International Journal of Mathematical Archive-9(2), 2018, 23-28 MAAvailable online through www.ijma.info ISSN 2229 - 5046 #### SOME GRAPH LABELINGS IN THE FRAMEWORK OF TRIPLICATION # S. BALA*1, K. THIRUSANGU² AND D. SURESH³ ^{1,2}S.I.V.E.T. College, Gowrivakkam, Chennai – 600 073, India. ³Hindustan College of Arts and Science, Kelambakkam, Padur, Chennai - 603103, India. (Received On: 27-12-17; Revised & Accepted On: 14-01-18) #### **ABSTRACT** In this paper, we investigate the existence of Z_3 -edge magic labeling, total Z_3 -edge magic labeling and n – edge magic labeling for the extended triplicate graph of comb by presenting algorithms. **Keywords:** Graph labeling, Z₃-edge magic labeling, n-Edge Magic Labeling. #### 1 INTRODUCTION Graph theory has various applications in the field of computer programming and networking, marketing and communications, business administration and so on. Some major research topics in graph theory are Graph coloring, Spanning trees, Planar graphs, Networks and Graph labeling. In 1967, Rosa introduced the concept of graph labeling [9]. Labeled graphs serve as useful models for broad range of applications such as coding theory, X-ray, crystallography, radar, astronomy, circuit design, communication networks and models and so on. A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). If the domain of mapping is the set of vertices(edges) then the labeling is called a vertex(an edge)labeling. Sedlacek has introduced the concept of A-magic graph [10]. A graph is called a A-magic graph if the edges have distinct non-negative labels which satisfies the condition that the sum of the labels of the edges incident to a particular vertex is the same for all vertices. Chou and Lee investigated the concept of Z_3 -magic graphs [3]. A graph G admits Z_3 -magic labeling, if there exists a function f from E to $\{1, 2\}$ such that the sum of the labels on the edges incident at each vertex $v \in V$ is a constant. Jayapriya and Thirusangu introduced and proved the existence of 0-Edge magic labeling for some class of graphs [5]. Motivated by 0-Edge Magic Labeling Neelam Kumari, and Seema Mehra introduced n-Edge Magic Labeling and proved the existence for certain graphs such as P_t , C_t , $S_{m,t}$ (i.e. double star) etc., [8]. A graph G(V, E) is said to admit n - edge magic labeling if there exists a function f from V to $\{-1, n+1\}$ such that the induced function f from E to $\{n\}$ defined as $f^*(v_iv_j) = \{f(v_i) + f(v_j)\} = n$, a constant for all edges $v_iv_j \in E$ and v_j is adjacent with v_i . In 2011, Bala and Thirusangu introduced the concept of extended triplicate graph of a path and proved the existence of E-Cordial and Z_3 –magic labelings [2]. Let $V = \{v_1, v_2, ..., v_{n+1}\}$ and $E = \{e_1, e_2,, e_n\}$ be the vertex and Edge set of a path P_n . For every $v_i \in V$, construct an ordered triple $\{v_i, v_i^{'}, v_i^{''}\}$ where $1 \le i \le n+1$ and for every edge $v_i v_j \in E$, construct four edges $v_i v_j^{'}, v_j^{'}, v_i^{''}, v_j^{'}, v_i^{''}$ and $v_i^{'}, v_j^{''}$ where j = i+1, then the graph with this vertex set and edge set is called a Triplicate Graph of a path P_n . It is denoted by $TG(P_n)$. Clearly the Triplicate graph $TG(P_n)$ is disconnected. Let $V_1 = \{v_1, v_2, ..., v_{3n+1}\}$ and $E_1 = \{e_1, e_2, ..., e_{4n}\}$ be the vertex and edge set of $TG(P_n)$. If n is odd, include a new edge (v_{n+1}, v_1) and if n is even, include a new edge (v_n, v_1) in the edge set of $TG(P_n)$. This graph is called the Extended Triplicate of the path P_n and it is denoted by $ETG(P_n)$. In 2016, Sutha, Thirusangu and Bala proved some E-Cordial labelings on Extended Duplicate Graph of Comb Graph [11]. Let P_m , $m \ge 3$ be a path graph with m vertices and m-1 edges. Comb graph is defined as $P_m\Theta$ mK_1 . It is denoted as $(Comb)_m$. Denote the