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ABSTRACT
In this paper a Hilbert E —module W is defined where (E,(]. |/1 )ﬂEA) is a locally m-convex H —algebra. With

each A€ A, we associate a Hilbert module W 5 over an H ’ —algebra E . We obtain relationship between these

spaces and the initial space. Moreover the existence of orthonormal bases in a Hilbert E — module is proved. We

topologized the space of bounded E — linear operators via suitable
Sfamily of seminorms.
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1. Introduction

A locally multiplicatively convex algebra (l.m.c.a in short) is a topological algebra (E,7) whose topology 7 is

determined by a directed family (|.l;),_, of submultiplicative seminorms. Such an algebra will usually denoted by
(E,(I.1;),c4) . If, in addition, E is endowed with an involution X > X such that |x =l x |, , for any
xe€ E, A€ A, then (E,(I.1,),.,) is called an l.m.c.*—algebra. Let (E,(I.1,), ,) be a complete Lm.c.a. It is
known that (E,(I.1;),_,) is the inverse limit of the normed algebras (E,,(I.1;),.,) , where E, = E/N, with
N,={xe E:lx|,=0}, and |)_c|;=|x|/l . An element x of E is written x=(x,;), =(7,(x)),, where
7, : E — E, is the canonical surjection. The algebra (E,(l.1,),_,) is also the inverse limit of the Banach algebras

E ., the completion of E;s. The normin £ will also be denoted by .1} .

In the following we define the locally m-convex H : —algebra spaces. This notion was introduced in [5] as a natural

extension of the classical H — algebras of W. Ambrose ([1]). Here we consider the case where the algebra is complete
and it is endowed with a continuous involution.

Definition: 1.1 A locally m-convex H*—algebra (I.m.c. H*—algebra in short) is a complete l.m.c.*-algebra
(E,(I.1,),.4) on which is defined a family ({.,.);),., of positive semi-definite pseudo-inner products such that

the following properties hold for all x, y,z€ E and AeA:

@I xL=(x,x),,

(i) (xy,2), = (3, X 2),,

(iii) (yx,2) , = (¥, 2x) ;.-

Forevery A€ A, the quotient space E, = E/ N is an inner product space under {Xx,,y,), ={X,y),.The
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underlying Banach space E; is a Hilbert space. Moreover, the involutive Banach algebra (E,l,|.|:1) is an

H' —algebra. The algebra (E,(I.1;),.4) is the inverse limit of the Banach H" —algebras (Ex,1.1), (5],

Theorem 2.3). So there exists a unique homomorphism ¢:E—>n:’/1 E2 in which y 09=1x, o7, where
[.1,21. |ﬂ and ¥, h:;E,i — E, is the natural projection. One can see that @ is an isomorphism and im,l Ei=zE

(See also the remarks following Satz 1.1 in [7]). One of the most useful consequences of this isomorphism is that

every coherent sequence in {E1 : A€ A} determines an element of E .

Given an I.m.c. H -algebra (E,(I. 1,),c4) - Since * is an involution, E is proper, namely lan(E) ={0}, where

lan(E)={xe E:xE ={0}} is the left annihilator of E and so each E, for every A€ A. The trace class
T(E) of E is defined as the set T(E)={ab:a,be E}. Clearly, T(E) is an ideal of E which is complete

*—algebra in the topology 7 determined by suitable submultiplicative seminorms 7,(.), A€ A related to given
seminorms on E by T/l(a*a) =la |i, forall a in E.Forevery A€ A, there exists a canonical continuous linear
form on T(E) called the trace—A of E and we denote it by tr, which is related with the semi-definite pseudo-
inner product {.,.), of E by tr;(ab) = {(a,b"), forall a,be E . The trace class inthe H —algebra E/l, Ae A
is defined as the set T(E,l) ={[la+N,][b+N,]:a,be E} . Itis known that T(E/l) is an ideal of E},, which is
Banach *-algebra under a suitable norm %A() The norm ‘2'/1 is related to given norm |.|:1 on E/l by
%4([a*a+N1]) =| [a+N1]|:12, for all a€ E. The trace class 7(E;) of E,,A€ A is defined similarly.
Obviously 7(E;) is an ideal of E, which is norm *—algebra under a suitable norm 7,(.), in which
71(a*a+N/1) =la+N, |:12 for all a€ E. For A€ A, there exists a continuous linear form t/l\”g on T(E)
satisfying t/;'ﬂ([(l'F N,1[b+N,] = t’l\’z([b+ N,l[a+N,]) = (a,b*h . Similarly there exists a continuous linear
form tr, onthe T(E,), A€ A, satisfying tr,(ab+ N,) =tr,(ba+N,) = (a,b*>l.

