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ABSTRACT 
 

In this paper we prove a strong cyclic coupled fixed point theorem for Kannan type contractions in complex valued 
metric spaces. 
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INTRODUCTION 
 
There are many generalizations of metric spaces such as partial metric spaces, generalized metric spaces, cone metric 
spaces, and quasi metric spaces. Recently, Azam et al. [1] obtained the generalization of Banach’s contraction principle 
by introducing the concept of complex valued metric space and established some common fixed point theorems for 
mappings involving rational expressions which are not meaningful in cone metric spaces. Let ℂ be the set of complex 
numbers and 𝑧1, 𝑧2 ∈ ℂ. Define a partial order ≾ on ℂ as follows: 𝑧1 ≾ 𝑧2 if and only if Re(𝑧1)  ≾ Re(𝑧2), Im(𝑧1) ≾
 Im(𝑧2). 
Consequently, one can infer that 𝑧1 ≾ 𝑧2 if one of the following conditions is satisfied: 

C1. Re(𝑧1) = Re(𝑧2), Im(𝑧1) =  Im(𝑧2).  C2. Re(𝑧1) < 𝑅𝑒(𝑧2), Im(𝑧1) = Im(𝑧2). 
C3. Re(𝑧1) = Re(𝑧2), Im(𝑧1) < 𝐼𝑚(𝑧2).  C4. Re(𝑧1) < 𝑅𝑒(𝑧2), Im(𝑧1) < 𝐼𝑚(𝑧2). 

 
In particular, we will write z1 ⋦ z2 if z1 ≠ z2 and one of (C2), (C3), and (C4) is satisfied and we will write z1 ≺ z2 if only 
(C4) is satisfied.  
 
Definition 1.1: (Azam et al. [2011]) let X be a nonempty set whereas ℂ be the set of complex numbers. Suppose that 
the mapping d: X ×  X →  C, satisfies the following conditions:  

1. 0 ≼ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y; 
2. d(x, y) = d(y, x) for all x, y∈ X; 
3. d(x, y) ≼ d(x, z) + d (z, y), for all x, y, z ∈ X. Then d is called a complex valued metric on X and (X, d) is 

called a complex valued metric space. 
 
Definition 1.2: (Azam et al. [2011]) Let (X, d) be a complex valued metric space. (i) A point x ∈ X is called interior 
point of set A ⊆ X, whenever there exist 0 ≺ r ∈ ℂ such that B(x, r) ≔ {y ∈ 𝑋|d(x, y) ≺ r} ⊆ 𝐴 where B(x, r) is an 
open Ball. (ii) A point 𝑥 ∈ 𝑋 is called a limit of A whenever for every 0 ≺ r ∈ ℂ, B(x, r) ∩ (A – {x}) ≠ Ø. (iii) A subset 
𝐴 ⊆ 𝑋 is called open whenever each element A is an interior point of A. (iv) A sub set 𝐴 ⊆ 𝑋 is called closed whenever 
each limit point of A belongs to A. (v) A sub-basis for a Hausdorff topology τ on X is a family F = {B(x, r) │x ∈ Х and 
0 ≺  r}. 
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Definition 1.3: (Azam et al. [2011]) Let (X, d) be a complex valued metric space,{𝑥𝑛} be a sequence in X and 𝑥 ∈ 𝑋. 
(i) If for every𝑐 ∈ 𝐶, with 0 ≺ 𝑐 there is 𝑁 ∈ ℕ such that for all 𝑛 > 𝑁, d(𝑥𝑛 , x) ≺ 𝑐, then {𝑥𝑛} is said to be 
convergent, {𝑥𝑛} converges to x and x is the limit point of {𝑥𝑛}, we denote this by lim𝑛→∞ 𝑥𝑛 = 𝑥 (or) {𝑥𝑛} → x as n →
∞. (ii) If for every 𝑐 ∈ 𝐶, with 0 ≺ 𝑐 there is N ∈ ℕ such that for all 𝑛 > 𝑁, d (𝑥𝑛 , 𝑥𝑛+𝑚) ≺ 𝑐, where 𝑚 ∈ ℕ, then {𝑥𝑛} 
is said to be Cauchy sequence. (iii) If for every Cauchy sequence in X is convergent, then (X, d) is said to be a 
complete complex valued metric space. 
 