vertex set and edge set as $V_1 = \{(v_i \cup u_i)/1 \le i \le m\}$ and $E_1 = \{(v_i \ v_j \cup v_i \ u_i)/1 \le i \le m\}$. Clearly it has 2m vertices and 2m-1 edges. Motivated by the study, in this paper we introduce a new graph called extended triplicate graph of comb and prove the existence of Z_3 – edge magic labeling, total Z_3 -edge magic labeling and n-edge magic labeling for the extended triplicate graph of a comb. Throughout this work, graph G = (V, E), we mean a simple, finite, connected and undirected graph with p vertices and q edges. #### 2. STRUCTURE OF THE EXTENDED TRIPLICATE GRAPH OF COMB In this section, we discuss about a new class of graph called the extended triplicate graph of comb and provide the structure of the extended triplicate graph of comb by presenting algorithm. ``` Algorithm 2.1: Input: Comb graph procedure (structure of TG (Comb)_m) for i = 1 to m X \leftarrow \{v_i, v_i, v_i^{"}, u_i, u_i, u_i^{"}\} end for fori = 1 to m-1 do E_1 \leftarrow (u_i \; u_{i+1} \; \dot{} \; \mathsf{U} u_i \; u_{i+1} \; \ddot{} \;) end for fori = 2 to m do E_2 \leftarrow (u_i u_{i-1} u_{i-1} u_{i-1}) end for for i = 1 to m do E_3 \leftarrow (u_i v_i \cup v_i u_i \cup v_i u_i \cup u_i v_i) end for Y \leftarrow E_1 \cup E_2 \cup E_3 end procedure Output: TG(Comb)_m ``` From the structure of $TG(Comb)_m$, it is clear that the triplicate graph of a comb is disconnected with 6m vertices and 8m-4edges. To make it as a connected graph, include a new edge $v_I v_m$ to the edge set of $TG(Comb)_m$ if $m \equiv 0 \pmod 2$ and if $m \equiv 1 \pmod 2$, include a new edge $v_I u_m$ in the edge set of $TG(Comb)_m$. This new graph is called the Extended Triplicate graph of Comb and it is denoted by ETG $(Comb)_m$. By the construction, the extended triplicate graph of comb has 6m vertices and 8m-3 edges. **Illustration 2.1:** The structure of ETG(Comb)₅ is shown below in figure 1: #### 3. Z3-EDGE MAGIC LABELING and TOTAL Z3-EDGE MAGIC LABELING In this section we prove the existence of Z_3 - edge magic labeling and total Z_3 - edge magic labeling for $ETG(Comb)_m$ by presenting algorithms. ## Algorithm 3.1: #### Input: Extended triplicate graph of Comb **Output:** labeled vertices of $ETG(Comb)_m$ **Theorem 3.1:** ETG(Comb)_m admits Z_3 -edge magic labeling. **Proof:** From the construction of the extended triplicate graph of a comb, we know that $ETG(Comb)_m$ has 6m vertices and 8m-3 edges. The vertices are labeled by defining a function $f: V \rightarrow \{1, 2\}$ as given in algorithm 3.1 In order to obtain the labels for the edges, define the induced map f^* : $E \rightarrow \{0, 1, 2\}$ such that for any vertex v_i , $f^*(v_iv_j) = \{f(v_i) + f(v_j)\} \pmod{3}$ where v_j is adjacent with v_i . Thus for all $v_i v_j \in V$, the induced function yields a constant '0'. Hence the extended triplicate graph of comb ETG(Comb)_m admits Z₃-edge magic labeling. **Illustration 3.1:** ETG (Comb)₄ and its Z_3 -edge magic labeling is shown in figure 2. # Algorithm 3.2: Input: Extended triplicate graph of comb ``` Procedure (total Z₃ - edge magic labeling for ETG(Comb)_m) for i = 1 to m do V \leftarrow \{ v_i, v_i, v_i^*, u_i, u_i, u_i^*, u_i^* \} end for for i = 1 to m do \begin{array}{cccc} u_i \leftarrow u_i & \leftarrow v_i \leftarrow 2 \\ v_i \leftarrow v_i & \leftarrow 1 \end{array} end for for i = 1 to m-1 do u_i u'_{i+1} \leftarrow u'_i u''_{i+1} \leftarrow 1 end for for i = 2 to m do u_i u'_{i-1} \leftarrow u'_i u''_{i-1} \leftarrow 1 end for for i = 1 to m do u_i v_i' \leftarrow v_i' u_i'' \leftarrow u_i' v_i'' \leftarrow 2 v_i u_i' \leftarrow 1 end for if m \equiv 1 \pmod{2} v_1 u_m \leftarrow 1 else v_1v_m \leftarrow 1 end if end procedure ``` **Output:** labeled vertices and edges of $ETG(Comb)_m$ **Theorem 3.2:** ETG(Comb)_m) admits total Z₃-edge magic labeling. **Proof:** From the construction of the