Now suppose that ¥, : 7(E) = 7(E,) defined by y,(ab)=ab+ N, and 7, ,:7(E,) —> 7(E,) defined by
7, (a+N))b+N;)=(a+N,)b+N,), where |.1,2I.1,. Then {7(E),7;x,} is the inverse limit of the

inverse system {T(E/l),f/l;ﬂ'lﬂ,ﬂ,,ue A,|.|/12|.|ﬂ} and it is also inverse limit of the inverse system

(T(E2),T237, 0, A i A2 Y.

In this paper we will intoduce a Hilbert module W over an L.m.c. H —algebra (E, (.l 1),c4) and foreach A€ A

we will associate a Hilbert module ﬁ\/z overan H —algebra E' 2. We shall see that W = il_laﬁ\/ 4. Then we will
discuss about orthonormal bases in these spaces. Also we will topologize L,(V,W) and B, (V,W), the set of
adjointable E — linear operators and the set of bounded E — linear operators from Hilbert £ —module V' into Hilbert
E —module W , respectively, via suitable families of seminorms. Throughout this paper E is anl.m.c. H —algebra

and W is a Hilbert E —module except some results about unitary operators in Hilbert H " —modules at the end of the
paper. The paper is organized as follows.

In section 2 we will introduce Hilbert modules over l.m.c. H' —algebras and their properties are studied. The
existence of orthonormal bases in these spaces is proved.

In section 3 we topologize the space of bounded FE —linear operators and the space of all adjointable E — linear
operators. Also, more properties of these spaces are detected.
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2. Hilbert modules over L.m.c. H —algebras and orthonormal bases

Hilbert modules over lm.c. H *—algebras generalize the notion of Hilbert H " —modules by allowing the

7(E) — valued product in an L.m.c. H —algebra.

Definition: 2.1 Let (E,(l.1;),_,) be a Hausdorff L.m.c. H " —algebra. A pre-Hilbert E -module is a left module W

over E provided with a mapping

[LI.]:WXW — 7(E) (called T(E)— valued product) where T(E) ={ab:a,b € E} which satisfies the following
conditions:

@D [axlyl=alxly]Vae C,Vx,ye W,

@) [x+ylzl=[xlz]+[ylz]Vx,y,ze W,

(iii)[ax| y]=a[x| y],Vae E,Vx,ye W,

() [x| y]* =[ylx]Vx,yeW,

(v)VxeW,x#0,3ae E,a#0, such that [x| x]=d a,

(vi) foreach A€ A, W is a semi-definite pseudo-inner product space with (x,y), = (a,b") , (or try(ab)) where
[xlyl=abe T(E).

We say that W is a Hilbert E —module if it is complete with respect to the topology determined by the family of
seminorms H X ||l= Jx),, xeW, le A.

Given a Hilbert E —module W , then for A€ A, &, ={xe W :|| x||,;=0} is a closed submodule of W . Indeed,
for non zero x in &, and a€ E, if [x|x] = b'b for some non zero b€ E , then || ax||,=l ab’ ,<lal,Ibl,=0.
For A€ A,W, =W /&, is an inner product space with (x,y), =tr,[x+&, | y+&,] (or {a,b"); where

[x| y]=ab) andits completion W ; is a Hilbert space.

