On ωI -continuous functions in Ideal topological spaces *N. Chandramathi¹ and K. Bhuvaneswari² ¹Department of Mathematics, Hindusthan college of Engineering and Technology, Coimbatore-32 *E-mail: mathi.chandra303@gmail.com ²Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India E-mail: drkbmaths@gmail.com (Received on: 25-08-11; Accepted on: 09-09-11) ### **ABSTRACT** In this paper, ωI -closed sets and, ωI -open sets are used to define and investigate a new class of functions and relationship between this new class and other classes of functions are established. 2000 Mathematics subject classification: 54A05, 54A10 **Key words:** ideal, local function, semi-I-open set, ω -closed, ω I-closed sets and ω I-continuity. ______ ### 1. Introduction and preliminaries: Topological ideal plays an important role in topology for several years. In 1992, Jankovic and Hamlett [6] introduced the notion of I-open sets in topological spaces .El-monsef et.al [6] investigated I-open sets and I-continuous functions introduced and investigated the notion of ω I-closed sets. Quite recently, Hatir and Noiri [7] have introduced the notion of semi-I-open sets and semi-I-continuous function to obtain a decomposition of continuity via ideals. In this paper, by using ω I-closed sets due to N. chandramathi et. al [3], we introduce the notion of ω I -continuous functions in ideal topological spaces and obtain several properties of ω I -continuity and the relationship between this function and other related functions. An ideal I on a topological space (X, τ) is a Collection of subsets of X which satisfies - (i) $A \in I$ and $B \subset A$ implies $B \in I$ and - (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space $(X, \tau,)$ with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*: \wp(X) \to \wp(X)$, called a local function [7] of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I,\tau) = \{x \in X/U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = U \in \tau \mid x \in U$. We will make use of the basic facts about the local functions without mentioning it explicitly. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$, called the *-topology, finer than τ and is defined by $cl^*(A) = A \cup A^*(I,\tau)$. When there is no chance for confusion we simply write A^* instead $A^*(I,\tau)$ and τ^* or $\tau^*(I)$ for $A^*(I,\tau)$. X^* is often a proper subset of X. The hypothesis $X = X^*$ is equivalent to the hypothesis $\tau \cap I = \emptyset$ For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau) = \{UVI: U \in \tau \text{ and } I \in I\}$, but in general $\beta(I,\tau)$ is not always a topology[10]. If is I an ideal on X, Then (X,τ,I) is called ideal space. By an ideal space we always mean an ideal topological space (X,τ,I) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will respectively denote the closure and interior of A in (X,τ,I) *N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 ### **Definition: 1.1** A subset A of a space (X, τ) is called - (i) Semi open [7] if $A \subseteq cl$ (int (A)) and semi closed if $int(cl(A)) \subseteq A$. - (ii) Pre-open [7] if $A \subseteq int(cl(A))$ and pre-closed if $cl(int(A)) \subseteq A$. - (iii) ω -closed if [7] Cl(A) \subseteq U whenever A \subseteq U and U is semi-open in X, ω -open if X - A is ω – Closed. A subset A of a space (X, τ, I) is called - (iv) Semi I -open [7] if $A \subseteq Cl^*(Int(A))$ semi–I-Closed if int $(cl^*(A)) \subseteq A$ - (v) α -I-open [7] if $A \subset Int (Cl^*(Int (A).