Example 1.4: Let 𝑋 = ℂ. Define the mapping d: X ×  X → ℂ by 𝑑(𝑧1, 𝑧2) = 3𝑖│𝑧1 − 𝑧2│for all 𝑧1, 𝑧2 ∈ 𝑋, then (X, d) 
is a complex valued metric space.  
 
Lemma 1.5: (Azam et al. [2011]) Let (X, d) be a complex valued metric space and let {𝑥𝑛} be a sequence in X. Then 
{𝑥𝑛} converges to x if and only if │d (𝑥𝑛 , x)│ → 0, as n → ∞. 
 
Lemma 1.6: (Azam et al. [2011]) Let (X, d) be a complex valued metric space and, let {𝑥𝑛} be a sequence in X. Then 
{𝑥𝑛} is a Cauchy sequence if and only if │d (𝑥𝑛 , 𝑥𝑛+𝑚)│ → 0, as n → ∞, where m ∈ ℕ. 
 
In this paper, we establish a strong coupled fixed point result by using cyclic coupled Kannan type contractions in 
complex valued metric spaces. A mapping f: X →  X, where (𝑋, 𝑑) is a complex valued metric space, is called a Kannan 
type mapping [2], [3] if 

 d (fx, fy) ≤ k[d(x, fx) +  d(y, fy)], for some 0 <  𝑘 < 1
2

                                                                                          (1) 
.  

Let 𝐴 and 𝐵 be two nonempty subsets of a set 𝑋. A mapping f: X →  X, is cyclic (with respect to 𝐴 and 𝐵) if           
f(A) ⊆  B and f(B)  ⊆  A. The fixed point theory of cyclic contractive mappings has a recent origin. Kirk et al. [4] in 
2003 initiated this line of research. Cyclic contractive mappings are mappings of which the contraction condition is 
only satisfied between any two point’s 𝑥 and 𝑦 with  x ∈ A and y ∈ B. The above notion of cyclic mapping is extended 
to the cases of mappings from X ×  X to X  in the following definition.  
 
Definition 1.7: Let 𝐴 and 𝐵 be two nonempty subsets of a given set 𝑋. We call any function F: X ×  X →  X such that 
F(x, y) ∈ B if x ∈ A and y ∈ B and F(x, y) ∈ A if x ∈ B and y ∈  A a cyclic mapping with respect to 𝐴 and 𝐵.  
 
Definition 1.8 [5]: An element (x, y)  ∈ X × X, where 𝑋 is any nonempty set, is called a coupled fixed point of the 
mapping F: X ×  X → X 𝑖𝑓 F(x, y) = x and F(y, x) =  y. 
 
Definition 1.9: We call the coupled fixed point in the above definition to be strong coupled fixed point if 𝑥 = 𝑦, that is, 
if (𝑥, 𝑥) = 𝑥. Combining the above concepts we define a cyclic coupled Kannan type contraction. 
 
Definition 1.10 [cyclic coupled Kannan type contraction]:  Let 𝐴 and 𝐵 be two nonempty subsets of a complex 
valued metric space (𝑋, 𝑑). We call a mapping F: X ×  X → X a cyclic coupled Kannan type contraction with respect to 
𝐴 and 𝐵 if 𝐹 is cyclic with respect to 𝐴 and 𝐵 satisfying, for some k ∈  (0, 1/2), the inequality  

d �F (x, y), F (u, v)� ≾  k �d �x, F (x, y)� +  d �u, F (u, v)��                                                                                        (2) 
where x, v ∈ A, y, u ∈  B. 
 
Theorem 1.11: Let 𝐴 and 𝐵 be two nonempty closed subsets of a complete complex valued metric space (𝑋, 𝑑). Let 
F: X × X →  X be a cyclic coupled Kannan type contraction with respect to 𝐴 and 𝐵 and A ∩  B ≠ ϕ. Then 𝐹 has a 
strong coupled fixed point in A ∩ B. 
 
