On Hilbert Modules over Locally m-Convex H^* – Algebras

M. Khanehgir*

Department of Mathematics, Faculty of Science, Islamic Azad University-Mashhad Branch, Mashhad, Iran, P. O. Box 413-91735

E-mail: khanehgir@mshdiau.ac.ir

(Received on: 22-08-11; Accepted on: 04-09-11)

ARSTRACT

In this paper a Hilbert E-module W is defined where $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is a locally m-convex H^* -algebra. With each $\lambda\in\Lambda$, we associate a Hilbert module \widehat{W}_{λ} over an H^* -algebra \widehat{E}_{λ} . We obtain relationship between these spaces and the initial space. Moreover the existence of orthonormal bases in a Hilbert E-module is proved. We topologized the space of bounded E-linear operators via suitable family of seminorms.

2000 AMS subject classification: 46L08, 46k05, 46c05, 46c50.

Key Words: Hilbert module, Locally m-convex H^* – algebra.

1. Introduction

A locally multiplicatively convex algebra (l.m.c.a in short) is a topological algebra (E,τ) whose topology τ is determined by a directed family $(|.|_{\lambda})_{\lambda\in\Lambda}$ of submultiplicative seminorms. Such an algebra will usually denoted by $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$. If, in addition, E is endowed with an involution $x\mapsto x^*$ such that $|x|_{\lambda}=|x^*|_{\lambda}$, for any $x\in E,\lambda\in\Lambda$, then $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is called an l.m.c.*-algebra. Let $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ be a complete l.m.c.a. It is known that $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is the inverse limit of the normed algebras $(E_{\lambda},(|.|'_{\lambda})_{\lambda\in\Lambda})$, where $E_{\lambda}=E/N_{\lambda}$ with $N_{\lambda}=\{x\in E:|x|_{\lambda}=0\}$, and $|x|'_{\lambda}=|x|_{\lambda}$. An element x of E is written $x=(x_{\lambda})_{\lambda}=(\pi_{\lambda}(x))_{\lambda}$, where $\pi_{\lambda}:E\to E_{\lambda}$ is the canonical surjection. The algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is also the inverse limit of the Banach algebras \widehat{E}_{λ} , the completion of E_{λ} 's. The norm in \widehat{E}_{λ} will also be denoted by $|.|'_{\lambda}$.

In the following we define the locally m-convex H^* – algebra spaces. This notion was introduced in [5] as a natural extension of the classical H^* – algebras of W. Ambrose ([1]). Here we consider the case where the algebra is complete and it is endowed with a continuous involution.

Definition: 1.1 A locally m-convex H^* – algebra (l.m.c. H^* – algebra in short) is a complete l.m.c.*-algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ on which is defined a family $(\langle.,,\rangle_{\lambda})_{\lambda\in\Lambda}$ of positive semi-definite pseudo-inner products such that the following properties hold for all $x,y,z\in E$ and $\lambda\in\Lambda$:

$$(i) \mid x \mid_{\lambda}^{2} = \langle x, x \rangle_{\lambda},$$

$$(ii) \langle xy, z \rangle_{\lambda} = \langle y, x^*z \rangle_{\lambda},$$

$$(iii) \langle yx, z \rangle_{\lambda} = \langle y, zx^* \rangle_{\lambda}.$$

For every $\lambda \in \Lambda$, the quotient space $E_{\lambda} = E / N_{\lambda}$ is an inner product space under $\langle x_{\lambda}, y_{\lambda} \rangle_{\lambda} = \langle x, y \rangle_{\lambda}$. The

underlying Banach space \hat{E}_{λ} is a Hilbert space. Moreover, the involutive Banach algebra $(\hat{E}_{\lambda}, |.|_{\lambda}')$ is an H^* -algebra. The algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is the inverse limit of the Banach H^* -algebras $(\hat{E}_{\lambda}, |.|_{\lambda}')$, ([5], Theorem 2.3). So there exists a unique homomorphism $\phi: E \to_{\leftarrow \lambda}^{\lim} \hat{E}_{\lambda}$ in which $\chi_{\mu} o \phi = \pi_{\lambda,\mu} o \pi_{\lambda}$, where $|.|_{\lambda} \ge |.|_{\mu}$ and $\chi_{\mu}: \lim_{\leftarrow \lambda} \hat{E}_{\lambda} \to \hat{E}_{\mu}$ is the natural projection. One can see that ϕ is an isomorphism and $\lim_{\leftarrow \lambda} \hat{E}_{\lambda} \cong E$ (See also the remarks following Satz 1.1 in [7]). One of the most useful consequences of this isomorphism is that every coherent sequence in $\{\hat{E}_{\lambda}: \lambda \in \Lambda\}$ determines an element of E.

Given an l.m.c. H^* -algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$. Since * is an involution, E is proper, namely $lan(E)=\{0\}$, where $lan(E)=\{x\in E:xE=\{0\}\}$ is the left annihilator of E and so each \widehat{E}_{λ} , for every $\lambda\in\Lambda$. The trace class $\tau(E)$ of E is defined as the set $\tau(E)=\{ab:a,b\in E\}$. Clearly, $\tau(E)$ is an ideal of E which is complete *-algebra in the topology τ determined by suitable submultiplicative seminorms $\tau_{\lambda}(.),\lambda\in\Lambda$ related to given seminorms on E by $\tau_{\lambda}(a^*a)=|a|_{\lambda}^2$, for all a in E. For every $\lambda\in\Lambda$, there exists a canonical continuous linear form on $\tau(E)$ called the trace $-\lambda$ of E and we denote it by tr_{λ} which is related with the semi-definite pseudo-inner product $\langle .,.\rangle_{\lambda}$ of E by $tr_{\lambda}(ab)=\langle a,b^*\rangle_{\lambda}$ for all $a,b\in E$. The trace class in the H^* -algebra $\widehat{E}_{\lambda},\lambda\in\Lambda$ is defined as the set $\tau(\widehat{E}_{\lambda})=\{[a+N_{\lambda}][b+N_{\lambda}]:a,b\in E\}$. It is known that $\tau(\widehat{E}_{\lambda})$ is an ideal of \widehat{E}_{λ} , which is Banach *-algebra under a suitable norm $\widehat{\tau}_{\lambda}(.)$. The norm $\widehat{\tau}_{\lambda}$ is related to given norm $|.|'_{\lambda}|$ on \widehat{E}_{λ} by $\widehat{\tau}_{\lambda}([a^*a+N_{\lambda}])=|a+N_{\lambda}|'_{\lambda}^2$, for all $a\in E$. The trace class $\tau(E_{\lambda})$ of $E_{\lambda},\lambda\in\Lambda$ is defined similarly. Obviously $\tau(E_{\lambda})$ is an ideal of E_{λ} which is norm *-algebra under a suitable norm $\tau_{\lambda}(.)$, in which $\tau_{\lambda}(a^*a+N_{\lambda})=|a+N_{\lambda}|'_{\lambda}^2$ for all $a\in E$. For $\lambda\in\Lambda$, there exists a continuous linear form \widehat{tr}_{λ} on $\tau(\widehat{E}_{\lambda})$ satisfying $\widehat{tr}_{\lambda}([a+N_{\lambda}][b+N_{\lambda}])=\widehat{tr}_{\lambda}([b+N_{\lambda}][a+N_{\lambda}])=\langle a,b^*\rangle_{\lambda}$. Similarly there exists a continuous linear form tr_{λ} on the $\tau(E_{\lambda}),\lambda\in\Lambda$, satisfying $tr_{\lambda}(ab+N_{\lambda})=tr_{\lambda}(ba+N_{\lambda})=\langle a,b^*\rangle_{\lambda}$.

