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ABSTRACT 
In this paper global asymptotic stability analysis of static recurrent neural networks with time-varying delay is studied 
by the LMI approach. Firstly, a novel Lyapunov functional is introduced, which involves the integral terms of the 
neuron state. Furthermore, a new technique is applied when estimating the upper bound of the derivative of the 
Lyapunov functional. Based on this, some less conservative criteria are obtained for the concerned static neural 
networks.Throughout this paper, 𝑅𝑛 and 𝑅𝑛×𝑛 denote the n-dimension Euclidean space and set of all 𝑛 × 𝑛 real 
matrices, respectively. A real symmetric matrix P > 0 (≥ 0) denotes P being a positive definite matrix. I is used to 
denote an identity matrix with proper dimensions. Matrices, if not explicitly stated, are assumed to have compatible 
dimensions. The symmetric term in a symmetric matrix are denoted by ∗. 
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INTRODUCTION:           
 
In the past few decades, recurrent neural networks (RNNs) have found many successful applications in signal 
processing, image processing, pattern classification, realizing associative memories, solving certain optimization 
problems and so on. Because the integration and communication delays are unavoidably encountered in RNNs, often 
constituting a source of instability and oscillations, considerable attention has been focused on the stability problem of 
neural networks with time delays. The stabilities can be classified into two types: delay-independent stability and delay 
dependent stability. Since delay-dependent criteria make use of information on the size of delay, they are generally less 
conservative than delay-independent ones especially when the delay is small in size.    
   
Neural networks can be classified as static neural networks or local field neural networks. Nowadays, many results 
have been obtained for the local field neural networks. For example, several criteria are proposed to deal with the 
exponential stability analysis. The linear matrix inequality (LMI) technique is developed to derive the criteria, which 
can guarantee the globally asymptotic stability of the static neural networks with time-varying delays. Less 
conservative results have been established based on a Lyapunov functional. However, there is some conservatism in 
these analysis results, and it is necessary to make further investigation into static neural networks.  
                       

Corresponding Author: S. Ramadevi*2 
Department of Mathematics, Vivekanandha College of Arts and Sciences for Women 

(Autonomous), Elayampalayam, Thiruchengode-637205, Namakkal, Tamil Nadu, India. 
 
 
 
 
 
 
 

http://www.ijma.info/�


S. Mehar Banu1, S. Ramadevi*2/  
Stability Analysisfor Recurrent Neural Networks with Time-Varying Delays / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         65  

 
SOME RESULTS FROM THE THEORY OF ABSOLUTE STABILITY:   
 
In this section we describe some approaches and results known from the theory of absolute stability. They form the 
basis of our approach for stability analysis of RNN. One of the most efficient methods of stability theory of dynamical 
systems is the method of absolute stability theory. A system to be analyzed for stability with this method is written in 
the form    

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜀𝑘,    𝜎𝑘 = Θ𝑥𝑘 +  𝑏 = �
𝜎1
…
𝜎𝑛
�                                                                                                    (1) 

 𝜀𝑘 = �
𝜀1
…
𝜀𝑛
� ,    𝜀𝑖 = 𝜓𝑖(𝜎𝑖) ,    i = 1,2,…….,n                                     

where 𝐴,𝐵 and Θ are some constant matrices and 𝑏 is a constant vector. It should be emphasized that the nonlinearities 
𝜓𝑖  do not include explicit compositions of functions of different variables  𝜎𝑖.  
 
Let 𝐹 be a quadratic form with arguments 𝑥, 𝜀 for the system (1). Assume that the pair (𝐴,𝐵) is stabilizable. 

 
Theorem: Assume that the following conditions hold.        

1) For any solution of the system (1) there exist a sequence of positive numbers 𝑁𝑗 → ∞ such that the inequality 

∑ 𝐹(𝑥𝑘𝜀𝑘)  ≥ 0 
𝑁𝑗
𝑘=0 is fulfilled for all j.        

2) There exist a positive number ∈ such that the inequality 𝑅𝑒{𝐹(𝑧, 𝜂)}  ≤  −𝜖(|𝑧2| + |𝜂2|) holds for all pairs 
(𝑧, 𝜂) such that 𝐴𝑧 + 𝐵𝜂 = 𝑒𝑖𝜔𝑧 for some 𝜔 𝜖 [0,𝜋].      