$ ### 2. ω I – closed sets: **Definition:** 2.1 A subset A of an ideal topological space (X, τ, I) is called ωI – closed[3] if $cl^*(A) \subset U$ whenever $A \subseteq U$ and U is semi- I- open in (X, τ, I) . The complement of ωI -closed set is called ωI - open if X - Ais ωI – closed. We denote the family of all ωI – closed sets by $\omega IC(X,\tau,I)$. **Theorem: 2.1** Every open set is ωI –open. **Proof:** Let U be an open set. We need to show that U is ωI –open. For this we show that X-U is ωI –closed. Let X-U $\subset G$ where G is semi-I-Open in X. Since X-U is closed. So by [8, Theorem2.3] or $cl^*(X-U) \subseteq cl(X-U) \subset G$.this proves that X-U is ωI –closed or U is ωI –open. **Theorem: 2.2** A set A is ω I –open iff $F \subseteq \text{int}^*(A)$ whenever F is semi –I-closed and $F \subseteq A$ **Proof:** Suppose that $F \subseteq \operatorname{int}^*(A)$, where F is semi-I-closed and $F \subseteq A$.Let $A^c \subseteq U$, where U is semi-I-open .Then $U^c \subseteq A$ and U^c is semi-I-closed. Therefore, $U^c \subseteq \operatorname{int}^*(A)$. Since $U^c \subseteq \operatorname{int}^*(A)$, we have $(\operatorname{int}^*(A))^c \subseteq U$, i.e $cl^*(A^c) \subseteq U$, since $cl^*(A^c) = (int^*(A))^c$. Thus A^c is ωI -closed, i.e. A is ωI -open. **Theorem: 2.3** If A is an ω I –open set of (X, τ, I) such that int $(A) \subseteq B \subseteq A$ then B is also an ω I –open set of (X,τ,I) **Proof:** Let U be a semi-I-closed set of (X, τ, I) such that $U \subset B$. Then, $U \subset A$ is ω I –open set, we have $F \subseteq \operatorname{int}^*(A)$ but $\operatorname{int}^*(A) \subseteq \operatorname{int}^*(B)$, implies $F \subseteq \operatorname{int}^*(B)$. Therefore by theorem 2.2, B is also an ω I –open set of (X, τ, I) . **Theorem: 2.4** Let (X, τ, I) be an ideal space and A a non empty subset of X. Then A is ωI -closed if and only if $A \bigcup (X - cl^*(A))$ is ω I-closed. **Proof:** Suppose A is ω I -closed. Let U be a semi-I-open set such that $A \cup (X - cl^*(A)) \subset U$. Then $X - U \subset X - (A \bigcup (X - cl^*(A)) = cl^*(A) - A.$ Since A is ωI -closed by [4, theorem 2.10] $X - U = \phi$ and hence X = U. Thus X is the only set containing $A \bigcup (X - cl^*(A))$. This gives, $[A \bigcup (X - cl^*(A))]^* \subset X$. This proves, $A \bigcup (X - cl^*(A))$ is ωI -closed. Conversely let F be any semi-I-closed set such that $F \subset cl^*(A) - A$. Since $cl^*(A) - A = X - (A \cup (X - cl^*(A)))$. *N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 and hence $F \subset X - cl^*(A)$.since $F \subset cl^*(A) - A$ it proves that $F = \phi$ and hence $cl^*(A) \subset X - F$ and X - F is semi-I-closed. This proves that A is ω I-closed. **Theorem:** 2.5 Let (X, τ, I) be an ideal space and $A \subseteq X$. Then $A \cup (X - cl^*(A))$ is ωI -closed if and only if $cl^*(A) - A$ is ωI -open. **Proof:** Let $A \cup (X - cl^*(A))$ be ω I -closed. We show that $X - (cl^*(A) - A)$ is ω I -closed. Let U be a semi-I-open set containing $X - (cl^*(A) - A)$ Then $X - U \subseteq (cl^*(A) - A)$. By theorem [4, theorem 2.10,] $X - U = \phi$. Therefore, X is the only semi-I-open set which contains $X - (cl^*(A) - A)$ and hence $(X - (cl^*(A) - A))^* \subseteq X$. this proves $X - (cl^*(A) - A)$ is ω I -closed or $cl^*(A) - A$ is ω I -open. Conversely, let $cl^*(A) - A$ is ωI -open. Then $X - (cl^*(A) - A) = A \cup (X - cl^*(A))$ is ωI -closed. **Corollary: 2.1** Let (X, τ, I) be