Now suppose that $\chi_{\lambda}: \tau(E) \to \tau(E_{\lambda})$ defined by $\chi_{\lambda}(ab) = ab + N_{\lambda}$ and $\pi_{\lambda,\mu}: \tau(E_{\lambda}) \to \tau(E_{\mu})$ defined by $\pi_{\lambda,\mu}(a+N_{\lambda})(b+N_{\lambda}) = (a+N_{\mu})(b+N_{\mu})$, where $\|.\|_{\lambda} \ge \|.\|_{\mu}$. Then $\{\tau(E),\tau;\chi_{\lambda}\}$ is the inverse limit of the inverse system $\{\tau(E_{\lambda}),\tau_{\lambda};\pi_{\lambda,\mu},\lambda,\mu\in\Lambda,|.|_{\lambda} \ge \|.\|_{\mu}\}$ and it is also inverse limit of the inverse system $\{\tau(\widehat{E}_{\lambda}),\widehat{\tau}_{\lambda};\pi_{\lambda,\mu},\lambda,\mu\in\Lambda,|.|_{\lambda} \ge \|.\|_{\mu}\}$.

In this paper we will intoduce a Hilbert module W over an l.m.c. H^* -algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ and for each $\lambda\in\Lambda$ we will associate a Hilbert module \widehat{W}_{λ} over an H^* -algebra \widehat{E}_{λ} . We shall see that $W\cong \lim_{\leftarrow\lambda}\widehat{W}_{\lambda}$. Then we will discuss about orthonormal bases in these spaces. Also we will topologize $L_E(V,W)$ and $B_E(V,W)$, the set of adjointable E - linear operators and the set of bounded E - linear operators from Hilbert E - module V into Hilbert E - module V, respectively, via suitable families of seminorms. Throughout this paper E is an l.m.c. H^* - algebra and V is a Hilbert E - module except some results about unitary operators in Hilbert V - modules at the end of the paper. The paper is organized as follows.

In section 2 we will introduce Hilbert modules over l.m.c. H^* – algebras and their properties are studied. The existence of orthonormal bases in these spaces is proved.

In section 3 we topologize the space of bounded E-linear operators and the space of all adjointable E-linear operators. Also, more properties of these spaces are detected.

M. Khanehgir*/On Hilbert Modules over Locally m-Convex H^* —Algebras/IJMA- 2(9), Sept.-2011, Page: 1636-1645 2. Hilbert modules over l.m.c. H^* —algebras and orthonormal bases

Hilbert modules over l.m.c. H^* -algebras generalize the notion of Hilbert H^* -modules by allowing the $\tau(E)$ -valued product in an l.m.c. H^* -algebra.

Definition: 2.1 Let $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ be a Hausdorff l.m.c. H^* – algebra. A pre-Hilbert E -module is a left module W over E provided with a mapping

[.|.]: $W \times W \to \tau(E)$ (called $\tau(E)$ – valued product) where $\tau(E) = \{ab : a, b \in E\}$ which satisfies the following conditions:

- $(i) [\alpha x | y] = \alpha [x | y] \forall \alpha \in C, \forall x, y \in W,$
- $(ii)[x+y|z] = [x|z] + [y|z] \forall x, y, z \in W,$
- $(iii)[ax \mid y] = a[x \mid y], \forall a \in E, \forall x, y \in W,$
- $(iv)[x|y]^* = [y|x] \forall x, y \in W,$
- $(v) \forall x \in W, x \neq 0, \exists a \in E, a \neq 0, \text{ such that } [x \mid x] = a^*a,$
- (vi) for each $\lambda \in \Lambda$, W is a semi-definite pseudo-inner product space with $(x, y)_{\lambda} = \langle a, b^* \rangle_{\lambda}$ (or $tr_{\lambda}(ab)$) where $[x \mid y] = ab \in \tau(E)$.

We say that W is a Hilbert E – module if it is complete with respect to the topology determined by the family of seminorms $||x||_{\lambda} = \sqrt{(x,x)_{\lambda}}$, $x \in W$, $\lambda \in \Lambda$.

Given a Hilbert E – module W, then for $\lambda \in \Lambda$, $\xi_{\lambda} = \{x \in W : ||x||_{\lambda} = 0\}$ is a closed submodule of W. Indeed, for non zero x in ξ_{λ} and $a \in E$, if $[x \mid x] = b^*b$ for some non zero $b \in E$, then $||ax||_{\lambda} = |ab^*|_{\lambda} \le |a|_{\lambda} |b|_{\lambda} = 0$. For $\lambda \in \Lambda$, $W_{\lambda} = W / \xi_{\lambda}$ is an inner product space with $(x, y)_{\lambda} = tr_{\lambda}[x + \xi_{\lambda} \mid y + \xi_{\lambda}]$ (or $\langle a, b^* \rangle_{\lambda}$ where $[x \mid y] = ab$) and its completion \widehat{W}_{λ} is a Hilbert space.