extended triplicate graph of a comb, we know that $ETG(Comb)_m$ has 6m vertices and 8m-3 edges. The vertices and edges are labeled by defining a function f: $V \cup E \rightarrow \{1, 2\}$ as given in algorithm 3.2. Define the induced function $f^* : E \rightarrow \{0, 1, 2\}$ such that for any vertex v_i , $f^*(v_i v_j) = \{f(v_i) + f(v_i) + f(v_i v_j)\} \pmod{3}$ where v_i is adjacent with v_i . Thus, for all $v_i v_i \in E$, the induced function yields the constant '2'. Hence the extended triplicate graph of comb $ETG(Comb)_m$ admits total Z_3 - edge magic labeling. **Illustration 3.2:** ETG(Comb)₅ and its total Z_3 -edge magic labeling is shown in figure 3. ## 4 n - EDGE MAGIC LABELING In this section we prove the existence of n - edge magic labeling for ETG(Comb)_m by presenting algorithms. #### Algorithm 4.1: ``` Input: Extended triplicate graph of ETG(Comb)_m procedure (n - edge magic labeling for ETG(Comb)_m) for i=1 to m do V \leftarrow \{v_i, v_i, v_i, v_i, u_i, u_i, u_i^{'}, u_i^{'}\} end for for i=1 to m do if \ i \equiv 1 \pmod{2} u_i \leftarrow u_i \leftarrow u_i \leftarrow n+1 v_i \leftarrow v_i \leftarrow v_i \leftarrow -1 else u_i \leftarrow u_i \leftarrow u_i \leftarrow -1 end if end for end procedure ``` Output: Labeled vertices of ETG(Comb)_m **Theorem 4.1:** ETG(Comb)_m admits n-edge magic labeling. **Proof:** We know that, the extended triplicate graph of a comb has 6m vertices and 8m-3 edges. The vertices are labeled by defining a function $f: V \to \{-1, n+1\}$ as given in algorithm 4.1. In order to obtain the labels for the edges, define the induced map $f^* : E \rightarrow \{ n \}$ such that for any vertex v_i , $f^*(v_i v_i) = \{ f(v_i) + f(v_i) \} \pmod{3}$ where v_i is adjacent with v_i . Thus for all $v_i v_j \in E$, the induced function yields a constant 'n'. Hence the extended triplicate graph of comb $ETG(Comb)_m$ admits n-edge magic labeling. **Illustration 4.1:** ETG(Comb)₄ and its n-edge magic labeling is shown in figure 4. #### CONCLUSION In this paper, we have proved the existence of Z_3 -edge magic labeling, total Z_3 -edge magic labeling and n – edge magic labeling for the extended triplicate graph of twig by presenting algorithms. ## REFERENCES - 1. Bala.E, Thirusangu.K, *Some graph labelings in extended triplicate graph of a path P_n*, International Review of Applied Engineering Research, (IRAER), Vol 1, No.1 (2011), 81-92. - 2. Bala.E, Thirusangu.K, *E-Cordial and Z*₃ *-magic labelings in extended triplicate graph of a path*, General Mathematics Notes (GMN), Vol 5, No.2 (2011). - 3. Chou.C.C and Lee.S.M, On Z3-magic graphs, preprint. - 4. Gallian J.A, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 18 (2011), #DS6. # S. Bala*1, K. Thirusangu² and D. Suresh³ / Some Graph Lablings in the Framework of Triplication / IJMA- 9(2), Feb.-2018. - 5. Jayapriya.J and Thirusangu.K, 0- Edge magic labeling for some class of graphs, Indian Journal of Computer Science and Engineering (IJCSE), Vol. 3 No.3 (2012) 425-427 - 6. Kotzig. A and Rosa. A, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970) 451-461. - 7. MacDougall.J.A, Miller.M, Slamin, and Wallis.W.D, *vertex-magic total labelings of graphs*, Util. Math., 61 (2002) 3-21. - 8. Neelam Kumari and Seema Mehra, *Some Graphs with n-Edge Magic Labeling*, International Journal of Innovative Research in Science, Vol 2, Issue 10, (2013) - 9. Rosa.A, *On certain valuations of the vertices of a graph*, Theory of graphs (Internat.Symposium, Rome, July 1996), Gordon and Breach, N.Y. and Dunod Paris (1967), 349-355. - 10. Sedlacek.J, On magic graphs, Math. Solv., Vol. 26 (1976), 329-335. - 11. Sutha.K, Thirusangu.K and Bala.S, *Some E-Cordial Labelings on Extended Duplicate Graph of Comb Graph*, British Journal of Mathematics & Computer Science 19(5) (2016), 1-15. # Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]