Proof: Let 𝑥0 ∈ A and 𝑦0 ∈ B be any two elements and let the sequences {𝑥𝑛} 𝑎𝑛𝑑 {𝑦𝑛} be defined as  

𝑥𝑛+1 = F(𝑦𝑛 , 𝑥𝑛),𝑦𝑛+1 = F(𝑥𝑛 ,𝑦𝑛)   ∀n ≥ 0                                                                                                              (3) 
 
Then, for all  n ≥ 0, 𝑥𝑛 ∈ A and 𝑦𝑛 ∈ B. by (2), 
 
We have 

𝑑(𝑥1,𝑦1) = 𝑑�𝑥1,𝐹(𝑥1,𝑦1)� = 𝑑�𝐹(𝑦0, 𝑥0),𝐹(𝑥1,𝑦1)�                                                                                              (4) 
                ≾ 𝑘�𝑑�𝑦0 ,𝐹(𝑦0 , 𝑥0)� + 𝑑�𝑥1,𝐹(𝑥1,𝑦1)�� = 𝑘[𝑑(𝑦0, 𝑥1) + 𝑑(𝑥1,𝑦2)] 

which implies that 
𝑑(𝑥1,𝑦2) ≾ ∇𝑑(𝑦0, 𝑥1)                                                                                                                                                        (5) 

Where 0 < ∇= k
1−k

< 1                                                                                                                                                                        (6) 
𝑑(𝑦1, 𝑥2) = 𝑑�𝑦1,𝐹(𝑦1, 𝑥1)� = 𝑑�𝐹(𝑥0,𝑦0),𝐹(𝑦1, 𝑥1)�                                                                                             (7) 
                ≾ 𝑘[𝑑�𝑥0,𝐹(𝑥0,𝑦0)� + 𝑑�𝑦1,𝐹(𝑦1 , 𝑥1)�] = 𝑘[𝑑(𝑥0,𝑦1) + 𝑑(𝑦1 ,𝑥2)], 
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which implies that 

𝑑(𝑦1, 𝑥2) ≾ ∇𝑑(𝑥0,𝑦1)                                                                                                                                                        (8) 
where ∇ is the same as in (6)  
 
Again, by (2), we have 

𝑑(𝑥2,𝑦3) = 𝑑�𝑥2,𝐹(𝑥2,𝑦2)� = 𝑑�𝐹(𝑦1, 𝑥1),𝐹(𝑥2,𝑦2)�                                                                                           (9) 
                ≾ 𝑘�𝑑�𝑦1,𝐹(𝑦1, 𝑥1)� + 𝑑�𝑥2,𝐹(𝑥2,𝑦2)�� = 𝑘[𝑑(𝑦1, 𝑥2) + 𝑑(𝑥2,𝑦3)], 
𝑑(𝑥2,𝑦3) = ∇ 𝑑(𝑦1 , 𝑥2)                                                                                                                                                    (10) 

 
which, by (8), implies that 𝑑(𝑥2,𝑦3) ≾ ∇2𝑑(𝑥0,𝑦1)                                                                                                                   (11) 
where ∇ is the same as in (6). Similarly, by (2), we have 

𝑑(𝑦2, 𝑥3) = 𝑑�𝑦2,𝐹(𝑦2, 𝑥2)� = 𝑑�𝐹(𝑥1,𝑦1),𝐹(𝑦2, 𝑥2)�                                                                                          (12)  
                 ≾ 𝑘[𝑑�𝑥1,𝐹(𝑥1,𝑦1)� + 𝑑�𝑦2,𝐹(𝑦2, 𝑥2)�] = 𝑘[𝑑(𝑥1,𝑦2) + 𝑑(𝑦2, 𝑥3)], 
𝑑(𝑦2, 𝑥3) = ∇ 𝑑(𝑥1,𝑦2)                                                                                                                                                     (13)  

which implies that 𝑑(𝑦2, 𝑥3) ≾ ∇2𝑑(𝑦0, 𝑥1)                                                                                                                                 (14)  
where ∇ is the same as in (6).  
 
