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ABSTRACT 
The first simplification of Beck’s [2] zero divisor graph was introduced by D.F.Anderson and P.S.Livingston[1]. Their 
motivation was to give a better illustration of the zero divisor structure of the ring. In this paper, we find the integral 
sum of zero divisor graph and study their properties. 
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1. INTRODUCTION 
 
Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph ( )RΓ  to R with vertices 

( ) ( ) { }0−=Γ ∗ RZR , the set of non-zero divisors of R and for distinct ( )∗∈ RZvu, , the vertices u and v are 

adjacent if and only if 0=uv . The zero divisor graph is very useful to find the algebraic structures and properties of 
rings. The idea of a zero divisor graph of a commutative ring was introduced by I. Beck in [2]. The first simplication of 
Beck’s zero divisor graph was introduced by D.F.Anderson and P.S.Livingston [1]. Their motivation was to give a 
better illustration of the zero divisor structure of the ring. D.F.Anderson and P.S.Livinston, and others e.g., [4, 5, 6], 
investigate the interplay between the graph theoretic properties of )(RΓ and the ring theoretic properties of R. 

Throught this paper, we consider the commutative ring R by Zn and zero divisor graph )(RΓ  by ( )nZΓ . Let ( )nZΓ  

be a graph. A bijection ( )( ): nf E Z Z +Γ → , where +Z  is a set of positive integers is called an edge mapping of the 

graph ( )nZΓ . Now, we define, ( )( ){ }( ) ( ) : nF v f e e is incident on v onV Z= Γ∑ . Then, F is called the edge sum 

mapping of the edge mapping f. ( )( ) +→Γ NZEf n:  such that f and its corresponding edge sum mapping F on 

( )( )nV ZΓ  satisfy the following conditions: (i) F is into mapping to +Z . That is, += ZvF )( , for every 

( )( )nv E Z∈ Γ . (ii) If ( )( )1 2, ,...., nn E Ze e e Γ∈  such that +∈+++ Zefefef n )(.....)()( 21 , then 

neee ....,,, 21  are incident on a vertex in ( )nZΓ . The edge sum labeling was introduced by Paulraj Joseph et al., [3]. 
 
2. INTEGRAL EDGE SUM OF ( )nZΓ  
 
In this section, we evaluate the integral edge sum of ( )nZΓ  and study their properties. The integral edge sum graph is 
defined as follows, 
 

Corresponding Author: J. Periaswamy*1, 1Part-Time Research Scholar,   
Bharathidasan University Tiruchirapalli, Tamil Nadu, India-620 024. 

 

http://www.ijma.info/�


J. Periaswamy*1, N. Selvi2 /Integral Edge Sum Of ( )ZnΓ  / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                        38  

 
Definition 2.1: Let ( )nZΓ  be a graph. A bijection SEf →:  where S is a set of integers is called as integral edge 

function of the graph ( )nZΓ . Define { }∑= vonincidentiseefvf :)()(  on V. Then F is called the integral edge 
sum function of the integral edge function f. 
( )nZΓ  is said to be an integral edge sum graph if there exists an integral edge function SEf →:  such that f and its 

corresponding integral edge sum function F on V satisfy the following conditions: 

i) F is into S. That is, Svf ∈)(  for every Vv∈ . 

ii) If 1 2, , ...., ne e e E∈  such that 1 2( ) ( ) ..... ( )nf e f e f e S+ + + ∈ , then 1 2, , ...., ne e e  are incident on a vertex. 
 
Definition 2.2: If e is an edge of ( )nZΓ , then the graph obtained by subdividing ‘e’ exactly once is denoted as G(e). 
 
Definition 2.3: Let ( )nZΓ  be an integral edge sum graph. The integral edge function SEf →:  and its 
corresponding integral edge sum function F which make G an integral edge sum graph are called optimal integral edge 
function and optimal integral edge sum function respectively. 
 