an ideal space and $A \subseteq X$. Then A is ωI -closed if and only if $cl^*(A) - A$ is ωI -open. **Theorem: 2.6** For a subset $A \subseteq X$ the following are equivalent: - (i) A is ωI -closed - (ii) $cl^*(A) A$ contains no non empty semi-I-closed set - (iii) $cl^*(A) A$ is ω I-open. **Proof:** (i) \Leftrightarrow (ii) by [4, theorem2.10], and (i) \Leftrightarrow (iii) by corollary above. **Theorem: 2.7** Let (X, τ, I) be an ideal space .Then every subset of X is ω I -closed if and only if every semi -I-open set is *-closed **Proof:** Suppose every subset of X is ω I -closed .Let U be semi-I-open set then U is ω I -closed and $cl^*(A) \subseteq U$ implies $U^* \subseteq U$.Hence U is *-closed. Conversely, suppose that every semi –I-open set is *-closed. Let U be a non empty subset of X contained in a semi-I-open set U. Then $A^* \subseteq U^*$ implies $A^* \subseteq U$. This proves that A is ω I –closed. ## 3. ωI -continuous functions: **Definition:** 3.1 A function $f: (X, \tau, I) \to (Y, \sigma)$ is called ωI -continuous if for every closed set V of (Y, σ) , $f^{-1}(V) \in \omega IC(X, \tau, I)$ **Definition: 3.2** An ideal topological space (X, τ, I) is said to be T-dense [14] if every subset of X is *-dense in itself. **Remark: 3.1** Every continuous function is ωI -continuous but not conversely as seen from the following example. **Example: 3.1** Let $$X = Y = \{a, b, c, d\}$$, $\tau = \sigma = \{X, \phi, \{a, b\}\}$ $I = \{\phi, \{a\}\}$. Define $f:(X,\tau,I)\to (Y,\sigma)$ by f(a)=a, f(b)=c, f(c)=b, f(d)=d. Then f is ωI -continuous but not continuous. Since $U=\{a,b\}$ is ωI -open in Y but $f^{-1}(U)=\{a,c\}$ is not open in X. *N. Chandramathi¹ and K. Bhuvaneswari²/ On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 **Definition:** 3.3 A space is (X, τ, I) called a T_{ω}^* space if every ωI -closed set in it is closed. **Theorem:** 3.1 Let (X, τ, I) be an ideal topological space, (Z, η) be topological space and (Y, σ, J) be a T_{ω}^* space. Then the composition $g \circ f: (X, \tau, I) \to (Z, \eta)$ of the ωI -continuous maps $f: (X, \tau, I) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \eta)$ is ωI -continuous. **Proof:** Let F be any closed set of (Z, η) . Then $g^{-1}(F)$ is closed in closed in (Y, σ, J) . Since g is ωI -continuous and (Y, σ, J) is a T_{ω}^* space. Since $g^{-1}(F)$ is closed in (Y, σ, J) and f is ωI -continuous, $f^{-1}(g^{-1}(F))$ is ωI -closed in (X, τ, I) . But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ and so $g \circ f$ is ωI -continuous. **Theorem:** 3.2 Let f: $(X, \tau, I) \to (Y, \sigma)$ and g: $(Y, \sigma, J) \to (Z, \mu)$ be two functions where I and J are ideals on X and Y ,respectively. Then $g \circ f$ is ωI -continuous if f is ωI -continuous and g is continuous **Proof:** Let $w \in \mu$. Then $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})(w) = f^{-1}g^{-1}(w)$ since $g^{-1}(w)$ is closed ad g is ωI -continuous. Now since f is ωI -continuous. So $f^{-1}g^{-1}(w)$ is ωI -closed. Hence $g \circ f$ is ωI -continuous. **Definition:** 3.4[1] If (X, τ, I) is an ideal topological space and A is a subset of X, we denote $\tau|_A$ the relative topology on A and $I_A = \{A \cap I : I \in I\}$ is obviously an ideal on A. **Theorem:** 3.3 Let f: $(X, \tau, I) \to (Y, \sigma)$ be a ωI -continuous function and let A be * - closed, then the restriction $f|_A: (A, \tau|_A, I|_A) \to (Y, \sigma)$ is ωI -continuous. **Proof**: Let V be any closed subset