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ABSTRACT 
This article deals with the complete synchronization and anti synchronization behavior of the magnetic binary 
problem when the charged particle has the variable mass, both primaries are the oblate bodies and transferring the 
origin of the coordinate system to the small primary. Here we have designed a non linear controller based on the 
Lyapunov stability theory.  Numerical simulations are  performed to  plot  time  series  analysis  graphs  of the  master 
system  and  the  slave  system  which  further illustrate the effectiveness of the  proposed  control  technique. For 
validation of results by numerical simulations we used the mathematica when the primaries are Sun and Earth. 
.  
Key words: Magnetic binary problem; complete synchronization; Lyapunov stability theory; Jean’s Law; variable 
mass. 
 
 
1. INTRODUCTION 
 
Pec-ora and Carroll introduced a method to synchronize two identical chaotic systems with deferent initial conditions 
[19] and they demonstrated that chaotic synchronization could be achieved by driving or replacing one of the variables 
of a chaotic system with a variable of another similar chaotic device, the active control scheme proposed by E. W. Bai 
and K. E. Lonngren [2] has been received and successfully implemented in almost all the field of nonlinear sciences for 
synchronization for different systems with various techniques. 
 
The synchronization problem via nonlinear control scheme is studied by Amir Abbas Emadzadeh, and Mohammad 
Haeri [1], M. Mossa Al-sawalha, M.S.M. Noorani in [11] and Mohd. Arif [15], [16] and [17] Chen and Han [5], Chen 
[6], Ju H. Park [9]. 
 
Jeans [10] has studied the two-body problem with variable mass. Omarov [18] has also discussed the restricted problem 
of perturbed motion of two bodies with variable mass. Shrivastava and Ishwar [20] have studied the circular restricted 
three body problem with variable mass with the assumption that the mass of the infinitesimal body varies with respect 
to time. Singh et al. [8] has discussed the non-linear stability of equilibrium points in the restricted three body with 
variable mass. 
 
So many cases of the magnetic binaries problem have been studied by A. Mavragnais [12], [13] and [14], Bhatnagar     
et al. [3] and Bhatnagar and Mohd. Arif [4]. 
 
In this article we have discussed the complete synchronization and anti synchronization behavior of the magnetic 
binary problem by taking into consideration the primaries as the oblate bodies when the charged particle has the 
variable mass and transferring the origin of the coordinate system to the small primary, here we have designed a 
nonlinear controller based on the Lyapunov stability in both cases. The system under consideration is chaotic for some 
values of parameter involved in the system. Here two systems (master and slave) are synchronized and start with 
deferent initial conditions. Hence the slave chaotic system completely traces the dynamics of the master system in the 
course of time. 
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2. EQUATION OF MOTION 
 
The equation of motion in the rotating coordinate system including the effect of the gravitational forces of the primaries 
on the charged particle P with variable mass 𝑚 written as: (Mohd. Arif [17]) 
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Therefore, instead of dealing with the full equations of planar magnetic-binaries problem it makes more sense to work 
with a system of equations that describe the motion of the charged particle P in the vicinity of the secondary mass, this 
type of system was derived by Hill [7] By making some assumptions and transferring the origin of the coordinate 
system to the small primary the equations of motion (1) and (2), become 
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𝑀1

  (𝑀1, 𝑀2 are the magnetic moments of the primaries which 
lies perpendicular to the plane of the motion). 
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The equations of the transformation corresponding to a translation along the 𝜉-axis are given by  

α = 𝜉 + 1 − µ, 
𝜂 = 𝜁. 

This transformation locates the smaller primary at the origin of the new system and the bigger primary is at α = 1,  
𝜁 = 0. 
 
3. COMPLETE SYNCRONIZATION   
 
Let 

α = α1,   α′ = α2,  𝜁 = α3,  𝜁′ = α4 
Then the equation (3) and  (4) can be written as:  
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 𝜌12 = ((α1 − √𝛾)2  +  α32),  𝜌22 = (α12 + α32). 
The system (6, 7, 8 and 9) is the master system. The state orbits of this system are shown in Figure (1) this figure shows 
that the system is chaotic. 