Example: 2.2 Let (E,(I.1,),.,) be an Lmc. H " —algebra. Then E is a Hilbert module over itself with
7(E) — valued product defined by [a|b]=ab . Also it is easy to verify that a closed submodule of a Hilbert
E — module is again a Hilbert E —module. Note that analogue of Lemma 2.2 of [1] holds for Lm.c. H —algebras.

. . . . * * * *
More precisely if X is a non zero element in an l.m.c. H —algebra E, then X X, XX , X are also non zero. The

proof of the following proposition can be based on the direct application of previous comments about Hilbert
E —module W .

Proposition: 2.3 Let W be a Hilbert module over an L.m.c. H —algebra (E,(l. 1,),01) - Foreach Ae A,W; isa

Hilbert module over the proper H —algebra E;  with T (@x+E)=ax+&,  and
[x+§/1 | y+f/1] =7,([x] y]) forevery a€ E and for every x,y€ W . Let Gflv be the canonical map from W

onto Wa,Ae A.For 4,4 € A,l. |A1 >l. |/12, there is a canonical surjective linear map O-Zﬂz ‘Wi —> W2, such

that O-Zﬂz (GZ’(X))ZO';VZ (x). Also {ﬁ\/z,gz;dzﬂz,l.ljl Zl.ljz,ﬂ,,ﬂge A} is an inverse system of Hilbert

H™ —modules in the following sense:
W w _ w w
044, (T, ()0, (X)) =7, (T, (@), (0, (x))
and

(0-;:12 ((O-;: (x)), 0-;1‘/42 ((sz;/ ()7))),12 = <7[z142 (7[1[ (a)), 7[41,12 (7[51 (b* ))>,12

Where [x| y] = ab, forevery x,ye W and forevery a€ E ;
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O-Z%O-El/% = O-El/ﬂz’l'l)ﬂ Z|.|122|.|ﬂ3;0';i1 = idwl’ I:HAWA is a Hilbert £ — module with

(m,(a)), (0} (), = (0} (ax)),,
and

(07 ()25 (07 (M) zen) = (@, T, (D)) ) e

Where [x|y]=ab. Indeed, "™, W, maybe identified with W . So every coherent sequence in {W;:Ae A}

* A

determines an element of W .

For the basic facts about Hilbert H —modules we refer to [2] and [4]. In particular with the assumption of the

previous proposition, we have the following three relations in Hilbert £ — module W1 (A€ A),
, ~ ~
|x+&, j=tra(x+& 1 x+& D =[x+ & T x+ & D).

I+ y+E NS Ta(x+E N y+ ED S x+ & L] y+&, 1, -
H (a+N1)(x+§ﬂ) HlSla-i_Ni r/l” x"‘fz Hz .
As an immediate consequence of the above relations and the previous comments we obtain:
| x|;=tr, (x| x]) = 7, ([x] x]).
xEy10G< 7, (Db yD <[l x [l v [l -
[ax|[;<al]x||, .

Proposition: 24. Let W be a Hilbert module over an lLmc. H —algebra E  and
b(E)={a€ E:||all.=sup,lal,<e} and b(W)={xe W :| x| .=sup, | x|;<ec}. Then b(E) is an

H'™ —algebra and b(W) is a b(E)— Hilbert module.

Proof: Clearly, the sets b(E) and b(W) are complex vector spaces and b(W) is a left b(E)— module. Because,
when W is identified with ii_mlW 1, we see that b(W) corresponds to the set of bounded coherent sequences. The

Cauchy-Schwarz inequality, applied to Hilbert FE1—module W, yields for x,y€ b(W), the inequality
G W RS G |l (v y) L, so that the restriction of B(W) of the 7(E)—valued product on W is a
7(b(E)) — valued product on b(W) . Obviously, (D(E),({»-); by aen) and (W), [Tl o)) take

more properties being as a subset of £ and W respectively. To proof of completeness in [7], Satz 3.1, also applied
1 1
here and show that D(E) and b(W) are complete for norm | a||.=||{(a,a)|]? and || x]|..=[ (x,x)|]2,

respectively, forevery a€ E, xe W . Q.E.D.

