 𝑟,𝑑𝑆�𝐾𝑟,𝑠�(𝑣) = 2� ; |𝐸1| = 𝑟𝑠     

𝐸2 = {𝑢𝑣 ∈ 𝐸 �𝑆�𝐾𝑟,𝑠)�:𝑑𝑆�𝐾𝑟,𝑠�(𝑢) = 𝑠,𝑑𝑆�𝐾𝑟,𝑠�(𝑣) = 2� ; |𝐸2| = 𝑟𝑠.     

Therefore 𝐻𝑍 �𝑆�𝐾𝑟,𝑠�� = ∑  �𝑑𝑆�𝐾𝑟,𝑠�(𝑢) + 𝑑𝑆�𝐾𝑟,𝑠�(𝑣)�
2

𝑢𝑣∈ 𝐸�𝑆�𝐾𝑟,𝑠��
  

                                        = 𝑟𝑠(𝑟 + 2)2 + 𝑟𝑠(𝑠 + 2)2 
             = 𝑟𝑠(𝑟2 + 𝑠2 + 4𝑟 + 4𝑠 + 8).  

(vi)   In 𝑇1(𝐺),  there are two edge partitions, 
𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝐺)):𝑑𝑇1(𝐺)(𝑢) = 2,𝑑𝑆𝑇1(𝐺)(𝑣) = 2𝑟�; |𝐸1| = 𝑛𝑟     
𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝐺)):𝑑𝑇1(𝐺)(𝑢) = 𝑑𝑇1(𝐺)(𝑣) = 2𝑟�; |𝐸2| = 𝑛𝑟

2
 .     

Therefore  𝐻𝑍�𝑇1(𝐺)� = ∑  �𝑑𝑇1(𝐺)(𝑢) + 𝑑𝑇1(𝐺)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇1(𝐺)�   
                                     = 𝑛𝑟(2 + 2𝑟)2 + 𝑛𝑟

2
 (2𝑟 + 2𝑟)2 

                                       = 4𝑛𝑟(𝑟 + 1)2 + 8𝑛𝑟3. 
(vii)   In 𝑇1(𝑃𝑛) , there are three edge partitions, 

 𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝑃𝑛)):𝑑𝑇1(𝑃𝑛)(𝑢) = 2,𝑑𝑇1(𝑃𝑛)(𝑣) = 2�; |𝐸1| = 2     
𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝑃𝑛)):𝑑𝑇1(𝑃𝑛)(𝑢) = 2,𝑑𝑇1(𝑃𝑛)(𝑣) = 4�; |𝐸2| = 2(𝑛 − 1)  
𝐸3 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝑃𝑛)):𝑑𝑇1(𝑃𝑛)(𝑢) = 𝑑𝑇1(𝑃𝑛)(𝑣) = 4�; |𝐸3| = 𝑛 − 3.  
Therefore 𝐻𝑍�𝑇1(𝑃𝑛)� = ∑  �𝑑𝑇1(𝑃𝑛)(𝑢) + 𝑑𝑇1(𝑃𝑛)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇1(𝑃𝑛)�  

  = 2(2 + 2)2 + 2(𝑛 − 1)(2 + 4)2 + (𝑛 − 3)(4 + 4)2 
  = 136𝑛 − 232. 

(viii)  In 𝑇1�𝐾𝑟,𝑠�, there are three edge partitions, 
𝐸1 = {𝑢𝑣 ∈ 𝐸 �𝑇1�𝐾𝑟,𝑠)�:𝑑𝑇1�𝐾𝑟,𝑠�(𝑢) = 2𝑟,𝑑𝑇1�𝐾𝑟,𝑠�(𝑣) = 2� ; |𝐸1| = 𝑟𝑠      

𝐸2 = {𝑢𝑣 ∈ 𝐸 �𝑇1�𝐾𝑟,𝑠)�:𝑑𝑇1�𝐾𝑟,𝑠�(𝑢) = 2𝑠,𝑑𝑇1�𝐾𝑟,𝑠�(𝑣) = 2� ; |𝐸2| = 𝑟𝑠      

𝐸3 = {𝑢𝑣 ∈ 𝐸 �𝑇1�𝐾𝑟,𝑠)�:𝑑𝑇1�𝐾𝑟,𝑠�(𝑢) = 2𝑟,𝑑𝑇1�𝐾𝑟,𝑠�(𝑣) = 2𝑠� ; |𝐸3| = 𝑟𝑠.   