Example: 2.2 Let $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ be an l.m.c. H^* -algebra. Then E is a Hilbert module over itself with $\tau(E)$ -valued product defined by $[a \mid b] = ab^*$. Also it is easy to verify that a closed submodule of a Hilbert E-module is again a Hilbert E-module. Note that analogue of Lemma 2.2 of [1] holds for l.m.c. H^* -algebras. More precisely if x is a non zero element in an l.m.c. H^* -algebra E, then x^*x, xx^*, x^* are also non zero. The proof of the following proposition can be based on the direct application of previous comments about Hilbert E-module W.

Proposition: 2.3 Let W be a Hilbert module over an l.m.c. H^* – algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$. For each $\lambda\in\Lambda,\widehat{W}_{\lambda}$ is a Hilbert module over the proper H^* – algebra \widehat{E}_{λ} with $\pi_{\lambda}(a)(x+\xi_{\lambda})=ax+\xi_{\lambda}$ and $[x+\xi_{\lambda}\mid y+\xi_{\lambda}]=\pi_{\lambda}([x\mid y])$ for every $a\in E$ and for every $x,y\in W$. Let σ^W_{λ} be the canonical map from W onto $\widehat{W}_{\lambda},\lambda\in\Lambda$. For $\lambda_1,\lambda_2\in\Lambda,|..|_{\lambda_1}\geq|..|_{\lambda_2}$, there is a canonical surjective linear map $\sigma^W_{\lambda_1\lambda_2}:\widehat{W}_{\lambda_1}\to\widehat{W}_{\lambda_2}$ such that $\sigma^W_{\lambda_1\lambda_2}(\sigma^W_{\lambda_1}(x))=\sigma^W_{\lambda_2}(x)$. Also $\{\widehat{W}_{\lambda},\widehat{E}_{\lambda};\sigma^W_{\lambda_1\lambda_2},|..|_{\lambda_1}\geq|..|_{\lambda_2},\lambda_1,\lambda_2\in\Lambda\}$ is an inverse system of Hilbert H^* – modules in the following sense:

$$\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}(\pi_{\lambda_{\scriptscriptstyle{1}}}(a)\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}}(x))=\pi_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}(\pi_{\lambda_{\scriptscriptstyle{1}}}(a))\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}((\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}}(x))$$

and

$$(\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}((\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}}(x)),\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}((\sigma^{\scriptscriptstyle{W}}_{\lambda_{\scriptscriptstyle{1}}}(y)))_{\lambda_{\scriptscriptstyle{2}}} = \langle \pi_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}(\pi_{\lambda_{\scriptscriptstyle{1}}}(a)),\pi_{\lambda_{\scriptscriptstyle{1}}\lambda_{\scriptscriptstyle{2}}}(\pi_{\lambda_{\scriptscriptstyle{1}}}(b^{*}))\rangle_{\lambda_{\scriptscriptstyle{2}}}$$

Where $[x \mid y] = ab$, for every $x, y \in W$ and for every $a \in E$;

M. Khanehgir*/On Hilbert Modules over Locally m-Convex H* - Algebras/IJMA- 2(9), Sept.-2011, Page: 1636-1645

$$\sigma_{\lambda_2\lambda_3}^{\scriptscriptstyle W}\sigma_{\lambda_1\lambda_2}^{\scriptscriptstyle W}=\sigma_{\lambda_1\lambda_3}^{\scriptscriptstyle W}, |.|_{\lambda_1} \geq |.|_{\lambda_2} \geq |.|_{\lambda_3}; \sigma_{\lambda\lambda}^{\scriptscriptstyle W}=id_{\scriptscriptstyle W_\lambda}, \lim_{\leftarrow \lambda} \widehat{W}_\lambda \ \ \text{is a Hilbert} \ \ E-\text{module with}$$

$$(\pi_{\lambda}(a))_{\lambda}(\sigma_{\lambda}^{W}(x))_{\lambda} = (\sigma_{\lambda}^{W}(ax))_{\lambda},$$

and

$$\langle (\sigma_{\lambda}^{W}(x))_{\lambda \in \Lambda}, (\sigma_{\lambda}^{W}(y))_{\lambda \in \Lambda} \rangle = (\langle \pi_{\lambda}(a), \pi_{\lambda}(b^{*}) \rangle_{\lambda})_{\lambda \in \Lambda}$$

Where $[x \mid y] = ab$. Indeed, $\lim_{\leftarrow \lambda} \widehat{W}_{\lambda}$ maybe identified with W. So every coherent sequence in $\{\widehat{W}_{\lambda} : \lambda \in \Lambda\}$ determines an element of W.

For the basic facts about Hilbert H^* -modules we refer to [2] and [4]. In particular with the assumption of the previous proposition, we have the following three relations in Hilbert \widehat{E}_{λ} -module \widehat{W}_{λ} ($\lambda \in \Lambda$),

$$\| x + \xi_{\lambda} \|_{\lambda}^{2} = \hat{tr}_{\lambda} ([x + \xi_{\lambda} \mid x + \xi_{\lambda}]) = \hat{\tau}_{\lambda} ([x + \xi_{\lambda} \mid x + \xi_{\lambda}]).$$

$$|[x + \xi_{\lambda} \mid y + \xi_{\lambda}]|_{\lambda}^{\prime} \leq \hat{\tau}_{\lambda} ([x + \xi_{\lambda} \mid y + \xi_{\lambda}]) \leq \| x + \xi_{\lambda} \|_{\lambda} \| y + \xi_{\lambda} \|_{\lambda}.$$

$$\| (a + N_{\lambda})(x + \xi_{\lambda}) \|_{\lambda} \leq |a + N_{\lambda}|_{\lambda}^{\prime} \| x + \xi_{\lambda} \|_{\lambda}.$$

As an immediate consequence of the above relations and the previous comments we obtain:

$$||x||_{\lambda}^{2} = tr_{\lambda}([x \mid x]) = \tau_{\lambda}([x \mid x]).$$

$$|[x \mid y]|'_{\lambda} \le \tau_{\lambda}([x \mid y]) \le ||x||_{\lambda}||y||_{\lambda}.$$

$$||ax||_{\lambda} \le |a|'_{\lambda}||x||_{\lambda}.$$

Proposition: 2.4. Let W be a Hilbert module over an l.m.c. H^* - algebra E and $b(E) = \{a \in E : \|a\|_{\infty} = \sup_{\lambda} |a|_{\lambda} < \infty\}$ and $b(W) = \{x \in W : \|x\|_{\infty} = \sup_{\lambda} \|x\|_{\lambda} < \infty\}$. Then b(E) is an H^* - algebra and b(W) is a b(E) - Hilbert module.