Definition: 2.5 A non zero projection € in an l.m.c. H —algebra E is called minimal, if eEe = Ce. Also element
i in a Hilbert £ —module W is said to be a basic element if there exists a minimal projection e € E such that
[ulu]=e. An orthonormal system in W' is a family of basic elements {u,},, @€ I satisfying [u, lu;]=0 for

all &, fe I, + [ . An orthonormal basis in W is an orthonormal system generating a dense submodule of W .

If V is a subset of a Hilbert E—module W, we define V" ={we WI[wlv]=0Vve V}. Clearly V" is a
closed submodule of W .If V is a submodule of W then V* = {xeWl(x,v), =0,VveV,Vie A}.
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Our next result is a generalization of Lemma 1.3 in [4].

Lemma 2.6. Let W be a Hilbert £ —module and let u in W be such that e = [u | u] is an idempotent in E . If the
closed submodule generated by u is complemented or e does not belong to N,, for each A€ A then

[wlu]l=[wlule forall we W .
We can also generalized Corollary 1.4 of [4] to Hilbert modules over l.m.c. H : — algebras.

Corollary: 2.7 If {u,},., is an orthonormal system in a Hilbert £ —module W in which for every @€ I the

closed submodule generated by i, is complemented or i, does not belong to é" ,» for each A€ A, then

[w—Z[qua]ua | w—Z[qua]ua] =[wl w]—Z[wlua][wlua]*

ael ael ael

for every finite subset J of I and forall w in W .

Our next result is a generalization of Proposition 1.5 of [4].

Proposition: 2.8 Let W be a Hilbert £ —module, let # be a basic element in W, and let M denote the closed
submodule of W generated by u# . If M is orthogonally complemented in W then the mapping w — [w | u]u is the

orthogonal projection from W onto M . As a consequence we have M = Eu .

Our next result is a generalization of Theorem 1.6 of [4] which provides a very useful characterization of

orthonormal bases in a Hilbert £ — module W .

Theorem: 2.9 Let {u,},., be an orthonormal system in a Hilbert £ —module W in which for every € I, the

ael

closed submodule generated by i1, is complemented, then the following statement are equivalent.

(i) Forall w,,w, in W the family {[w, lu,][w, |ua]*}a61 is summable in the space (7(E),(7;),.,), with sum
equale to [w, [w,].

(if) For every w in W, we have [wlw]= zae1[wl lu, 1w, lu, I" (Parseval's identity) in the space
(T(E),(T3) gen)-

(iii) Forevery w in W, we have w = Zaa[w | u,, Ju,, (Fourier expansion).

(iv) {u,},., is an orthonormal basis in W' .

Remark: 2.10 Parseval's identity leads to the equality Zae] [[wlu,] |i =||w ||/2{ for every A€ A . Indeed,
Dowlu JG=D 1 (wlu lwlu, 1) = tr, O (wlug Iwlu, 1)) = try (wlw]) =|| w]f; .

ael ael ael

The existence of basic elements in a Hilbert module over an L.m.c. H —algebra can be guaranteed by an argument
similar to Proposition 1.7 of [4]. A slightly modification of Theorem 1.9 of [4] gives the following theorem in a

Hilbert £ — module.

Theorem: 2.11 Let S be a subset of a Hilbert £ —module W . If S is a maximal orthonormal system then it is an
orthonormal basis in W and converse is true when each closed submodule generated by every element of S is
complemented in W .

Proof: Let S be a maximal orthonormal system in W and let M be the closed submodule generated by S . If
M #W | then there exists x€ W —M . It implies that || xHjoio, for some A, € A . Now if M™* ={0}then

(M+f/10)L C M™* ={0}. Hence in the Hilbert E,{O —module ‘71\/10 , we have M+§‘:A0 :W~l-f/10 which is a
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contradiction. So M ™ # {0} and therefore there exists a basic element # in M ™. Obviously SU{u} is an

orthonormal system strictly containing S, which is a contradiction. The converse is obvious by Fourier expansion.
Q.ED.

Corollary: 2.12 Every non zero Hilbert module over an l.m.c. H - algebra has an orthonormal basis.