Hence,  𝐻𝑍 �𝑇1�𝐾𝑟,𝑠�� = ∑  �𝑑𝑇1�𝐾𝑟,𝑠�(𝑢) + 𝑑𝑇1�𝐾𝑟,𝑠�(𝑣)�
2

𝑢𝑣∈ 𝐸�𝑇1�𝐾𝑟,𝑠��
 

= 𝑟𝑠(2𝑟 + 2)2 + 𝑟𝑠(2𝑠 + 2)2 + 𝑟𝑠(2𝑠 + 2𝑠)2 
= 4𝑟𝑠(2𝑟2 + 2𝑠2 + 2𝑟 + 2𝑠 + 2𝑟𝑠 + 2). 

(ix)  In 𝑇2(𝐺), there are two edge partitions, 
𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝐺)):𝑑𝑇2(𝐺)(𝑢) = 𝑟,𝑑𝑇2(𝐺)(𝑣) = 2𝑟�; |𝐸1| = 𝑛𝑟     
𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑇1(𝐺)):𝑑𝑇2(𝐺)(𝑢) = 𝑑𝑇2(𝐺)(𝑣) = 2𝑟�; |𝐸2| = 𝑛𝑟

2
(𝑟 − 1).     

Therefore  𝐻𝑍�𝑇2(𝐺)� = ∑  �𝑑𝑇2(𝐺)(𝑢) + 𝑑𝑇2(𝐺)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇2(𝐺)�  

= 𝑛𝑟(𝑟 + 2𝑟)2 +
𝑛𝑟
2

(𝑟 − 1)(2𝑟 + 2𝑟)2 
= 9𝑛𝑟3 + 8𝑛𝑟3(𝑟 − 1) . 

(x) In 𝑇2(𝑃𝑛), there are five edge partitions, 
 𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝑃𝑛)):𝑑𝑇2(𝑃𝑛)(𝑢) = 1,𝑑𝑇2(𝑃𝑛)(𝑣) = 3�; |𝐸1| = 2     
𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝑃𝑛)):𝑑𝑇2(𝑃𝑛)(𝑢) = 2,𝑑𝑇2(𝑃𝑛)(𝑣) = 3�; |𝐸2| = 2  
𝐸3 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝑃𝑛)):𝑑𝑇2(𝑃𝑛)(𝑢) = 2,𝑑𝑇2(𝑃𝑛)(𝑣) = 4�; |𝐸3| = 2(𝑛 − 3)  
𝐸4 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝑃𝑛)):𝑑𝑇2(𝑃𝑛)(𝑢) = 3,𝑑𝑇2(𝑃𝑛)(𝑣) = 4�; |𝐸4| = 2    

 𝐸5 = {𝑢𝑣 ∈ 𝐸�𝑇2(𝑃𝑛)):𝑑𝑇2(𝑃𝑛)(𝑢) = 4,𝑑𝑇2(𝑃𝑛)(𝑣) = 4�; |𝐸5| = 𝑛 − 4.  
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Hence, 𝐻𝑍�𝑇2(𝑃𝑛)� = ∑  �𝑑𝑇2(𝑃𝑛)(𝑢) + 𝑑𝑇2(𝑃𝑛)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇2(𝑃𝑛)�  
             = 2(1 + 3)2 + 2(2 + 3)2+ 2(𝑛 − 3)(2 + 4)2 + 2(3 + 4)2 + (𝑛 − 4)(4 + 4)2  
             = 136𝑛 − 292.  

(xi) In 𝑇2�𝐾𝑟,𝑠�, there are three edge partitions, 
𝐸1 = {𝑢𝑣 ∈ 𝐸 �𝑇2�𝐾𝑟,𝑠)�:𝑑𝑇2�𝐾𝑟,𝑠�(𝑢) = 𝑟,𝑑𝑇2�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸1| = 𝑟𝑠      

𝐸2 = {𝑢𝑣 ∈ 𝐸 �𝑇2�𝐾𝑟,𝑠)�:𝑑𝑇2�𝐾𝑟,𝑠�(𝑢) = 𝑠,𝑑𝑇2�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸2| = 𝑟𝑠      

𝐸3 = {𝑢𝑣 ∈ 𝐸 �𝑇2�𝐾𝑟,𝑠)�:𝑑𝑇2�𝐾𝑟,𝑠�(𝑢) = 𝑑𝑇2�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸3| = 𝑟𝑠
2

(𝑟 + 𝑠 − 2).     