Also, by (2), we have 

𝑑(𝑥3,𝑦4) = 𝑑�𝑥3,𝐹(𝑥3,𝑦3)� = 𝑑�𝐹(𝑦2, 𝑥2),𝐹(𝑥3,𝑦3)�                                                                                          (15)  
                ≾ 𝑘[𝑑�𝑦2,𝐹(𝑦2, 𝑥2)� + 𝑑�𝑥3,𝐹(𝑥3,𝑦3)�] = 𝑘[𝑑(𝑦2, 𝑥3) + 𝑑(𝑥3,𝑦4)], 

 
Implies that 𝑑(𝑥3,𝑦4) ≾ ∇ 𝑑(𝑦2, 𝑥3) = ∇3𝑑(𝑦0, 𝑥1) … (16). where ∇ is the same as in (6).  
 
Similarly, by (2), we have 

𝑑(𝑦3, 𝑥4) = 𝑑�𝑦3,𝐹(𝑦3, 𝑥3)� = 𝑑�𝐹(𝑥2,𝑦2),𝐹(𝑦3 , 𝑥3)�                                                                                          (17)  
                ≾ 𝑘[𝑑�𝑥2,𝐹(𝑥2,𝑦2)� + 𝑑�𝑦3,𝐹(𝑦3, 𝑥3)�] = 𝑘[𝑑(𝑥2,𝑦3) + 𝑑(𝑦3, 𝑥4)], 
𝑑(𝑦3, 𝑥4) = ∇ 𝑑(𝑥2,𝑦3) = ∇3𝑑(𝑥0,𝑦1)                                                                                                                         (18)  

Where ∇ is the same as in (6). Let m be any integer. We assume  
𝑑(𝑥𝑛,𝑦𝑛+1) = 𝑑(𝑥𝑛 ,𝐹(𝑥𝑛 ,𝑦𝑛)) ≾ ∇n 𝑑(𝑦0 , 𝑥1)                                                                                                          (19)  
𝑑(𝑦𝑛, 𝑥𝑛+1) = 𝑑(𝑦𝑛 ,𝐹(𝑦𝑛 , 𝑥𝑛)) ≾ ∇n 𝑑(𝑥0,𝑦1)                                                                                                          (20)  

for all 𝑛 ≾ 𝑚 where n is odd and 
𝑑(𝑥𝑛,𝑦𝑛+1) = 𝑑(𝑥𝑛 ,𝐹(𝑥𝑛 ,𝑦𝑛)) ≾ ∇n 𝑑(𝑥0,𝑦1)                                                                                                          (21) 
𝑑(𝑦𝑛, 𝑥𝑛+1) = 𝑑(𝑦𝑛 ,𝐹(𝑦𝑛 , 𝑥𝑛)) ≾ ∇n 𝑑(𝑦0 , 𝑥1)                                                                                                          (22) 

for all 𝑛 ≾ 𝑚 where n is even. Let m be even. Then, by (2) and (3), we have  
𝑑(𝑥𝑚+1,𝑦𝑚+2) = 𝑑�𝑥𝑚+1,𝐹(𝑥𝑚+1,𝑦𝑚+1)� = 𝑑�𝐹(𝑦𝑚 , 𝑥𝑚),𝐹(𝑥𝑚+1,𝑦𝑚+1)�                                                   (23) 
                         ≾ 𝑘[𝑑(𝑦𝑚 , 𝑥𝑚+1) + 𝑑(𝑥𝑚+1,𝑦𝑚+2)] 

 
or by (22) we have 𝑑(𝑥𝑚+1,𝑦𝑚+2) ≾ k

1−k
[∇m𝑑(𝑦0 ,  𝑥1)] = ∇m+1 𝑑(𝑦0 , 𝑥1)                                                                        (24) 