Theorem: 2.13. In a Hilbert E —module W,{v,},_, is an orthonormal system if and only if {v, +&,},., is an

orthonormal system in the Hilbert £ —module W2 when v, does not belong to &, for each @€ I and for each

A€ A. Also if {v,},., is an orthonormal basis in W and v, does not belong to &, for each @€ I then
{v, + & 2+ }ae; 1s an orthonormal basis in the Hilbert £ — module W 2. So we have an analogue of Fourier expansion

and Parseval's identity associated to this orthonormal basis in Hilbert £ 7 —module W ;.

Proof: Suppose that v is a basic element in W . If for some /?0 e\ ve f P then v+ f P is not a basic element in

W3, - Tt is clear that for fZ€ A in which, |'|AOZ|'I;4’VE fﬂ and v+§ﬂ is not a basic element in W, . Now if v

does not belong to & s A€ A then we have

v+ & v+ ENEv+E 1v+E, 1=, IV Eaz, (v Iv])
=7, ([vIV]E[vIv])
= 7,(ClvIv])

=Clv+&, Iv+&,].

Hence v+ 5/1 is a basic element in W 1. Conversely, if for each A€ A, v+ 5/1 is a basic element in W, then we

have

v+¢, Iv+§l]§l[v+§l lv+&,1=Clv+<, v+ & ]
and this implies that

T,([vIvIElvIv]=-C[vIv]) =0,

forevery A€ A.So [VIV]IE[vIv]=C[vIv]< N, forevery A€ A and therefore [vIV]E[vIv]-C[vIv]=0.
It is easy to verify that, {v,},_, is an orthonormal system in W' if and only if {v, +&,},_, is an orthonormal system
in W4, when v, does not belong to ‘f/l for each @€ I and for each A€ A . Now suppose that {va }ae] is an

orthonormal basis in W and for each &¥e€ I, v, does not belonge to f , then as we mentioned before, {va + f 7 } el

—~ —~

is an orthonormal system in W ;. We are going to show that it generates a dense submodule of W ;. For this, let

x+&, € Wy . Since {v,},., is an orthonormal basis in W, So we have

ael
n
Elj/,.k € C’Elv%k e{v,}pike IN, Z%kvafk — X,
k=1
as n tends to oo . It implies that

D vy &) > x+E,
k=1 'k

when 71 tends to oo. Thus if for all &€ I, v, does not belong to f/l then {va + ga}%, is an orthonormal basis in

ﬁ\/z .QED.
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3. Space of bounded operators

Definition: 3.1 Let V and W be two Hilbert modules over an Lm.c. H —algebra (E, (.l 1) en) - An operator
T:V —> W iscalled E—linear if it is linear and satisfies 7'(ax) = aT(x) forall a€ E and for all x€ V. We
say that E — linear operator 7 is bounded if for each A€ A, and for each x€ V there exists K, >0 in which

1T ;= Ky [l x|l
1 1
v 1 —w 1
Put Pi(x)=(x,x)3 and Pz (Tx)= (Tx,Tx)}, where (x,x), and (Tx,Tx), are denoted positive semi-definite

pseudo-inner products in V and W respectively. So the E — linear operator T is bounded if for each A€ A, and

—w —v
foreach xe V there exists K; >0 in which Pz (Tx) < K, Pa(x).

The set of all bounded E — linear operators from Hilbert module V' into W is denoted by B,(V,W) and when
V=W is denoted by B.(V). It is easy to see that the map f’z, A€ A, defined by

Py (T) = Sup{ﬁ;‘/ (Tx):xeV, FE (x)<1} isaseminormon B, (V,W).