of (Y, σ) since f is ωI -continuous we have $f^{-1}(V)$ is ωI -closed. Also, $(f|_A)^{-1} = f^{-1}(V) \cap A$. Since A is *-closed, then by [4, theorem 2.6] $f^{-1}(V) \cap A \in \omega IC(X, \tau)$. On the other hand $(f|_A)^{-1} = A \cap f^{-1}(V)$ and $(f|_A)^{-1} \in \omega IC(A, \tau|_A, I|_A)$. This shows that $f|_A : (A, \tau|_A, I|_A)$ is ωI -continuous. **Theorem:** 3.4 Let $f: (X, \tau, I) \to (Y, \sigma, J)$ be a function and let $\{U_\alpha : \alpha \in \Delta\}$ be an open cover of a T-dense space X. If the restriction function $f|_{U\alpha}$ is αI -continuous for each $\alpha \in \Delta$, then f is αI -continuous. **Proof:** Let V be an arbitrary open set in (Y, σ, J) . Then for each $\alpha \in \Delta$, we have $\left[(f \mid U_{\alpha})^{-1}(V) \right] = (f^{-1}(V) \cap U_{\alpha})$. Because $f \mid_{U\alpha}$ is αI -continuous, therefore $f^{-1}(V) \cap U_{\alpha}$ is αI -open in X for each $\alpha \in \Delta$. Since for each $\alpha \in \Delta$, U_{α} is open in X, $f^{-1}(V) = \bigcup_{\alpha \in \Delta} (f^{-1}(V) \cap U_{\alpha})$ is αI -open. by [4, theorem 2.5] $\left[(f \mid U_{\alpha})^{-1}(V) \right]$ is αI -open. Then by proposition $f^{-1}(V)$ is αI -open. Hence f is αI -continuous. **Definition:** 3.5 Let x be a point of (X, τ, I) and W be a subset of (X, τ, I) . Then W is called an ωI -neighborhood of x in (X, τ, I) if there exists an ωI -open set U of (X, τ, I) such that $x \in U \subseteq W$. **Theorem:** 3.5 Let (X, τ, I) be a T-dense. Then for a function $f: (X, \tau, I) \to (Y, \sigma)$, the following are equivalent . (i) The function $f: \omega I$ -continuous. (ii) The inverse image of each open set is ωI -open. *N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 - (iii) For each point x in (X, τ, I) and each open set V in (Y, σ) with $f(x) \in V$, there is an ωI Open set U in (X, τ, I) such that $x \in U, f(U) \subseteq V$. - (iv) The inverse image of each closed set in (Y, σ) is ωI -closed. - (v) For each x in (X, τ, I) , the inverse of every neighborhood of f(x) is an ωI -neighborhood of x. - (vi) For each x in (X, τ, I) and each neighborhood N of f(x), there is an ωI -neighborhood W of x such that $f(W) \subseteq N$. - (vii) For each subset A of (X, τ, I) , $f(\omega I cl(A)) \subseteq cl(f(A))$ - (viii) For each subset B of (Y, σ) , $\omega I cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$. **Proof:** The implications $(i) \Leftrightarrow (ii)$: This follows from Theorem 3.1. $(i)\Leftrightarrow (iii)$ Suppose that (iii) holds and let V be an open set $\operatorname{in}(Y,\sigma)$ and let $x\in f^{-1}(V)$. Then $f(x)\in V$ and thus there exists an $\operatorname{\omega} I$ -open set U, such that $x\in U_x$ and $f(U_x)\subseteq V$, Now, $x\in U_x\subseteq f^{-1}(V)$. Hence $f^{-1}(V)=\bigcup_{v\in f^{-1}(V)}U_x$ and so by theorem 2.6 [4], $f^{-1}(V)$ is $\operatorname{\omega} I$ -open in $\operatorname{and}(X,\tau,I)$ therefore, f is $\operatorname{\omega} I$ -continuous. Conversely, suppose that (i) holds and let $f(x) \in V$. since f is ωI -continuous, $f^{-1}(V)$ is ωI -open in X. By putting $U = f^{-1}(V)$, we have $x \in U$ and - $(ii) \Leftrightarrow (iv)$ This result follows from the fact that if A is a subset of (Y, σ) , then $f^{-1}(A^c) = (f^{-1}(A))^c$. - $(ii) \to (v)$: For x in (X, τ, I) let N be a neighborhood of f(x). Then there exists an open set U in (Y, σ) such that $f(x) \in U \subseteq N$. Consequently, $f^{-1}(U)$ is an αI -open set in (X, τ, I) and $f^{-1}(f(x)) \in f^{-1}(U) \subseteq f^{-1}(N)$. that is $x \in f^{-1}(U) \subseteq f^{-1}(N)$. Thus $f^{-1}(N)$ is an neighborhood of x. - $(v) \to (vi)$. Let $x \in X$ and N be a neighborhood of f(x). Then by assumption, $W = f^{-1}(N)$ is an ωI -neighborhood of x and $f(W) = f(f^{-1}(N)) \subseteq N$. - $(vi) \to (iii)$. For x in (X, τ, I) , Let V be an open set containing f(x). Then V is a neighborhood of f(x), so by assumption, there exists an ωI neighborhood W of x such that $f(W) \subseteq V$. Hence there exists an ωI open set U in (X, τ, I) such that $x \in U \subseteq W$ and so $f(U) \subseteq f(W) \subseteq V$. - $(vii) \Leftrightarrow (iv)$: Suppose that (iv) holds and let A be a subset of (X, τ, I) . Since $A \subseteq f^{-1}(f(A))$, we have $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A)) is a closed set in (Y, σ) , by assumption $f^{-1}(cl(f(A)))$ is an ωI -closed set containing A. Consequently, $\omega I cl(A) \subseteq f^{-1}(cl(f(A)))$. Thus $f(\omega I cl(A)) \subseteq f(f^{-1}(cl(f(A)))) \subseteq cl(f(A))$. Conversely, suppose that (vii) holds for any subset A of (X, τ, I) . Let F be a closed subset of (Y, σ) . Then by assumption, i.e. $f(\omega I - cl(f^{-1}(F))) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$. $(\omega I - cl(f^{-1}(F))) \subseteq f^{-1}(F)$ and so $f^{-1}(F)$ is ωI -closed. $(vii) \Leftrightarrow (viii)$: Suppose that (vii) holds and B be any subset of (Y, σ) . Then replacing A by in $f^{-1}(B)$ in (vii), we obtain $f(\omega I - cl(f^{-1}(B)) \subseteq cl(f(f^{-1}(B)) \subseteq cl(B))$ i.e $(\omega I - cl(f^{-1}(B)) \subseteq (f^{-1}cl(B)))$. *N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 Conversely, suppose that (viii) holds. Let B=f(A) where A is a subset of (X, τ, I) . Then we have, $(\omega I - cl(A)) \subseteq (\omega I - cl(f^{-1}(B))) \subseteq f^{-1}(cl(f(A)))$ and so $f(\omega I - cl(A)) \subseteq (cl(f(A)))$. **Theorem:** 3.6 If (X, τ, I) is a T-dense space and a function $f: (X, \tau, I) \to (Y, \sigma, J)$ is ωI -continuous, then the graph function $g: X \to X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is ωI -continuous. **Proof:** Let f be ωI -continuous. Now let $x \in X$ and let W be any open set in $X \times Y$ containing g(x) = (x, f(x)). Then there exists a basic open set $U \times V$ such that $g(x) \subset U \times V \subset W$. Since f is ωI -continuous, there exists a ωI -open set U_1 in X such that $x \in U_1 \subset X$ and $f(U_1) \subset V$. Then by [4,Theorem 2.5]s $U_1 \cap U \in \omega IO(X,\tau)$ and $U_1 \cap U \subset U$, then $g(U_1 \cap U) \subset U \times V \subset W$. This shows that g is ωI -continuous. **Theorem:** 3.7 A function $f: (X, \tau) \to (Y, \sigma, J)$ is ωI -continuous, if the graph function $g: X \to X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is ωI -continuous. **Proof:** Suppose that g is ωI -continuous and let V be open set in Y containing f(x). Then $X \times V$ is open set in $X \times Y$ and by ωI -continuous of g, there exists a ωI -open set U containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. This shows that f is ωI -continuous. **Theorem:** 3.8 Let $\{X_{\alpha}: \alpha \in \Delta \}$ be any family of ideal topological spaces. If $f: (X, \tau, I) \to (\prod_{\alpha \in \Delta} X_{\alpha}, \sigma)$ is a ωI -continuous function, then $P_{\alpha} \circ f: X \to X_{\alpha}$ is ωI -continuous for each $\alpha \in \Delta$, where P_{α} is the projection of $\prod