 
Similarly, by (2) and (3), we have  

𝑑(𝑦𝑚+1, 𝑥𝑚+2) = 𝑑�𝑦𝑚+1,𝐹(𝑦𝑚+1, 𝑥𝑚+1)� = 𝑑�𝐹(𝑥𝑚,𝑦𝑚),𝐹(𝑦𝑚+1, 𝑥𝑚+1)�                                                   (25) 
                         ≾ 𝑘[𝑑(𝑥𝑚 ,𝑦𝑚+1) + 𝑑(𝑦𝑚+1, 𝑥𝑚+2)] 

 
or by (21) we have  𝑑(𝑦𝑚+1, 𝑥𝑚+2) ≾ k

1−k
[∇m𝑑(𝑥0,𝑦1)] = ∇m+1 𝑑(𝑥0,𝑦1)                                                                        (26) 

 
Again, let m be odd. Then by (2) and (3), we have 

𝑑(𝑥𝑚+1,𝑦𝑚+2) = 𝑑�𝑥𝑚+1,𝐹(𝑥𝑚+1,𝑦𝑚+1)� = 𝑑�𝐹(𝑦𝑚 , 𝑥𝑚),𝐹(𝑥𝑚+1,𝑦𝑚+1)�                                                   (27)  
                         ≾ 𝑘[𝑑(𝑦𝑚 , 𝑥𝑚+1) + 𝑑(𝑥𝑚+1,𝑦𝑚+2)] 

 
or by (20), we have 𝑑(𝑥𝑚+1,𝑦𝑚+2) ≾ k

1−k
[∇m𝑑(𝑥0,𝑦1)] = ∇m+1𝑑( 𝑥0,𝑦1)                                                                        (28) 

 
Similarly, by (2) and (3), we have  

𝑑(𝑦𝑚+1, 𝑥𝑚+2) = 𝑑�𝑦𝑚+1,𝐹(𝑦𝑚+1, 𝑥𝑚+1)� = 𝑑�𝐹(𝑥𝑚,𝑦𝑚),𝐹(𝑦𝑚+1, 𝑥𝑚+1)�                                                   (29) 
                          ≾ 𝑘[𝑑(𝑥𝑚 ,𝑦𝑚+1) + 𝑑(𝑦𝑚+1, 𝑥𝑚+2)] Or by (19), we have  
𝑑(𝑦𝑚+1, 𝑥𝑚+2) ≾ k

1−k
[∇m𝑑(𝑦0, 𝑥1)] = ∇m+1 𝑑(𝑦0, 𝑥1)                                                                                            (30)  
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Thus (19)–(22) hold for 𝑚 + 1. But we have shown in (5), (8)–(18) that this is valid for 𝑚 = 1, 2, 3. Then, by induction, 
we conclude that (19)–(22) are valid for all 𝑚. From the above we conclude that, for all odd integer 𝑛, we have 
𝑑(𝑥𝑛,𝑦𝑛+1) = 𝑑(𝑥𝑛 ,𝐹(𝑥𝑛 ,𝑦𝑛)) ≾ ∇n 𝑑(𝑦0 , 𝑥1) 

𝑑(𝑦𝑛, 𝑥𝑛+1) = 𝑑(𝑦𝑛 ,𝐹(𝑦𝑛 , 𝑥𝑛)) ≾ ∇n 𝑑(𝑥0,𝑦1)                                                                                                          (31) 
 
And for all even integer n, we have 

𝑑(𝑥𝑛,𝑦𝑛+1) = 𝑑(𝑥𝑛 ,𝐹(𝑥𝑛 ,𝑦𝑛)) ≾ ∇n 𝑑(𝑥0,𝑦1) 
𝑑(𝑦𝑛, 𝑥𝑛+1) = 𝑑(𝑦𝑛 ,𝐹(𝑦𝑛 , 𝑥𝑛)) ≾ ∇n 𝑑(𝑦0 , 𝑥1)                                                                                                         (32). 