Hence, 𝐻𝑍 �𝑇2�𝐾𝑟,𝑠�� = ∑  �𝑑𝑇2�𝐾𝑟,𝑠�(𝑢) + 𝑑𝑇2�𝐾𝑟,𝑠�(𝑣)�
2

𝑢𝑣∈ 𝐸�𝑇2�𝐾𝑟,𝑠��
 

                 = 𝑟𝑠(𝑟 + 𝑟 + 𝑠)2 + 𝑟𝑠(𝑠 + 𝑟 + 𝑠)2 + 𝑟𝑠
2

(𝑟 + 𝑠 − 2)(2𝑟 + 2𝑠)2     
                 = 𝑟𝑠(2𝑟3 + 2𝑠3 + 2𝑟2𝑠 + 2𝑟𝑠2 + 𝑟2 + 𝑠2).  

(xii)  In 𝑇(𝐺), there is one edge partition, 
𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇(𝐺)):𝑑𝑇(𝐺)(𝑢) = 2𝑟,𝑑𝑇(𝐺)(𝑣) = 2𝑟�; |𝐸1| = 𝑛𝑟2

2
+ 𝑛𝑟  

Hence, 𝐻𝑍�𝑇(𝐺)� = ∑  �𝑑𝑇(𝐺)(𝑢) + 𝑑𝑇(𝐺)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇(𝐺)�    

                               = �𝑛𝑟
2

2
+ 𝑛𝑟� (2𝑟 + 2𝑟)2 

                                   = 8𝑛𝑟3(𝑟 + 2).  
(xiii) In 𝑇(𝑃𝑛), there are four edge partitions, 

𝐸1 = {𝑢𝑣 ∈ 𝐸�𝑇(𝑃𝑛)):𝑑𝑇(𝑃𝑛)(𝑢) = 2,𝑑𝑇(𝑃𝑛)(𝑣) = 3�; |𝐸1| = 2     
𝐸2 = {𝑢𝑣 ∈ 𝐸�𝑇(𝑃𝑛)):𝑑𝑇(𝑃𝑛)(𝑢) = 2,𝑑𝑇(𝑃𝑛)(𝑣) = 4�; |𝐸2| = 2  
𝐸3 = {𝑢𝑣 ∈ 𝐸�𝑇(𝑃𝑛)):𝑑𝑇(𝑃𝑛)(𝑢) = 3,𝑑𝑇(𝑃𝑛)(𝑣) = 4�; |𝐸3| = 4  
𝐸4 = {𝑢𝑣 ∈ 𝐸�𝑇(𝑃𝑛)):𝑑𝑇(𝑃𝑛)(𝑢) = 4,𝑑𝑇(𝑃𝑛)(𝑣) = 4�; |𝐸4| = 4𝑛 − 13.    
Hence, 𝐻𝑍�𝑇(𝑃𝑛)� = ∑  �𝑑𝑇(𝑃𝑛)(𝑢) + 𝑑𝑇(𝑃𝑛)(𝑣)�2𝑢𝑣∈ 𝐸�𝑇(𝑃𝑛)�  
              = 2(2 + 3)2 + 2(2 + 4)2 + 4(3 + 4)2 + (4𝑛 − 13)(4 + 4)2 
              = 256𝑛 − 514. 

(xiv)  In �𝐾𝑟,𝑠�, there are three edge partitions, 
𝐸1 = {𝑢𝑣 ∈ 𝐸 �𝑇�𝐾𝑟,𝑠)�:𝑑𝑇�𝐾𝑟,𝑠�(𝑢) = 2𝑠,𝑑𝑇�𝐾𝑟,𝑠�(𝑣) = 2𝑟� ; |𝐸1| = 𝑟𝑠      

𝐸2 = {𝑢𝑣 ∈ 𝐸 �𝑇�𝐾𝑟,𝑠)�:𝑑𝑇�𝐾𝑟,𝑠�(𝑢) = 2𝑠,𝑑𝑇�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸2| = 𝑟𝑠      

𝐸3 = {𝑢𝑣 ∈ 𝐸 �𝑇�𝐾𝑟,𝑠)�:𝑑𝑇�𝐾𝑟,𝑠�(𝑢) = 2𝑟,𝑑𝑇�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸3| = 𝑟𝑠    

𝐸4 = {𝑢𝑣 ∈ 𝐸 �𝑇�𝐾𝑟,𝑠)�:𝑑𝑇�𝐾𝑟,𝑠�(𝑢) = 𝑑𝑇�𝐾𝑟,𝑠�(𝑣) = 𝑟 + 𝑠� ; |𝐸4| = 𝑟𝑠
2

(𝑟 + 𝑠 − 2).  