Proof: Clearly, the sets b(E) and b(W) are complex vector spaces and b(W) is a left b(E)-module. Because, when W is identified with $\lim_{\epsilon \to \lambda} \widehat{W}_{\lambda}$, we see that b(W) corresponds to the set of bounded coherent sequences. The Cauchy-Schwarz inequality, applied to Hilbert \widehat{E}_{λ} -module \widehat{W}_{λ} , yields for $x,y \in b(W)$, the inequality $\|(x,y)\|_{\infty}^2 \le \|(x,x)\|_{\infty} \|(y,y)\|_{\infty}$, so that the restriction of b(W) of the $\tau(E)$ -valued product on W is a $\tau(b(E))$ -valued product on b(W). Obviously, $(b(E),(\langle .,.\rangle_{\lambda}|_{b(E)\times b(E)})_{\lambda\in\Lambda})$ and $(b(W),[.,.]|_{b(W)\times b(W)})$ take more properties being as a subset of E and W respectively. To proof of completeness in [7], Satz 3.1, also applied here and show that b(E) and b(W) are complete for norm $\|a\|_{\infty} = \|\langle a,a\rangle\|_{\infty}^{\frac{1}{2}}$ and $\|x\|_{\infty} = \|(x,x)\|_{\infty}^{\frac{1}{2}}$, respectively, for every $a \in E, x \in W$. Q.E.D.

Definition: 2.5 A non zero projection e in an l.m.c. H^* -algebra E is called minimal, if eEe=Ce. Also element u in a Hilbert E - module W is said to be a basic element if there exists a minimal projection $e \in E$ such that $[u \mid u] = e$. An orthonormal system in W is a family of basic elements $\{u_\alpha\}_\alpha$, $\alpha \in I$ satisfying $[u_\alpha \mid u_\beta] = 0$ for all α , $\beta \in I$, $\alpha \neq \beta$. An orthonormal basis in W is an orthonormal system generating a dense submodule of W.

If V is a subset of a Hilbert E — module W, we define $V^{\perp} = \{w \in W \mid [w \mid v] = 0 \ \forall v \in V\}$. Clearly V^{\perp} is a closed submodule of W. If V is a submodule of W then $V^{\perp} = \{x \in W \mid (x,v)_{\lambda} = 0, \forall v \in V, \forall \lambda \in \Lambda\}$.

M. Khanehgir*/On Hilbert Modules over Locally m-Convex H^* -Algebras/IJMA- 2(9), Sept.-2011, Page: 1636-1645 Our next result is a generalization of Lemma 1.3 in [4].

Lemma 2.6. Let W be a Hilbert E — module and let u in W be such that $e = [u \mid u]$ is an idempotent in E. If the closed submodule generated by u is complemented or e does not belong to N_{λ} , for each $\lambda \in \Lambda$ then $[w \mid u] = [w \mid u]e$ for all $w \in W$.

We can also generalized Corollary 1.4 of [4] to Hilbert modules over l.m.c. H^* – algebras.

Corollary: 2.7 If $\{u_{\alpha}\}_{\alpha\in I}$ is an orthonormal system in a Hilbert E – module W in which for every $\alpha\in I$ the closed submodule generated by u_{α} is complemented or u_{α} does not belong to ξ_{λ} , for each $\lambda\in\Lambda$, then

$$[w - \sum_{\alpha \in J} [w \mid u_{\alpha}] u_{\alpha} \mid w - \sum_{\alpha \in J} [w \mid u_{\alpha}] u_{\alpha}] = [w \mid w] - \sum_{\alpha \in J} [w \mid u_{\alpha}] [w \mid u_{\alpha}]^*$$

for every finite subset J of I and for all w in W.

Our next result is a generalization of Proposition 1.5 of [4].

Proposition: 2.8 Let W be a Hilbert E—module, let u be a basic element in W, and let M denote the closed submodule of W generated by u. If M is orthogonally complemented in W then the mapping $w \to [w \mid u]u$ is the orthogonal projection from W onto M. As a consequence we have M = Eu.

Our next result is a generalization of Theorem 1.6 of [4] which provides a very useful characterization of orthonormal bases in a Hilbert E - module W.

Theorem: 2.9 Let $\{u_{\alpha}\}_{\alpha\in I}$ be an orthonormal system in a Hilbert E-module W in which for every $\alpha\in I$, the closed submodule generated by u_{α} is complemented, then the following statement are equivalent.

- (i) For all w_1, w_2 in W the family $\{[w_1 | u_\alpha][w_2 | u_\alpha]^*\}_{\alpha \in I}$ is summable in the space $(\tau(E), (\tau_\lambda)_{\lambda \in \Lambda})$, with sum equale to $[w_1 | w_2]$.
- (ii) For every w in W, we have $[w \mid w] = \sum_{\alpha \in I} [w_1 \mid u_\alpha] [w_2 \mid u_\alpha]^*$ (Parseval's identity) in the space $(\tau(E), (\tau_\lambda)_{\lambda \in \Lambda})$.
- (iii) For every w in W, we have $w = \sum_{\alpha \in I} [w \mid u_{\alpha}] u_{\alpha}$ (Fourier expansion).
- (iv) $\{u_{\alpha}\}_{{\alpha}\in I}$ is an orthonormal basis in W.

 $\textbf{Remark: 2.10} \text{ Parseval's identity leads to the equality } \sum\nolimits_{\alpha \in I} |\left[w \mid u_{\alpha}\right]|_{\lambda}^{2} = \mid w \mid \mid_{\lambda}^{2} \text{ for every } \lambda \in \Lambda \text{ . Indeed,}$

$$\sum_{\alpha \in I} |\left[w \mid u_{\alpha}\right]|_{\lambda}^{2} = \sum_{\alpha \in I} tr_{\lambda}(\left[w \mid u_{\alpha}\right]\left[w \mid u_{\alpha}\right]^{*}) = tr_{\lambda}(\sum_{\alpha \in I}(\left[w \mid u_{\alpha}\right]\left[w \mid u_{\alpha}\right]^{*})) = tr_{\lambda}(\left[w \mid w\right]) = \parallel w \parallel_{\lambda}^{2}.$$

The existence of basic elements in a Hilbert module over an l.m.c. H^* -algebra can be guaranteed by an argument similar to Proposition 1.7 of [4]. A slightly modification of Theorem 1.9 of [4] gives the following theorem in a Hilbert E-module.