Theorem: 3.2 Let V and W be Hilbert modules over an L.m.c. H —algebra (E, (l. l,co)) - Then
(@) B, (V,W) is acomplete locally convex space with topology determined by the family of seminorms {ﬁ 2} gen-

(ii) B, (V) isalocally C " — algebra with the topology determined by the family of seminorms {ﬁ AY e -

Proof: Suppose that 4,, 4, € A, . |/11 2. |/12 ,S5€e B'A”“l (V4,,W4), setof bounded E — linear operators. We have

W v W v 2 v v
(0}, (S(0} (x)).0Y, (S0 (), <| S| (o), (x).0% ().
Therefore the following map is a bounded E 4, -bounded.
(JZ'/H%)*(S)ZVA2 - Wy,

0';; (x) af;? (S(af1 (x))).

So we yield a bounded operator (7&'4112 ). from BEA1 (‘711 ,‘i\/;ﬂ ) into Biﬂz (\742 ,W}Z ). Also

~ 5 5 . >| . . .

{Bm Vai,Wa), (71'11/12 )3l |]1 >l. IA2 , A, A, € A} is an inverse system of Banach spaces. We are going to show that
B.(V,W) and lj_“iiBE/1 (Vi,W ;) are isomorphic. Suppose that A€ A,T€ B,(V,W). One can see that,
T(dﬂ{) c f;v and so there exists a unique operator 7, :V, — W, in which G;VOT = TAOGX . Moreover T} is a

bounded E; —linear operator. It has a continuous extension 72 :V 4 —> W . Thus we can define the following

continuous linear operator

(7). :B,(V.W)— BE/1 Vai,Wi)
THYA"A

where O'XVOT = TlOO'X . Also, for 4,4, € A,l. l’ll >, |ﬂ2 we have (7Z'ﬂlﬂz )*0(7Z'ﬂ1 ), = (72'12 ). Now we can define
the following isomorphism operator

¢: B, (V.W) = limB; (V2. W)
H(T) = ((m,).(T));-
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For each TeB,(V.W),|eéD)|,= P (T). Linear operator @ is surjective. Indeed, let
(T,1) jen € ii_m/lB;E/1 (V 4,W 1) . We define linear operator T as follows

T:V->W

x> T2(0) (x))),.

For 4,4, € A that |.|112|.|22 we have

o}, (T4(0} (X)) = (7, ).(T4)(0}, (1) =T, (0], ().

So T is well-defined. Also it is a bounded E —module map and @(T)=((7;).(T)),.,. Completeness of

h:r;lBE/1 (V2,W ) implies that B, (V,W) is complete.

For A€ A, Piisa submultiplicative seminorm on B, (V') and {BEA (‘//;),(7[11/12 )es | |]1 >l IA2 ,A A, € A} is an
y)

*
inverse system of C — algebras and linear operator

$:B,(V) > limB; (V1)
«A

is an isomorphism of topological algebras. Also,

’;)(T) Il,= f’,{(T) and since BE/1 (‘//;)‘s are C -algebras, so

B, (V) isalocally C -algebra. QE.D.

Definition: 3.3 We say that E — linear operator T has an adjoint if there exists E — linear operator T :W —V in
which [Tx|y]=[x| T y] for each xeV and y€ W . The set of adjointable E — linear operators from Hilbert
E —module V into Hilbert E —module W is denoted by L,(V,W) and for each A€ A, the set of adjointable

operators from V, into W, is denoted by LEA (V,,W,). Let Te L, (V,W). For each A€ A, since

T(&) &), we can define

() Ly (VW) = Ly (VW)
() (T)(x+&)=T(x)+E&;,

Obviously (7,).(T)e LE/l (V,,W,) and |fT\E =|| (7). (T) ||LE defines a seminorm on L, (V,W), where
2

VW)

B HLE/1 W) is the operator norm in LEA V,,W,).

We topologize L, (V,W) via these seminorms. By similar argument just like previous theorem L, (V,W) may be
identified with il_mﬂ LE,{ (V4,W2). In particular L. (V)= ii—mngll (V1) and we conclude that L.(V) is a locally
C" —algebra. The connecting maps of the inverse system {LE/1 (V,,W,)},en will be denoted by

(7[21]2)*,21,126 A,l.l;ﬂZl.lAZ, where

(7,)- :LEA] VW) = LEA2 VW)
(7, 1) (D (x+&7) = 0%, (T(x+E;)).
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So {LE/1 V,,W,); (JZ'/V2 ). }L|j1 2, is an inverse system of normed spaces and {La (‘//\, W:), (E’Vz )s }LIj1 2, is an

inverse system of Banach spaces. Also,

lir -
L.(V.W)= (l_nﬂLEA/{ V,,W)).
So L, (V,W) is a complete locally convex space. On the other hand by [2] each T € B (V,) belongs to L V).
y) A

From this we obtain that each T € B, (V') belongs to L, (V).