Hence, 𝐻𝑍 �𝑇�𝐾𝑟,𝑠�� = ∑  �𝑑𝑇�𝐾𝑟,𝑠�(𝑢) + 𝑑𝑇�𝐾𝑟,𝑠�(𝑣)�
2

𝑢𝑣∈ 𝐸�𝑇�𝐾𝑟,𝑠��
 

                 = 𝑟𝑠(2𝑟 + 2𝑠)2 + 𝑟𝑠(2𝑠 + 𝑟 + 𝑠)2 + 𝑟𝑠(2𝑟 + 𝑟 + 𝑠)2 +   𝑟𝑠
2

(𝑟 + 𝑠 − 2)(2𝑟 + 2𝑠)2  
                 = 𝑟𝑠(2𝑟3 + 2𝑠3 + 6𝑟2𝑠 + 6𝑟𝑠2 + 10𝑠2 + 10𝑟2 + 12𝑟𝑠). 

 
Theorem 4.1: For any graph G with 𝑛 vertices and 𝑚 edges,  

(i) 𝐵1(𝐿(𝐺)) = 3𝑀1(𝐿(𝐺)) − 2𝑀1(𝐺) + 4 |𝐸(𝐺)| 
(ii) 𝐵2(𝐿(𝐺)) = 𝐻𝑍(𝐿(𝐺)) − 2𝑀1(𝐿(𝐺))   
(iii) 2𝐵1(𝐿(𝐺)) + 3𝐵2(𝐿(𝐺)) = 3𝐻𝑍(𝐿(𝐺)) − 4𝑀1(𝐺) + 8 |𝐸(𝐺)|.  

 
Proof: (i) From Theorem 2.1,  𝐵1(𝐺) = 3𝑀1(𝐺) − 4 |𝐸(𝐺)| 

       𝐵1(𝐿(𝐺)) = 3𝑀1(𝐿(𝐺)) − 4 |𝐸(𝐿(𝐺))|  
                         = 3𝑀1(𝐿(𝐺)) − 4 × 1

2
{𝑀1(𝐺) − 2 |𝐸(𝐺)|}  

                        𝐵1(𝐿(𝐺)) = 3𝑀1(𝐿(𝐺)) − 2𝑀1(𝐺) + 4 |𝐸(𝐺)|    … … … . (1) 
 

      (ii) From Theorem 2.1, 𝐵2(𝐺) = 𝐻𝑍(𝐺) − 2𝑀1(𝐺)  
                 𝐵2(𝐿(𝐺)) = 𝐻𝑍(𝐿(𝐺)) − 2𝑀1(𝐿(𝐺))  . . … … … … … … … . (2) 

 
From (1) and (2), we have   2𝐵1(𝐿(𝐺)) + 3𝐵2(𝐿(𝐺)) = 3𝐻𝑍(𝐿(𝐺)) − 4𝑀1(𝐺) + 8 |𝐸(𝐺)|. 
 
From Theorem 2.1, Propositions 3.1, 3.2, and Theorem 4.1 with their respective sections, the following results are 
obtained. 
 
 
 



V. R. Kulli1, B. Chaluvaraju*2 and H. S. Boregowda3 / The Hyper-Zagreb Index of Some Derived Graphs / IJMA- 9(1), Jan.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                     129  

 
Theorem 4.2: Let 𝐺 be any connected graph with 𝑛 ≥ 2 vertices. Then 

(i) 𝐵1(𝑆(𝐺)) = 3 𝑀1(𝐺) + 4|𝐸(𝐺)| 
(ii)  𝐵2(𝑆(𝐺)) = 𝐻𝑍�𝑆(𝐺)� − 2|𝑀1(𝑆(𝐺))| . 

 
Theorem 4.3: Let 𝐺 be any connected graph with 𝑛 ≥ 2 vertices.  Then 

(i)  𝐵1(𝑇1(𝐺)) = 12𝑀1(𝐺)  
(ii)  𝐵2(𝑇1(𝐺)) = 𝐻𝑍�𝑇1(𝐺)� − 8 𝑀1(𝐺) − 8 |𝐸(𝐺)| .  