Theorem: 2.11 Let S be a subset of a Hilbert E — module W. If S is a maximal orthonormal system then it is an orthonormal basis in W and converse is true when each closed submodule generated by every element of S is complemented in W.

Proof: Let S be a maximal orthonormal system in W and let M be the closed submodule generated by S. If $M \neq W$, then there exists $x \in W - M$. It implies that $\|x\|_{\lambda_0} \neq 0$, for some $\lambda_0 \in \Lambda$. Now if $M^{\perp} = \{0\}$ then

$$(M+\xi_{\lambda_0})^\perp\subseteq M^\perp=\{0\} \text{ . Hence in the Hilbert } \widehat{E}_{\lambda_0}-\text{module } \widehat{W}_{\lambda_0} \text{ , we have } M+\xi_{\lambda_0}=W+\xi_{\lambda_0} \text{ which is all } M=0 \text{ and } M=1, \dots, M=1, \dots$$

contradiction. So $M^{\perp} \neq \{0\}$ and therefore there exists a basic element u in M^{\perp} . Obviously $S \cup \{u\}$ is an orthonormal system strictly containing S, which is a contradiction. The converse is obvious by Fourier expansion. Q.E.D.

Corollary: 2.12 Every non zero Hilbert module over an l.m.c. H^* – algebra has an orthonormal basis.

Theorem: 2.13. In a Hilbert $E-\text{module }W, \{v_\alpha\}_{\alpha\in I}$ is an orthonormal system if and only if $\{v_\alpha+\xi_\lambda\}_{\alpha\in I}$ is an orthonormal system in the Hilbert $\widehat{E}_\lambda-\text{module }\widehat{W}_\lambda$ when v_α does not belong to ξ_λ for each $\alpha\in I$ and for each $\lambda\in\Lambda$. Also if $\{v_\alpha\}_{\alpha\in I}$ is an orthonormal basis in W and v_α does not belong to ξ_λ for each $\alpha\in I$ then $\{v_\alpha+\xi_\lambda\}_{\alpha\in I}$ is an orthonormal basis in the Hilbert $\widehat{E}_\lambda-\text{module }\widehat{W}_\lambda$. So we have an analogue of Fourier expansion and Parseval's identity associated to this orthonormal basis in Hilbert $\widehat{E}_\lambda-\text{module }\widehat{W}_\lambda$.

Proof: Suppose that v is a basic element in W. If for some $\lambda_0 \in \Lambda$, $v \in \xi_{\lambda_0}$, then $v + \xi_{\lambda_0}$ is not a basic element in \widehat{W}_{λ_0} . It is clear that for $\mu \in \Lambda$ in which, $\|.\|_{\lambda_0} \ge \|.\|_{\mu}$, $v \in \xi_{\mu}$ and $v + \xi_{\mu}$ is not a basic element in \widehat{W}_{μ} . Now if v does not belong to ξ_1 , $\lambda \in \Lambda$ then we have

$$\begin{split} [v + \xi_{\lambda} \mid v + \xi_{\lambda}] \widehat{E}_{\lambda} [v + \xi_{\lambda} \mid v + \xi_{\lambda}] &= \pi_{\lambda} ([v \mid v]) \widehat{E}_{\lambda} \pi_{\lambda} ([v \mid v]) \\ &= \pi_{\lambda} ([v \mid v] E[v \mid v]) \\ &= \pi_{\lambda} (C[v \mid v]) \\ &= C[v + \xi_{\lambda} \mid v + \xi_{\lambda}]. \end{split}$$

Hence $v + \xi_{\lambda}$ is a basic element in \widehat{W}_{λ} . Conversely, if for each $\lambda \in \Lambda$, $v + \xi_{\lambda}$ is a basic element in \widehat{W}_{λ} then we have

$$[v + \xi_{\lambda} \mid v + \xi_{\lambda}] \widehat{E}_{\lambda} [v + \xi_{\lambda} \mid v + \xi_{\lambda}] = C[v + \xi_{\lambda} \mid v + \xi_{\lambda}]$$

and this implies that

$$\pi_{\lambda}([v | v]E[v | v] - C[v | v]) = 0,$$

for every $\lambda \in \Lambda$. So $[v \mid v]E[v \mid v] - C[v \mid v] \subseteq \widehat{N}_{\lambda}$ for every $\lambda \in \Lambda$ and therefore $[v \mid v]E[v \mid v] - C[v \mid v] = 0$. It is easy to verify that, $\{v_{\alpha}\}_{\alpha \in I}$ is an orthonormal system in W if and only if $\{v_{\alpha} + \xi_{\lambda}\}_{\alpha \in I}$ is an orthonormal system in \widehat{W}_{λ} , when v_{α} does not belong to ξ_{λ} for each $\alpha \in I$ and for each $\lambda \in \Lambda$. Now suppose that $\{v_{\alpha}\}_{\alpha \in I}$ is an orthonormal basis in W and for each $\alpha \in I$, v_{α} does not belonge to ξ_{λ} then as we mentioned before, $\{v_{\alpha} + \xi_{\lambda}\}_{\alpha \in I}$ is an orthonormal system in \widehat{W}_{λ} . We are going to show that it generates a dense submodule of \widehat{W}_{λ} . For this, let $x + \xi_{\lambda} \in \widehat{W}_{\lambda}$. Since $\{v_{\alpha}\}_{\alpha \in I}$ is an orthonormal basis in W, So we have

$$\exists \gamma_{i_k} \in C, \exists v_{\alpha_{i_k}} \in \{v_{\alpha}\}_{\alpha \in I}; k \in IN, \sum_{k=1}^n \gamma_{i_k} v_{\alpha_{i_k}} \to x,$$

as n tends to ∞ . It implies that

$$\sum_{k=1}^{n} \gamma_{i_k} (v_{\alpha_{i_k}} + \xi_{\lambda}) \to x + \xi_{\lambda},$$

when n tends to ∞ . Thus if for all $\alpha \in I$, v_{α} does not belong to ξ_{λ} then $\{v_{\alpha} + \xi_{\lambda}\}_{\alpha \in I}$ is an orthonormal basis in \widehat{W}_{λ} . Q.E.D.