For example, Let { }121 ...,,, −= pvvvV  be the vertex set and { }11: −≤≤= pivvE i be the edge set of the graph 

( )pZ 2Γ , where p is any prime number, greater than two. Let 






 −−−

−=
2

)2)(3(),3(...,,2,1,0 pppS . The 

integral edge function SEf →:  is defined as )3(1)( −≤≤= piforivvf i  and 
2

)2)(3()( 2
−−−

=
ppvvf

. 
The corresponding integral edge sum function is,  

0)( =vf  

)3(1)( −≤≤= piforivf i  

2
)2)(3()( 2

−−−
=−

ppvf p  

0)( 1 =−pvf  
 
Therefore, F is into S. As all the edges are incident on the second condition becomes trivial. Hence ( )pZ 2Γ  is an 

integral edge graph for every natural number 1−p . 

For example, In ( )pZ 2Γ (e), { }wvuvvvV p ,,,...,,, 221 −=  is the vertex set and 

{ } { })2(1:, −≤≤∪= pivvuwuvE i  is the edge set of ( )pZ 2Γ . 







 −−

−=
2

)2)(1(),3(...,,2,1,0 pppS . The integral edge sum function SEf →:  is defined as 0)( =uvf  

2
)2)(1()( −−

=
ppuwf  

)2(1,)( −≤≤= piivvf i . 
 
The corresponding integral edge sum function is as follows: 

2
)2)(1()()()( −−

===
ppwfvfuf  

)2(1,)( −≤≤= piivf i . 

Except uw all the other edges are incident on v. The value 
2

)2)(1()( −−
=

ppuwf  can be got by summing either 

)( 1vvf , )( 2vvf , …, and )( nvvf  (or) )(uvf , )( 1vvf , …, )( nvvf . In both the cases the corresponding edges 

are incident on v. Hence, ( )pZ 2Γ (e) is an integral edge sum graph. 
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In both the examples 0 is one among the labels. But not all the integral edge sum graphs admit 0 as a label. 
 
Definition 2.4: An integral edge sum graph ( )nZΓ  is called a zero integral sum graph if there exists an optimal 

integral edge function SEf →:  with S∈0 . We have proved that ( )pZ 2Γ  or ( ) )(2 eZ pΓ , where p is any prime 
number, are zero integral edge sum graphs. In the following theorem, we prove that there is no other zero integral edge 
sum graph. 
 
Theorem 2.5: Let G be an integral edge sum graph without isolated vertices. Then G is a zero integral edge sum graph 
( )pZ 2Γ  or ( ) )(2 eZ pΓ  for some prime number ‘p’. 

 
Proof: Let SEf →:  be an optimal integral edge function and F be its corresponding optimal integral edge sum 

function. Let uve =  be such that 0)( =ef . If 1e  is any other edge, then Sefefef ∈+= )()()( 11  and 

therefore e and 1e  are incident on a vertex. That is, all the other edges are adjacent to e. 
 
If w is any other then w and v, then SfwFwF ∈+= )0()()( . Therefore if rwww ....,,, 21  are the vertices 

adjacent to w, then 1ww , 2ww , …, rww  and e are adjacent on a vertex. The only possibility is that w is a pendent 
vertex adjacent on a vertex. The only possibility is that w is a pendant vertex adjacent to either u or v. 
 
Suppose 1deg >u . Let muuu ....,,, 21  be the pendent vertices adjacent to u apart from v and 121 ...,,, −pvvv  be the 

pendent vertices adjacent to v apart from u. Then SuvfuufuufuufuF m ∈++++= )()(....)()()( 21 . Let 

)()( 1efuF = . If iuue =1  for some i (say 1uu ), then )(....)()()()( 211 muufuufuufuufuF +++== . 

That is, 0)(....)( 2 =++ muufuuf . Hence SuufuufvFvF m ∈+++= )(....)()()( 2 . That is, 

mp uuuuuuvvvvvv ...,,,,...,,, 21121 −  and uv  are incident on a vertex. That is positive only if 0=m . 
 