 
Figure-1 

 
Corresponding to master system (6,7,8 and 9), the identical slave system is defined as: 
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where 𝑣𝑖(𝑡); 𝑖 =1 ,2,3,4 are control functions to be determined.  
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 𝜌12 = ((α21 − √𝛾)2  +  α232),  𝜌22 = (α212 + α232). 
 α𝑖; i = 1, 2, 3, 4 be the synchronization errors. From (6) to (13), we obtain the error dynamics as follows: 
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Lyapunov stability theory state that when controller satisfies the assumption with 𝑉(𝑒) =  1

2
 𝑒𝑡  𝑒 a positive definite 

function and the first derivative of this function 𝑉′ < 0 the chaos synchronization of two identical systems (master and 
slave) for different initial conditions is achieved.  
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Therefore, if we choose the controller 𝑣 as follows,  
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Then  
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Hence the error state   

lim
𝑡→∞

‖𝑒(𝑡)‖ = 0 
which gives asymptotic stability of the system. This means that the controlled chaotic systems (master and slave) are 
synchronized for deferent initial conditions.  

 
4. NUMERICAL SIMULATION 

 
We select the parameters = 3.0034609314 × 10−6, 𝛾 =.0001, 𝛽 =.1 and 𝜆=1, with the different initial conditions  for 
master and slave systems. Simulation results for uncoupled system are presented in figures. 2, 4, 6 and 8 and that of 
controlled system are shown in figures.3, 5, 7 and 9 respectively..  
 
It can be seen from the figures that the chaos-synchronization errors converge to zero rapidly.  
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Figure-4                                                                                  Figure-5 
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Figure-6                                                                               Figure-7 

 

                                                                                           

               
Figure-8                                                                                   Figure-9 

                                                                                                                                                                                                                                                                                                                                                                      
5. ANTI SYNCRONIZATION  
 
To observe anti-synchronization between the master and the slave system, let 𝐸𝑖 = α2𝑖 +  α𝑖; i = 1, 2, 3, 4 be the 
synchronization errors. Now from (6) to (13), we obtain the error dynamics as. 
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Therefore, if we choose the controller 𝑣 as follows,  

𝑣11 = −𝐸1 −
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 𝐸2 − 𝐸2                                                                                                                                               (27) 
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Then  

𝑉′ = −𝐸12 − 𝐸22 − 𝐸32 − 𝐸42 < 0                                                                                                                 (31) 
 
Hence the error state   

lim
𝑡→∞

‖𝐸(𝑡)‖ = 0 
 
which gives asymptotic stability of the system. This means that the controlled chaotic systems (master and slave) are  
Anti synchronized for deferent  initial conditions.  

 
6. NUMERICAL SIMULATION 

 
We select the parameters= 3.0034609314 × 10−6, 𝛾 =.0001, 𝛽 =.1 and 𝜆=1 with the different initial conditions for 
master and slave systems and anti synchronization is achieved between the master and slave systems. Time Series 
Analysis graphs of the above are shown next to each via figures 10 to 13. 
 

3 23 3 23

5 10 15 20 25 3 3 5 1 15 2

15

10

5

5

10

15

4 24 4 24

5 10 15 2 25 3 3

4

2

2

4

5 10 1 20

400

200

200

400



Mohd. Arif / Syncronization Behaviour of the Magnetic Binary Problem with Variable Mass / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                        6  

 

                                                           

                   
Figure-10                                                                                     Figure-11 

   

                                                                

              
Figure-12                                                                          Figure-13 

 
7.  CONCLUSION 
 
An investigation on complete synchronization and anti synchronization behavior of the magnetic binary problem when 
the charged particle has the variable mass, both primaries are the oblate bodies and transferring the origin of the 
coordinate system to the small primary via  non linear controller based on the Lyapunov stability theory have been 
made. Here two systems (master and slave) are compete synchronized and start with deferent initial conditions. This 
problem may be treated as the design of control laws for chaotic slave system using the known information of the 
master system so as to ensure that the controlled receiver synchronizes with master system. Hence the slave chaotic 
system completely traces the dynamics of the master system in the course of time. For validation of results by 
numerical simulations we used the mathematica when the primaries are Sun and Earth. 
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