3. Space of bounded operators

Definition: 3.1 Let V and W be two Hilbert modules over an l.m.c. H^* -algebra $(E,(\mathsf{I}.\mathsf{I}_\lambda)_{\lambda\in\Lambda})$. An operator $T:V\to W$ is called E -linear if it is linear and satisfies T(ax)=aT(x) for all $a\in E$ and for all $x\in V$. We say that E -linear operator T is bounded if for each $\lambda\in\Lambda$, and for each $x\in V$ there exists $K_\lambda>0$ in which $\|T(x)\|_\lambda\leq K_\lambda\|x\|_\lambda$.

Put $\overline{P}_{\lambda}^{V}(x) = (x, x)_{\lambda}^{\frac{1}{2}}$ and $\overline{P}_{\lambda}^{W}(Tx) = (Tx, Tx)_{\lambda}^{\frac{1}{2}}$, where $(x, x)_{\lambda}$ and $(Tx, Tx)_{\lambda}$ are denoted positive semi-definite pseudo-inner products in V and W respectively. So the E-linear operator T is bounded if for each $\lambda \in \Lambda$, and for each $x \in V$ there exists $K_{\lambda} > 0$ in which $\overline{P}_{\lambda}^{W}(Tx) \leq K_{\lambda} \overline{P}_{\lambda}^{V}(x)$.

The set of all bounded E – linear operators from Hilbert module V into W is denoted by $B_E(V,W)$ and when V=W is denoted by $B_E(V)$. It is easy to see that the map $\widetilde{P}_\lambda, \lambda \in \Lambda$, defined by $\widetilde{P}_\lambda(T) = \sup\{\overline{P}_\lambda^W(Tx) : x \in V, \overline{P}_\lambda^V(x) \le 1\}$ is a seminorm on $B_E(V,W)$.

Theorem: 3.2 Let V and W be Hilbert modules over an l.m.c. H^* – algebra $(E,(|.|_{\lambda\in\Lambda}))$. Then

- (i) $B_E(V,W)$ is a complete locally convex space with topology determined by the family of seminorms $\{\widetilde{P}_{\lambda}\}_{\lambda\in\Lambda}$.
- (ii) $B_E(V)$ is a locally C^* algebra with the topology determined by the family of seminorms $\{\widetilde{P}_{\lambda}\}_{\lambda \in \Lambda}$.

Proof: Suppose that $\lambda_1, \lambda_2 \in \Lambda, |...|_{\lambda_1} \geq |...|_{\lambda_2}, S \in B_{\widehat{E}\lambda_1}(\widehat{V}_{\lambda_1}, \widehat{W}_{\lambda_1})$, set of bounded \widehat{E}_{λ_1} - linear operators. We have

$$(\sigma_{\lambda_{1}\lambda_{2}}^{\widehat{W}}(S(\sigma_{\lambda_{1}}^{\widehat{V}}(x))),\sigma_{\lambda_{1}\lambda_{2}}^{\widehat{W}}(S(\sigma_{\lambda_{1}}^{\widehat{V}}(x)))_{\lambda_{2}} \leq ||S||_{\lambda_{1}}^{2}(\sigma_{\lambda_{2}}^{\widehat{V}}(x),\sigma_{\lambda_{2}}^{\widehat{V}}(x))_{\lambda_{2}}.$$

Therefore the following map is a bounded $\,\widehat{E}_{\,\lambda_{\!2}}\,\text{-bounded}.$

$$(\pi_{\lambda_1 \lambda_2})_*(S) : \widehat{V}_{\lambda_2} \to \widehat{W}_{\lambda_2}$$

$$\sigma_{\lambda_2}^{\hat{V}}(x) \mapsto \sigma_{\lambda_1 \lambda_2}^{\hat{W}}(S(\sigma_{\lambda_1}^{\hat{V}}(x))).$$

So we yield a bounded operator $(\pi_{\lambda_1\lambda_2})_*$ from $B_{\hat{E}\lambda_1}(\hat{V}_{\lambda_1},\widehat{W}_{\lambda_1})$ into $B_{\hat{E}\lambda_2}(\hat{V}_{\lambda_2},\widehat{W}_{\lambda_2})_*$. Also $\{B_{\hat{E}\lambda}(\hat{V}_{\lambda_1},\widehat{W}_{\lambda_2})_*; |.|_{\lambda_1} \geq |.|_{\lambda_2}, \lambda_1, \lambda_2 \in \Lambda\}$ is an inverse system of Banach spaces. We are going to show that $B_E(V,W)$ and $\lim_{\epsilon \to 0} B_{\hat{E}\lambda}(\hat{V}_{\lambda_1},\widehat{W}_{\lambda_2})$ are isomorphic. Suppose that $\lambda \in \Lambda, T \in B_E(V,W)$. One can see that, $T(\xi_{\lambda_1}^V) \subseteq \xi_{\lambda_2}^W$ and so there exists a unique operator $T_{\lambda_1}: V_{\lambda_1} \to W_{\lambda_2}$ in which $\sigma_{\lambda_1}^W \circ T = T_{\lambda_1} \circ \sigma_{\lambda_2}^V$. Moreover T_{λ_2} is a bounded E_{λ_1} —linear operator. It has a continuous extension $\hat{T}_{\lambda_2}: \hat{V}_{\lambda_2} \to \hat{W}_{\lambda_2}$. Thus we can define the following continuous linear operator

$$(\pi_{\lambda})_*: B_E(V,W) \to B_{\widehat{E}\lambda}(\widehat{V}_{\lambda},\widehat{W}_{\lambda})$$

$$T \mapsto \hat{T}_{\lambda}$$

where $\sigma_{\lambda}^{\widehat{W}} oT = \widehat{T}_{\lambda} o \sigma_{\lambda}^{\widehat{V}}$. Also, for $\lambda_1, \lambda_2 \in \Lambda, |..|_{\lambda_1} \ge |..|_{\lambda_2}$ we have $(\pi_{\lambda_1 \lambda_2})_* o(\pi_{\lambda_1})_* = (\pi_{\lambda_2})_*$. Now we can define the following isomorphism operator

$$\begin{split} \phi: B_{E}(V,W) &\to \underset{\leftarrow}{\lim} B_{\widehat{E}\lambda}(\widehat{V}_{\lambda},\widehat{W}_{\lambda}) \\ \phi(T) &= ((\pi_{\lambda})_{*}(T))_{\lambda}. \end{split}$$