If uvee ==1 , then 0)( =uF  and SvFuF ∈+ )()( . Again this is a possibility only if v is not adjacent to any 

other than u. Here again 0=m . 
 
Let us consider the last case. Let ivve =1  for some i. assuming 11 vve = , we get the following: 

1 2 1( ) ( ) ( ) .... ( )pF v f vv f vv f vv −= + + + = 1 2 2 3 1( ) ( ) ... ( ) ( ) ( ) ... ( )m pf uu f uu f uu f vv f vv f vv −+ + + + + + +  is an 

element of S. This is not possible if 21≥−p , where p is any prime greater than 2. 
Hence we have the following: 

(i) e is adjacent to all other edges of ( )nZΓ . 

(ii) Any vertex other than u and v is a pendent vertex adjacent to either u or v. 

(iii) If deg 1u > , then deg 1v = . Thus G is either ( )pZ 2Γ  or ( ) )(2 eZ pΓ  for some 1p − . 
 
In all the other integral edge sum graphs zero is not among the edge labels. In a similar way it is easily seen that zero 
sum of edge labels is also not possible in the nonzero integral edge sum graphs. That is, if f is an optimal integral edge 
sum graph ( )nZ 2Γ , then )(...)()( 21 nefefef +++  is not zero for any sub collection { }neee ....,,, 21  of the 

edge set ( )nZ 2Γ . 
 
The optimal edge function and its corresponding optimal edge sum function of an edge sum graph and the optimal 
integral edge function and its corresponding optimal integral edge sum of a nonzero integral edge sum graph act almost 
similarly. We state the following observations concerning non zero integral edge sum of ( )nZΓ  without proof, as the 
result and its proof are similar to that of edge sum graphs in each case. 
 
Observation 1: Let ( )nZΓ  be a nonzero integral edge sum graph with integral edge function SEf →:  and the 

integral edge sum function F of f. Let mlll ....,,, 21  where lm >  be a collection of edges incident on a vertex w (say).  
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Let ii lww =  for mil ≤≤ . If there exists an edge uve =  such that )()(...)()( 21 eflflflf m =+++ , then 
one of the following holds: 

(i) { }vu,  forms a ( )9ZΓ  component in ( )nZΓ . 

(ii) { }wvu ,,  is either ( )4ZΓ  or ( )9ZΓ  with one of u, v as a pendent vertex in ( )nZΓ . 
 
Observation 2: ( )nZΓ  be a nonzero integral edge sum graph with integral edge function SEf →:  and the 

integral edge sum function F of f. let w be a non pendent vertex and Euve ∈=  be such that )()( efwF = . Then 
one of the following holds: 

(i) { }vu,  forms a ( )9ZΓ  component in ( )nZΓ . 

(ii) { }wvu ,,  is either ( )9ZΓ  with one of u, v as a pendent vertex in ( )nZΓ . 
 
Remark: Let SEf →: be an optimal edge function and F be its corresponding optimal edge sum graph ( )nZΓ .If u 

is a non pendent vertex of ( )nZΓ , then there exist vertices v, w such that )()( vwfuF = . If vw is not a ( )9ZΓ  
component then either one of them is adjacent to u. Let v be the adjacent to u. Then 

( ) ( ) ( ) ( ) ( )F v f u v f vw F u f e≥ + > >  for every edge incident on u. Hence if )()( 1efvF = , then 1e  is incident 

on v and )()( 2efuF = , then 2e  is not incident on u. But this is not the case in integral edge sum graphs. We will 

see it in proving complete graph in ( )nZΓ  is integral edge sum graph. 
 
Definition 2.6: Let { }121 ...,,, −= pvvvV  be the vertex set of ( )2pZΓ  for 5≥p  is any prime number. The integral 

edge function matrix ( )jiaA ,=  of order 1−p  of the integral edge function f of ( )2pZΓ  is defined as 

)(, jiji vvfa =  if ji ≠  and is 0 if ji = . The integral edge function matrix is a symmetric matrix. 
 