X_{\alpha}$ onto X_{α} . **Proof:** We will consider a fixed $\alpha_{\circ} \in \Delta$. Let $G_{\alpha_{\circ}}$ be an open set of $X_{\alpha_{\circ}}$. Then $(P_{\alpha_{\circ}})^{-1}(G_{\alpha_{\circ}})$ is open in $\prod X_{\alpha}$. Since f is ∂I -continuous, $f^{-1}((P_{\alpha_{\circ}})^{-1}(G_{\alpha_{\circ}})) = (P_{\alpha_{\circ}} \circ f)^{-1}(G_{\alpha_{\circ}})$ is ∂I -open in X. Thus, $P_{\alpha} \circ f$ is ∂I -continuous. **Theorem: 3.9** For any bijection $f: (X, \mathcal{T}) \to (Y, \sigma, I)$, the following statements are equivalent: - (i) $f^{-1}:(Y,\sigma,I)\to (X,\tau)$ is ωI -continuous. - (ii) f(U) is ωI -open in Y for every open set U in X. - (ii) f(U) is ωI -closed in Y for every closed set U in X. **Proof:** The proof is trivial. **Definition:** 3.7 A collection $\{A_{\alpha}: \alpha \mathcal{E} \nabla\}$ of ωI – open set in an ideal topological Space X is called a ωI -open cover of a subset B of X is $B \subset \bigcup \{A_{\alpha}: \alpha \mathcal{E} \nabla\}$ holds. **Definition:** 3.8 An ideal topological space (X, τ, I) is called ω I -compact if for every ω I -open cover $\{W_{\alpha} : \alpha \in \Delta\}$ of (X, τ, I) there exists a finite subset Δ_{\circ} of Δ such that $(X - \cup \{W_{\alpha} : \alpha \in \Delta_{\circ}\}) \in I$. **Lemma: 3.1** [Newcomb, 1967]: For any function $f:(X,\tau,I) \to (Y,\tau,), \ f(I)$ is ideal on Y. **Theorem: 3.10** The image of a ωI -compact space under a ωI -continuous surjective function is f(I) -compact. **Proof:** Let $f: (X, \tau, I) \to (Y, \tau, I)$ be an ωI -continuous subjective function and $\{A_\alpha : \alpha \varepsilon \nabla\}$ be an open cover of Y. Then $\{f^{-1}(A_\alpha) : \alpha \varepsilon \nabla\}$ is an ωI -open cover of X. From the assumption, there exists a finite subset ∇_0 of ∇ such that $X - \bigcup \{f^{-1}(A_\alpha) : \alpha \in \nabla_0 \} \in I$. Therefore, $Y - \bigcup \{A_\alpha : \alpha \in \nabla_0 \} \in f(I)$ which shows that $(Y, \sigma, f(I))$ is f(I) -compact. *N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 **Definition:** 3.9 An ideal topological space (X, τ, I) is said to be ωI – connected if X cannot be written as the disjoint union of two non – empty ωI – open sets. A subset of is ωI – connected if it is ωI – connected as a subspace. **Definition: 3.10** An ideal topological space (X, τ, I) is called ωI -normal if for every pair of disjoint ωI -closed sets A and B of (X, τ, I) , there exist disjoint ωI -open sets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$ **Theorem:** 3.11 If $f: (X, \tau, I) \to (Y, \tau)$ is a ωI -continuous, closed injection and Y is normal, then X is ωI -normal. **Proof:** Let F_1 and F_2 be disjoint ωI - closed subsets of X.Since f is closed and injective, are disjoint closed subsets of Y. Since Y is ωI - normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint ωI -closed sets V_1 and V_2 respectively. Hence $F_1 \subset f^{-1}(V_1)$, $F_2 \subset f^{-1}(V_2)$, and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Since f is ωI -continuous and $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are ωI -open in (X, τ, I) , we have (X, τ, I) is ωI -normal. **Theorem: 3.12** An ωI -continuous image of ωI -connected space is connected. **Proof:** Let $f: (X, \tau, I) \to (Y, \tau)$ be a ωI - continuous function of a ωI -connected space X onto a topological space Y. If possible .Let Y be disconnected. Let A and B form a disconnected set of Y. Then A and B are clopen