M. Khanehgir*/On Hilbert Modules over Locally m-Convex H* - Algebras/IJMA- 2(9), Sept.-2011, Page: 1636-1645

For each $T \in B_E(V,W), \|\phi(T)\|_{\lambda} = \widetilde{P}_{\lambda}(T)$. Linear operator ϕ is surjective. Indeed, let $([T_{\lambda}])_{\lambda \in \Lambda} \in \lim_{\epsilon \to \lambda} B_{\widehat{E}_{\lambda}}(\widehat{V}_{\lambda}, \widehat{W}_{\lambda})$. We define linear operator T as follows

$$T:V\to W$$

$$x \mapsto (\hat{T}_{\lambda}(\sigma_{\lambda}^{\hat{V}}(x)))_{\lambda}.$$

For $\lambda_1, \lambda_2 \in \Lambda$ that $|.|_{\lambda_1} \ge |.|_{\lambda_2}$ we have

$$\sigma_{\lambda_{1}\lambda_{2}}^{\hat{V}}(\hat{T}_{\lambda_{1}}(\sigma_{\lambda_{1}}^{\hat{V}}(x))) = (\pi_{\lambda_{1}\lambda_{2}})_{*}(\hat{T}_{\lambda_{1}})(\sigma_{\lambda_{2}}^{\hat{V}}(x)) = \hat{T}_{\lambda_{2}}(\sigma_{\lambda_{2}}^{\hat{V}}(x)).$$

So T is well-defined. Also it is a bounded E- module map and $\phi(T)=((\pi_{\lambda})_*(T))_{\lambda\in\Lambda}$. Completeness of $\lim_{\leftarrow\lambda}B_{\hat{E}_{\lambda}}(\hat{V}_{\lambda},\hat{W}_{\lambda})$ implies that $B_{E}(V,W)$ is complete.

For $\lambda \in \Lambda$, \widetilde{P}_{λ} is a submultiplicative seminorm on $B_{E}(V)$ and $\{B_{\widehat{E_{\lambda}}}(\widehat{V_{\lambda}}), (\pi_{\lambda_{1}\lambda_{2}})_{*}; 1.1_{\lambda_{1}} \geq 1.1_{\lambda_{2}}, \lambda_{1}, \lambda_{2} \in \Lambda\}$ is an inverse system of C^{*} -algebras and linear operator

$$\widetilde{\phi}: B_E(V) \to \lim_{\epsilon \to 1} B_{\widehat{E}_{\lambda}}(\widehat{V}_{\lambda})$$

$$T \mapsto ((\pi_{\lambda})_*(T))_{\lambda}$$

is an isomorphism of topological algebras. Also, $\|\widetilde{\phi}(T)\|_{\lambda} = \widetilde{P}_{\lambda}(T)$ and since $B_{\widehat{E}_{\lambda}}(\widehat{V_{\lambda}})$'s are C^* -algebras, so $B_{E}(V)$ is a locally C^* -algebra. Q.E.D.

Definition: 3.3 We say that E – linear operator T has an adjoint if there exists E – linear operator $T^*:W\to V$ in which $[Tx\mid y]=[x\mid T^*y]$ for each $x\in V$ and $y\in W$. The set of adjointable E – linear operators from Hilbert E – module V into Hilbert E – module W is denoted by $L_E(V,W)$ and for each $\lambda\in\Lambda$, the set of adjointable operators from V_λ into W_λ is denoted by $L_{E_\lambda}(V_\lambda,W_\lambda)$. Let $T\in L_E(V,W)$. For each $\lambda\in\Lambda$, since $T(\xi_\lambda^v)\subseteq \xi_\lambda^W$, we can define

$$(\pi_{\lambda})_*: L_E(V, W) \to L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})$$

$$(\pi_{\lambda})_*(T)(x + \xi_{\lambda}^V) = T(x) + \xi_{\lambda}^W,$$

Obviously $(\pi_{\lambda})_*(T) \in L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})$ and $|T|_{\lambda} = ||(\pi_{\lambda})_*(T)||_{L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})}$ defines a seminorm on $L_E(V, W)$, where $||.||_{L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})}$ is the operator norm in $L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})$.

We topologize $L_E(V,W)$ via these seminorms. By similar argument just like previous theorem $L_E(V,W)$ may be identified with $\lim_{\leftarrow \lambda} L_{\hat{E}_{\lambda}}(\hat{V}_{\lambda}, \hat{W}_{\lambda})$. In particular $L_E(V) \cong \lim_{\leftarrow \lambda} L_{\hat{E}_{\lambda}}(\hat{V}_{\lambda})$ and we conclude that $L_E(V)$ is a locally C^* -algebra. The connecting maps of the inverse system $\{L_{E_{\lambda}}(V_{\lambda}, W_{\lambda})\}_{\lambda \in \Lambda}$ will be denoted by $(\pi_{\lambda_1 \lambda_2})_*, \lambda_1, \lambda_2 \in \Lambda, |.|_{\lambda_1} \ge |.|_{\lambda_2}$, where

$$\begin{split} &(\pi_{\lambda_1\lambda_2})_*:L_{E_{\lambda_1}}(V_{\lambda_1},W_{\lambda_1}) \to L_{E_{\lambda_2}}(V_{\lambda_2},W_{\lambda_2}) \\ &(\pi_{\lambda_1\lambda_2})_*(T)(x+\xi_{\lambda_2}^V) = \sigma_{\lambda_1\lambda_2}^W(T(x+\xi_{\lambda_1}^V)). \end{split}$$

So $\{L_{E_{\lambda}}(V_{\lambda},W_{\lambda});(\pi_{\lambda_{1}\lambda_{2}})_{*}\}_{|I_{\lambda_{1}}\geq |I_{\lambda_{2}}}$ is an inverse system of normed spaces and $\{L_{\widehat{E_{\lambda}}}(\widehat{V_{\lambda}},\widehat{W_{\lambda}});(\pi_{\lambda_{1}\lambda_{2}})_{*}\}_{|I_{\lambda_{1}}\geq |I_{\lambda_{2}}}$ is an inverse system of Banach spaces. Also,

$$L_{E}(V,W) \cong {}_{\leftarrow \lambda}^{\lim} L_{\widehat{E}_{2}}(\widehat{V}_{\lambda},\widehat{W}_{\lambda}).$$

So $L_{E}(V,W)$ is a complete locally convex space. On the other hand by [2] each $T\in B_{\widehat{E_{\lambda}}}(\widehat{V_{\lambda}})$ belongs to $L_{\widehat{E_{\lambda}}}(\widehat{V_{\lambda}})$. From this we obtain that each $T\in B_{E}(V)$ belongs to $L_{E}(V)$.