Theorem 2.7: ( )2pZΓ  for 5≥p  is an integral edge sum graph, where p is a prime number. 

 
Proof: Let { }121 ...,,, −= pvvvV  be the vertex set of ( )2pZΓ  for 5≥p  is any prime number and 

{ }1121: −≤≤+−≤≤= pjiandpivvE ji  be the edge set of ( )2pZΓ . For defining the integral edge 

function matrix we need the following definitions. 
 
Let ( )jibB ,=  be a )1()5( −×− pp  matrix defined as 200 =b , ijji bb ,, =  for 5,1 −≤≤ pji , 

{ }∑ −≤≤== −−+ 51:,111, pibbb jiiii  and { }∑ −≤≤+−≤≤= −
− 1)2(51:2 1, pjiandpibb i

ij
ji . 

 
Let ( ) ( ) ( )[ ]4,51,53,21,22,11,11 .... −−−−−−− −++−+−= ppppppp bbbbbbd  . 

( ) ( ) ( )[ ]4,52,53,22,22,12,12 .... −−−−−−− −++−+−= ppppppp bbbbbbd . 

( ) ( ) ( )[ ]4,53,53,23,22,13,13 .... −−−−−−− −++−+−= ppppppp bbbbbbd . 

( ) ( ) ( )[ ]4,54,53,24,22,14,14 .... −−−−−−− −++−+−= ppppppp bbbbbbd . 
 
Since 11, −+ = iii bb  for 51 −≤≤ pi , we get that  

 
( ) ( ) ( )4,53,22,1,5,2,1 ........ −−− ++−+++= ppjpjjj bbbbbbd . 

{ } { }∑∑ −≤≤−−≤≤= − 51:51: 1, pibpib iji  
{ } 6, 51: −−−≤≤= ∑ pji Bpib  

Where, { }∑ ≤≤= jibB ij 1:  for 14 −≤≤− pjp . 
 
Let h0 be a content satisfying ( )0210 2 bddh pp −+−> −− ; ( )20mod00 ≡h  and 60 −> pBh . 
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Let ( )jihH ,=  be a )1()5( −×− pp matrix defined as 0, hh ji =  for 12 −≤≤ pj  and 

{ }∑ −≤≤== −− 11:,11, pkhhh kiiji  for 52 −≤≤ pi  and 11 −≤≤+ pji  where jiij hh ,, =  for 

51 −≤≤ pi  and 51 −≤≤ pj . Let iii hbx +=  for 60 −≤≤ pi . 
 
The integral edge function matrix ( )jiaA ,=  of order 1−p  is defined as,  

jijiji hba ,,, +=  for 51 −≤≤ pi  and 11 −≤≤+ pji . 

{ }∑ −≤≤== −−−− 11:,553,4 pjaxa jpppp  

ya pp −=−− 2,4  

axa ppp += −−− 51,4  

{ }∑ −≤≤== −−−− 11:,442,3 pjaxa jpppp  

za pp −=−− 1,3  

{ }∑ −≤≤== −−−− 11:,331,2 pjaxa jpppp  
Where a, z, y are defined as follows. 
 
Let { }∑ ≤≤= ijxX ji 0:  

423 43145 ++++−= −−−−− ppppp dddxXy  

42 4215 ++−+−= −−−− pppp dddXyz  and  

( ) 43215 3252 −−−−− −−−+−= ppppp ddddXya  
 
We have, { }∑ −−−≤≤= 6, 51: pjij Bpibd  for 14 −≤≤− pjp  

( ){ } ( ){ }∑∑ −≤≤+−−≤≤+= − 51:51: ,1,, pihbpihb jiijiji  

{ } ( ){ }∑∑ −≤≤+−−≤≤= − 51:51: ,1, pihbpia jiiji  

{ } { }∑∑ −≤≤−−≤≤= − 51:51: 1, pixpia iji  

{ } 6, 51: −−−≤≤= ∑ pji Xpia  
 
Let { }1121:, −≤≤+−≤≤= pjiandpiaS j . 
 