 
By (2), we have  

𝑑(𝑥1,𝑦1) = 𝑑�𝐹(𝑦0, 𝑥0),𝐹(𝑥0,𝑦0)� ≾ 𝑘[𝑑�𝑦0 ,𝐹(𝑦0 , 𝑥0)� + 𝑑�𝑥0,𝐹(𝑥0,𝑦0)�]  
                = ∇

∇+1
[𝑑(𝑦0 , 𝑥1) + 𝑑(𝑥0,𝑦1)]                                                                                                                       (33) 

 
Again, by (2), we have  

    𝑑(𝑥2,𝑦2) = 𝑑�𝐹(𝑦1 , 𝑥1),𝐹(𝑥1,𝑦1)� ≾ 𝑘[𝑑�𝑦1,𝐹(𝑦1, 𝑥1)� + 𝑑�𝑥1,𝐹(𝑥1,𝑦1)�] 
                    = 𝑘[𝑑(𝑦1 , 𝑥2) + 𝑑(𝑥1,𝑦2)]                                                                                                                      (34) 

                    ≾ 𝑘 �𝑑
(𝑥0,𝑦1) + 𝑑(𝑦0 ,𝑥1)
(𝑏𝑦 (5) 𝑎𝑛𝑑 (8)) � = ∇2

∇+1
[𝑑(𝑦0, 𝑥1) + 𝑑(𝑥0,𝑦1)]          

 
Let, for some integer m, 𝑑(𝑥𝑚,𝑦𝑚) = tm

𝑡+1
[𝑑(𝑦0, 𝑥1) + 𝑑(𝑥0,𝑦1)]                                                                                          (35) 

 
Let m be odd. Then, by (2) and (3), we have 

 𝑑(𝑥𝑚+1,𝑦𝑚+1) = 𝑑�𝐹(𝑦𝑚, 𝑥𝑚),𝐹(𝑥𝑚,𝑦𝑚)� 
≾ 𝑘[𝑑(𝑦𝑚, 𝑥𝑚+1) + 𝑑(𝑥𝑚 ,𝑦𝑚+1)]                                                                                                    (36) 
≾ 𝑘[∇m[𝑑(𝑥0,𝑦1) + 𝑑(𝑦0, 𝑥1)]] (𝑏𝑦 (31)) 

=
∇m+1

∇ + 1
[𝑑(𝑥0,𝑦1) + 𝑑(𝑦0, 𝑥1)]     (𝑏𝑦 (6) 

 
Again, let m be even. Then, by (2) and (3), we have  

𝑑(𝑥𝑚+1,𝑦𝑚+1) = 𝑑�𝐹(𝑦𝑚, 𝑥𝑚),𝐹(𝑥𝑚,𝑦𝑚)� ≾ 𝑘[𝑑(𝑦𝑚, 𝑥𝑚+1) + 𝑑(𝑥𝑚 ,𝑦𝑚+1)]                                               (37) 
≾ 𝑘[∇m[𝑑(𝑦0, 𝑥1) + 𝑑(𝑥0,𝑦1)]] (𝑏𝑦 (31)) 

=
∇m+1

∇ + 1
[𝑑(𝑦0, 𝑥1) + 𝑑(𝑥0,𝑦1)]     (𝑏𝑦 (6)) 

 
Therefore, (35) also holds if we replace m by m + 1. But, (33) and (34) imply that (35) is true for m = 1, 2. Then, by 
induction, for all 𝑛, it follows that 

     𝑑(𝑥𝑛 ,𝑦𝑛) = ∇n

∇+1
[𝑑(𝑥0,𝑦1) + 𝑑(𝑦0, 𝑥1)]                                                                                                                 (38) 

 
Now, by (31) – (32) and (38), we have 

𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑦𝑛 ,𝑦𝑛+1) ≾ 𝑑(𝑥𝑛 ,𝑦𝑛) + 𝑑(𝑦𝑛, 𝑥𝑛+1) + 𝑑(𝑦𝑛 , 𝑥𝑛) + 𝑑(𝑥𝑛 ,𝑦𝑛+1) 
= [ 𝑑(𝑥𝑛 ,𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑥𝑛)] + [ 𝑑(𝑦𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛 ,𝑦𝑛+1) ] 