Definition: 3.4 Let W be a Hilbert module over an L.m.c. H —algebra, E . Let v,we W be basic vectors and let
the operator F, W — W be defined with F,  (x)=[x|w]v. The linear span of the set {F, :v,we W} is
denoted by F, (W) and an operator T belonging to F,. (W) is called a generalized finite rank operator. Observe that
F,(W)c B,(W) and F =F ,TF. =F E“WT:FV,T*W’ for each v,we W, for each T € B, (W).

v,W w,v? v,w Tv,w?

Therefore F,. (W) is a selfadjoint two-sided ideal in B, (W).

Definition: 3.5 An operator T € B, (W) is said to be a generalized compact operator if there exists a sequence of
generalized finite rank operators {F } such that 1im,F, =T . The set of all generalized compact operators is denoted
by K, (W). By definition K, (W)= F_(W) is a closed two-sided ideal in B,(W). Moreover, K, (W) may be
identified with ", K 5, Wa).

We terminate with a result about unitary operators in Hilbert H " —modules.

Definition: 3.6 Let E be a proper H —algebra. We say that Hilbert E —modules V and W are unitary equivalent
if there is a unitary element U in L, (V,W), namely, UU" = id,, and UU = id, .

If Ue L,(V,W) is unitary then it is clear that U is a surjective £ — linear map and also that U is isometric,

since || U (x) HZ= tHU ) U (x)] = tr[U U (x) | x] = tr[x | x] =|| x H2 Our next result will be the converse

assertion, that if U : E — F is an isometric, surjective E — linear map then U is unitary. For this we need the
following lemma.
Lemma: 3.7 Let E be aproper H —algebraand a€ E . If || ac ||=|| bc || foreachce E then a'a=b'b.

Proof: We have || ac ||*=|| bc |[*, so that {ac,ac) = (bc,bc) and {a ac,c) ={bbe,c).

Hence ((a¢'a—b'b)c,c¢) =0 foreach ¢ € E . From this and by Lemma 3.1 of [1] we have

SU T aa-bb)c|= Sup | {(@a-bb)c,c)l=0.

Thus || (@’ a—b"b)c||=0, where || c|[=1, so that (a’a—b"b)c =0 for arbitrary ¢ € E . Therefore
(a'a—b'b)E=0, sothat a a—b'b=0.QED.

Proposition: 3.8 With E,V,W as before, let U be an E — linear map from V to W . The following conditions are
equivalent:

(i) U is an isometric surjective E — linear map;
(@) U is a unitary element of L, (V,W).
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Proof. Suppose that (i) holds. For x in V , [U(x)|U(x)]=b"b and [x|x]=c ¢ for some b,c in E . For each

a in E, we have
|ab” = tr(alU (x) U (x)]a")

=tr([U (ax) U (ax)])
=[|U (ax) |
=[| ax|P
=tr([ax|ax])
=tr(a[x|x]a")
=tr(a(c’c)a))

= ac”|P.

Thus || ba" ||=|| ca” || for each @ in E . By previous lemma b'b = ¢c . This implies that [U (x) U (x)] =[x x]
foreach X in E and by polarization identity [U (x) U (y)] =[x y] foreach x,y in E.

Now let x€V and z€ W .Since U is surjective, thereisa y€ V such that
U(y)=z.Wehave [UX)Iz]=[Ux)IU(y)]=[x] y]:[xIU_l(z)].

Hence U =U"". This implies that U satisfies (ii); and the implication (if)=> (i) is obvious as already
discussed. Q.E.D.
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