Definition: 3.4 Let W be a Hilbert module over an l.m.c. H^* -algebra, E. Let $v,w\in W$ be basic vectors and let the operator $F_{v,w}:W\to W$ be defined with $F_{v,w}(x)=[x\,|\,w]v$. The linear span of the set $\{F_{v,w}:v,w\in W\}$ is denoted by $F_E(W)$ and an operator T belonging to $F_E(W)$ is called a generalized finite rank operator. Observe that $F_E(W)\subseteq B_E(W)$ and $F_{v,w}^*=F_{v,v},TF_{v,w}=F_{Tv,w},F_{v,w}T=F_{v,T^*_w}$, for each $v,w\in W$, for each $T\in B_E(W)$. Therefore $F_E(W)$ is a selfadjoint two-sided ideal in $B_E(W)$.

Definition: 3.5 An operator $T \in B_E(W)$ is said to be a generalized compact operator if there exists a sequence of generalized finite rank operators $\{F_n\}$ such that $\lim_n F_n = T$. The set of all generalized compact operators is denoted by $K_E(W)$. By definition $K_E(W) = \overline{F_E(W)}$ is a closed two-sided ideal in $B_E(W)$. Moreover, $K_E(W)$ may be identified with $\lim_{\epsilon \to K} K_{\widehat{F}_2}(\widehat{W}_{\lambda})$.

We terminate with a result about unitary operators in Hilbert H^* – modules.

Definition: 3.6 Let E be a proper H^* -algebra. We say that Hilbert E - modules V and W are unitary equivalent if there is a unitary element U in $L_E(V,W)$, namely, $UU^*=id_W$ and $U^*U=id_V$. If $U\in L_E(V,W)$ is unitary then it is clear that U is a surjective E - linear map and also that U is isometric,

since $||U(x)||^2 = tr[U(x)|U(x)] = tr[U^*U(x)|x] = tr[x|x] = ||x||^2$. Our next result will be the converse assertion, that if $U: E \to F$ is an isometric, surjective E – linear map then U is unitary. For this we need the following lemma.

Lemma: 3.7 Let E be a proper H^* – algebra and $a \in E$. If ||ac|| = ||bc|| for each $c \in E$ then $a^*a = b^*b$.

Proof: We have $\parallel ac \parallel^2 = \parallel bc \parallel^2$, so that $\langle ac, ac \rangle = \langle bc, bc \rangle$ and $\langle a^*ac, c \rangle = \langle b^*bc, c \rangle$.

Hence $\langle (a^*a-b^*b)c,c\rangle=0$ for each $c\in E$. From this and by Lemma 3.1 of [1] we have

$$\sup_{\|c\|=1} \|a^*a - b^*b)c\| = \sup_{\|c\|=1} |\langle (a^*a - b^*b)c, c\rangle| = 0.$$

Thus $\|(a^*a-b^*b)c\|=0$, where $\|c\|=1$, so that $(a^*a-b^*b)c=0$ for arbitrary $c\in E$. Therefore

$$(a^*a - b^*b)E = 0$$
, so that $a^*a - b^*b = 0$. Q.E.D.

Proposition: 3.8 With E, V, W as before, let U be an E – linear map from V to W. The following conditions are equivalent:

- (i) U is an isometric surjective E linear map;
- (ii) U is a unitary element of $L_E(V,W)$.

M. Khanehgir*/On Hilbert Modules over Locally m-Convex H* - Algebras/IJMA- 2(9), Sept.-2011, Page: 1636-1645

Proof. Suppose that (i) holds. For x in V, $[U(x)|U(x)] = b^*b$ and $[x|x] = c^*c$ for some b,c in E. For each a in E, we have

$$||ab^*||^2 = tr(a[U(x)|U(x)]a^*)$$

$$= tr([U(ax)|U(ax)])$$

$$= ||U(ax)||^2$$

$$= ||ax||^2$$

$$= tr([ax|ax])$$

$$= tr(a[x|x]a^*)$$

$$= tr(a(c^*c)a))$$

$$= ||ac^*||^2.$$

Thus $||ba^*|| = ||ca^*||$ for each a in E. By previous lemma $b^*b = c^*c$. This implies that [U(x)|U(x)] = [x|x] for each x in E and by polarization identity [U(x)|U(y)] = [x|y] for each x, y in E.

Now let $x \in V$ and $z \in W$. Since U is surjective, there is a $y \in V$ such that

$$U(y) = z$$
. We have $[U(x)|z] = [U(x)|U(y)] = [x|y] = [x|U^{-1}(z)]$.

Hence $U^* = U^{-1}$. This implies that U satisfies (ii); and the implication $(ii) \Rightarrow (i)$ is obvious as already discussed. Q.E.D.

References:

- [1] W. AMBROSE, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57(1945), 364-386.
- [2] D. Bakic and B. Guljas, Operators on Hilbert H^* modules , J. Operator Theory, Vol. 46(2001), 123-137.
- [3] F. F. Bonsall, and J. Duncan, Complete normed algebras, Ergebrise der Mathematik Band 80, Springer Verlag (1973).
- [4] M. CABRERA, J. MARTINEZ, A. RODRIGUEZ, Hilbert modules revisited: Orthonormal bases and Hilbert-Schmidt operators, Glasgow Math. J. 37(1995), 45-54.
- [5] M. Haralampidou, On locally convex H^* algebras, Math. Japonica 38(1993), 451-460.
- [6] A. El Kinani, On locally pre- C^* algebra structures in locally m-convex H^* algebras, Turk J. Math. 26(2002), 263-271.
- [7] K. SCHM \ddot{U} DGEN, \ddot{U} ber LMC * Algebren, Math, Nachr, 68(1975), 167-182.