 
Theorem 4.4: Let 𝐺 be any connected graph with 𝑛 ≥ 2 vertices, then 

(i)  𝐵1(𝑇2(𝐺)) = 13𝑀1(𝐺) + 3𝑀1(𝐿(𝐺)) − 16|𝐸(𝐺)|  
(ii)  𝐵2(𝑇2(𝐺)) = 𝐻𝑍�𝑇2(𝐺)� − 2 𝑀1(𝑇2(𝐺)) . 

 
Theorem 4.4: Let 𝐺 be any connected graph with 𝑛 ≥ 2 vertices, then 

(i) 𝐵1(𝑇(𝐺)) = 10𝑀1(𝐺) + 3𝑀1(𝐿(𝐺)) + 24|𝐸(𝐿(𝐺))| + 4|𝐸(𝐺)|   
(ii) 𝐵2(𝑇2(𝐺)) = 𝐻𝑍�𝑇(𝐺)� − 2 𝑀1(𝑇(𝐺)) .  

 
REFERENCES 

 
1. B. Basavanagoud, I. Gutman and C. S. Gali, On second Zagreb index and coindex of some derived graphs, 

Kragujevac J. Sci. 37 (2015), 113-121. 
2. M. Behzad and G. Chartrand, An Introduction to Total graphs, Coloring, Line graphs.  Proc. Symp. Rome. 

(1966), 31-33. 
3. B. Borovicanin, K. C. Das, B. Furtula and I. Gutman. Zagreb indices: Bounds and extremal graphs, in:  I. 

Gutman, B. Furtula, K. C. Das, E. Milovanovi_c and I. Milovanovic (eds.), Bounds in Chemical Graph Theory 
- Basics (pp. 67-153), Univ. Kragujevac, Kragujevac, 2017. 

4. B. Chaluvaraju, H. S. Boregowda and S. A. Diwakar, Hyper-Zagreb indices and their polynomials of some 
special kinds of windmill graphs, Int. J. Adv.  Math. 4 (2017) 21-32. 

5. B. Furtula and I. Gutman. A forgotten topological index, J. Math. Chem., 53 (2015), 1184-1190. 
6. E. Sampathkumar and S.B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Uni. Sci., 18 (1973), 

274-280. 
7. E. Sampathkumar, S.B. Chikkodimath, Semitotal graphs of a graph - II, J. Karnatak Univ. Sci., 18 (1973), 

281-284. 
8. G. H. Shirdel, H. Rezapour and A. M. Sayadi, The Hyper-Zagreb Index of Graph Operations,  Iranian Journal 

of Mathematical Chemistry, 4(2), (2013), 213- 220. 
9. I. Gutman, B. Furtula, Z. K. Vukicevic and G. Popivoda, Zagreb indices and  coindices, MATCH Commun. 

Math. Comput. Chem. 74 (2015), 5-16. 
10. I. Gutman, V. R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb    Indices. J. Int. Math. 

Virtual Inst. 7 (2017), 53–67.  
11. I. Gutman. Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351-361. 
12. I. Gutman and K. C. Das. The first Zagreb indices 30 years after, MATCH Commun. Math.Comput. Chem., 

50(2004), 83-92. 
13. I. Gutman and N. Trinajstic, Graph Theory and molecular orbitals, Total 𝜋-electron energy of alternant 

hydrocarbons, Chem. Phys. Lett. 17(1972), 535-538. 
14. F. Harary, Graph Theory, Addison Wesley, Reading Mass, (1969). 
15. R. L. Hemminger and L.W. Beineke, Line graphs and line digraphs, in L.W. Beineke and R. J. Wilson, 

Selected Topics in Graph Theory, Acad. Press Inc.,(1978), 271-305. 
16. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph 

operations, Discrete Appl. Math. 157, (2009), 804-811. 
17. V. R. Kulli, College Graph Theory, Vishwa Internat. Pub., Gulbarga, India (2012). 
18. V. R. Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(4), (2016), 

213-218. 
19. V. R. Kulli, On K hyper-Banhatti indices and coindices of graphs, International Research Journal of Pure 

Algebra, 6(5), (2016), 300-304. 
20. Nilanjan De, F-index of Total Transformation Graphs, arXiv: 1606.05989v1, (2016). 
21. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. 

 
 Source of support: Nil, Conflict of interest: None Declared. 

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal 
of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited.] 

 