The edge function SEf →:  is defined 11 −≤≤+ pji . The corresponding integral edge sum function F is as 
follows: 

( ) ( ){ } 3111: −≤≤≠−≤≤= ∑ piforijandpjvvfvF jii . 

{ }∑ ≠−≤≤= ijandpja ji 11:,  

( ){ }∑ −≤≤+= − 11:,1 pjhb jii  

ii hb +=  

ix=  
 
( ) ( ){ }∑ −≠−≤≤= −− 211:22 pjandpjvvfvF jpp  

{ }∑ −≠−≤≤= − 211:,2 pjandpja jp  

{ } 3464,2,2 51: −−−−−− ++−++−≤≤= ∑ pppppjp xxyXapja  

5−= px  

3,4 −−= ppa  

( )34 −−= pp vvf  and 
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( ) ( ){ }∑ −≤≤= −− 21:11 pjvvfvF jpp  

{ }∑ −≤≤= − 21:,1 pja jp  

{ }∑ −−−−−−− +++−≤≤= 2,13,14,1,1 51: ppppppjp aaapja  

53561 −−−−− =+−+++= ppppp xxzaxXd  

3,4 −−= ppa  

( )34 −−= pp vvf  
 
Hence, F is into S. Let { }1151:,1 −≤≤+−≤≤= pjiandpiaS ji  and 

 { }1124:,2 −≤≤+−≤≤−= pjiandpipaS ji . The elements of 1S  satisfy the following properties: 

(i) , , ,i j i j i ja b h= +  

(ii) { }, 1 1, :1 5i i i jb b i p+ −= ≤ ≤ −∑  

(iii)  ( ) ( ), 1,2 1,3 1, 1 2,3 2,4 2, 1... ... ....i j p pb b b b b b b− −> + + + + + + + +  

                  
( ) ( )1,2,1,1,11,1,1 ...... −++−−+−− ++++++++ piiiiipiiiii bbbbbb

 

(iv) , 0i jh h=  for 12 −≤≤ pj  and { }, 1 1, :1 1i j i i kh h h k p− −= = ≤ ≤ −∑  for 52 −≤≤ pj  and 

11 −≤≤+ pji . 

(v) All the elements of 1S  are congruent to ( )20mod0 . Hence, no element of 1S  except ix  for 

61 −≤≤ pj  is a sum of two or more elements of S. 
 
The elements of 2S  satisfy the following properties: 

(i) { }4, 3 5 5, :1 1p p p p ja x a i p
− − − −

= = ≤ ≤ −∑  

(ii) ( )5 5 1 3 43 2 4 4 mod 20p p p p py X x d d d
− − − − −

= − + + + + ≡ . 

Hence, ( )3, 2 10 mod 20p pa y− − = − ≡ . 

(iii) ( )10 mod 20a ≡  and hence ( )20mod1051,4 ≡+= −−− axx ppp . 

(iv) ( )3, 2 4 6 mod 20p p pa x− − −= ≡ . 

(v) ( )8 mod 20z ≡  and hence ( )20mod121,3 ≡−=−− za pp . 

(vi) ( )3 8 mod 20px − ≡ . 

(vii) 5 2px a z− + − = . 

(viii) 4 1 2 2p p px y d d− − −− = − + . 

(ix) 0 0 0x b h= +  

     { }1 2 2p pd d− −> − +  

     4px y−= − . 
 
Hence, no element of 2S  except 43 , −− pp xx  and 5−px  are a sum of two or more elements of S. Thus, we get that if 

Sefefef n ∈+++ )(...)()( 21 , then neee ...,,, 21  from the set of all edges incident on a vertex. Hence, ( )2pZΓ  

is an integral edge sum graph for all prime 5≥p . 
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