≾
2∇n

∇ + 1
[ 𝑑(𝑥0,𝑦1) + 𝑑(𝑦0, 𝑥1)] + tn[ 𝑑(𝑥0,𝑦1) + 𝑑(𝑦0, 𝑥1)]                             (39) 

 
Since  0 < 𝑡 < 1, it follows that 𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑦𝑛,𝑦𝑛+1) ≾ ℂ. This implies that {𝑥𝑛} 𝑎𝑛𝑑 {𝑦𝑛} are Cauchy 
sequences and hence are convergent. Since A and B are closed subsets {𝑥𝑛} ⊂ 𝐴 and {𝑦𝑛} ⊂ 𝐵, it follows that 

 𝑥𝑛 ⟶ 𝑥 ∈ 𝐴,  𝑦𝑛 ⟶ 𝑦 ∈ 𝐵 𝑎𝑠 𝑛 ⟶ ∞                                                                                                                        (40) 
 
Again, from (38),  𝑑�𝑥𝑛,𝑦𝑛� ⟶ 0 𝑎𝑠 𝑛 ⟶ ∞. Therefore, from (38), x = y                                                                  (41) 
 
Since 𝐴 ∩ 𝐵 ≠ ∅, then from the above it follows that 𝑥 ∈ 𝐴 ∩ 𝐵. Now, by (2) and (3), we have  
              𝑑(𝑥,𝐹(𝑥,𝑦)) ≾ 𝑑(𝑥, 𝑥𝑛+1) + 𝑑�𝑥𝑛+1,𝐹(𝑥,𝑦)� = 𝑑(𝑥, 𝑥𝑛+1) + 𝑑(𝐹(𝑦𝑛 , 𝑥𝑛),𝐹(𝑥,𝑦))                                   (42) 

                      ≾ 𝑑(𝑥, 𝑥𝑛+1) + 𝑘[𝑑(𝑦𝑛 , 𝑥𝑛+1) + 𝑑�𝑥,𝐹(𝑥,𝑦)�]        or 
  𝑑�𝑥,𝐹(𝑥,𝑦)� ≾ 1

1−𝑘
𝑑(𝑥, 𝑥𝑛+1) + 𝑘

1−𝑘
𝑑(𝑦𝑛 , 𝑥𝑛+1)                                                                                                   (43) 

 
Taking the limit as 𝑛 ⟶ ∞ in the above inequality, using (40) and (41), we obtain 𝑑�𝑥,𝐹(𝑥,𝑦)� = 0. Again, in view of 
(41), we conclude that 𝑥 = 𝐹(𝑥, 𝑥); that is, we have a strong coupled fixed point of F. 
This completes the proof of the theorem. 
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Example 1.12: Let X =  {0, 1, 2} 

d(0, 1) = d(1, 0) = i, d(1, 2)  =  d(2, 1) = 2i 
d(0, 0) = d(1, 1) = d(2, 2) = 0 
d(2, 0)  =  d(0, 2) = 3i 
A =  {0, 1}, B = {1, 2} 

 
Define 𝐹:𝑋 × 𝑋 → 𝑋, 𝐹 is cyclic with respect to 𝐴 𝑎𝑛𝑑 𝐵     

𝐹(𝛼,𝛽) = �
1,                        (𝛼,𝛽) ∈ 𝐴 × 𝐵
1,                       (𝛼,𝛽) ∈ 𝐵 × 𝐴  

      0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             
� 

𝑑�𝐹(𝑥,𝑦),𝐹(𝑢, 𝑣)� = 𝑑(1,1) = 0 
𝑑�𝐹(𝑥,𝐹(𝑥,𝑦)) + 𝑑(𝑢,𝐹(𝑢, 𝑣)� = 𝑑(𝑥, 1) + 𝑑(𝑢, 1) = {2𝑖, 𝑖, 3𝑖, 0, 4𝑖} 

 
𝐿𝑒𝑡 𝑘 = 1/3 
 
Then 𝐹(1, 1) = 1.                 
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