and $Y = A \cup B$, where $A \cap B = \phi$.since f is ωI -continuous, $X = f^{-1}(Y) == f^{-1}(A \cup B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty ωI -closed sets in X. Also, $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$. Hence X is non ωI -connected, which is a contradiction. Therefore, Y is connected. **Theorem:** 3.12 f: $(X, \tau, I) \to (Y, \sigma, J)$ and g: $(Y, \sigma, J) \to (Z, \eta)$ are functions. Then their composition $g \circ f: (X, \tau, I) \to (Z, \eta)$ is ωI - continuous if f is ωI - continuous and g is continuous. **Proof:** Let W be any closed set in (Z, η) . Since g is continuous, $g^{-1}(W)$ is closed in (Y, σ) . Since f is ωI continuous, then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ωI -closed in (X, τ, I) and hence $(g \circ f)$ is ωI -continuous. ### **Acknowledgement:** We, the authors thank the referee for his help in improving the quality of this paper. ### **References:** - [1] A. Acikgoz and T. Noiri, S. Yuksel, on αI –open sets and αI –Continuous Functions Acta Math. Hungar, 105, (1-2) (2004), 27-37 - [2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375–382. - [3] N. chandramathi, K. Bhuvaneswari and S. Bharathi, on ωI -closed sets in ideal topological spaces, Proceedings of International Conference on Mathematics and computer science, ICMCS2011, Pg.No:334-338. - [4] N. chandramathi and K. Bhuvaneswari, ωI -closed sets via local function (submitted) - [5] E. Hatir and T. Noiri, on decompositions of continuity via idealization, Acta. Math. Hungar., 96 (2002), 341 349. - [6] E. Hatir and T. Noiri, on βI open sets and a decomposition of Almost-I- continuity, Bull. Malays Math. Sci. Soc. (2)), 29(1) (2006) 119-124. - [7] E. Hatir and T. Noiri, on semi-I –open sets and semi-I –Continuous Functions, Acta Math. Hungar, 107(4) (2005), 345 353. - *N. Chandramathi¹ and K. Bhuvaneswari²/ On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635 - [8] Janković, D., Hamlett, T. R., New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295-310. - [9] Janković, D.S and I. L. Reily, On semi Separation properties, Indian J.Pure and Appl.Math., 16(19850, 957-964 - [10] Dontchev. J, Ganster. M and Noiri.T, Unified operation approach of generalized closed sets via topological ideals, Math. Japon, 49(3),395-401.1999 - [11] A. Keskin and S. Yuksel, on **-spaces, JFS, VOL29, (2006), 12-24. - [12] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89–96. - [13] M. Khan and M. Hamza , I_{s*g} -closed sets in ideal topological spaces, Global Journal of Pure and applied Mathematics, ISSN 0973-1768 Volume 7, Number 1(2011), pp.89-99 - [14] M. Khan and T. Noiri, On I_{s*g} -continuous functions in ideal topological spaces, European Journal of Pure and applied Mathematics, ISSN Volume 4, Number 3(2011) ,237-243 ISSN 1307-5543 - [15] M. Navaneethakrishnan, J.Paulrajand D.Sivaraj, Ig-Normal and Ig-Regular spaces. Acta Math.Hunger. 2009 - [16] Metin Akada g, on b-I –open sets and b-I –Continuous Functions, Internat. J. Math. & Math. Sci. Vol. 2007, Article ID75721, 13 pages. - [17] V. Renuka Devi, D. sivaraj and T. Tamizh Chelvam, Codense and completely condense ideals, Acta math. Hungarica 108(3)(20050, 197-205 - [18] P. Sundaram and M. Sheik John, weakly closed sets and weak continuous maps in topological spaces, proc.82nd Indian Sci. Cong. Calcutta (1995), 49 - [19] S. Yuksel, A. Acikgoz and T. Noiri, On δ I continuous functions, Turk J. Math., 29 (2005), 39-51. *******