3) There exist a matrix 𝐷 such that 𝐷 such that 𝐹�𝑦,𝐷𝑦�  ≥ 0 for all vectors 𝑦 and the matrix 𝐴 + 𝐵𝐷 is 
stable.Then the equilibrium point of the system (1) is globally exponentially stable.If the condition (1) holds, 
then the system (1) is said to satisfy an integral quadratic constraint with the form 𝐹. If 𝐹(𝑥, 𝜀) ≥ 0  for all 
𝑥, then the system (1) is said to satisfy a local quadratic constraint with the form 𝐹.Satisfaction of the local 
quadratic constraint evidently implies satisfaction of the integral constraint.The condition (3) is usually called 
the condition of minimal stability. For almost all cases it is checked easily with 𝑑 = 𝑑𝑖𝑎𝑔�𝜇𝑗�Θ and some 
appropriate choice of the numbers 𝜇𝑗.The main condition (2) is usually called the frequency domain condition. 
The problem of checking this condition is reduced to checking for positive definiteness of some parameter-
dependent matrix. This complicated problem is equivalent to the problem of existence of a hermitian solution 
to  

(𝐴𝑥 + 𝐵𝜀)∗𝐻(𝐴𝑥 + 𝐵𝜀)  −  𝑥∗𝐻𝑥 + 𝐹(𝑥, 𝜀)  < 0 for all (𝑥, 𝜀) ≠ 0                                                                   (2)  
 
Inequality (2) is a linear matrix inequality (LMI) with respect to the components of the matrix 𝐻. Furthermore, the 
quadratic form 𝐹 is usually of the following type. 

𝐹 =  ∑ 𝜏𝑗𝐹𝑗𝑟
𝑗=1                                                                                                                                                      (3)   

Where 𝜏𝑗 are arbitrary positive numbers and 𝐹𝑗 are the quadratic forms with fixed coefficients, each of the forms 
describing some property of a nonlinearity. In this case the inequality (2) becomes an LMI also with respect to the 
parameter 𝜏𝑗. These parameters and the matrix 𝐻 may be found by an efficient interior point algorithm of the convex 
optimization. The corresponding quadratic form is   

𝐹𝑗 = �𝜀𝑗 − 𝛾𝑗𝜎𝑗��𝜇𝑗𝜎𝑗 − 𝜀𝑗� 
 
Note that a function for which 𝐹𝑗  ≥ 0 may be nonmonotone and time varying. Thus, if the conditions of the theorem 
(1) holds with the form 𝐹𝑗 then the system (1) would be stable even if the function 𝜑𝑗 is monotone and time varying. It 
is required only that its plot lie in the sector �𝛾𝑗𝜇𝑗�. The frequency domain condition (1) with a quadratic form (3) that 
guarantees stability of the system (1) with nonlinear functions 𝜑𝑗 satisfying the local quadratic constraint 𝐹𝑗  ≥ 0 for all 
𝑗 = 1, … … . . , 𝑟  is called the circle criterion. It is not specific in terms of the amount of information used about 
nonlinear functions; therefore the circle criterion is necessarily conservative when used for stability analysis of systems 
with nonlinear functions of a particular kind. Here we use two kinds of quadratic forms  

𝐹 =  𝜀∗Γ(𝑀Θ𝑥 − 𝜀) and 
𝐹 =  (𝜀 − 𝑁Θ𝑥)∗Γ(𝑀Θ𝑥 − 𝜀)                                                             

 
Here diagonal matrices 𝑀 and 𝑁 represent sector bounds for nonlinearities; 

𝑀 = 𝑑𝑖𝑎𝑔�𝜇𝑗� and 𝑁 = 𝑑𝑖𝑎𝑔�𝛾𝑗�. 
Γ is a matrix satisfying certain properties and is the another argument of the LMI (2) which is to be solved with respect 
to both 𝐻 and Γ. 
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SYSTEM TRANSFORMATION                
 
To apply the method of absolute stability theory to stability analysis of RNN, it is necessary to transform the system  

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2) 
𝑥3𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊3𝑥3𝑘 + 𝑉2𝑥2𝑘 + 𝑏3)                                            
………………………………… 
𝑥𝑛𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊𝑛𝑥𝑛𝑘 + 𝑉𝑛−1𝑥𝑛−1𝑘+1 + 𝑏𝑛)                                                                                                              (i) 

 
To the form (1). Hence the first step of our approach is a transformation. In (1), Θ becomes a matrix of blocks 𝑊𝑗 and 
𝑉𝑗 and 𝑏 becomes a vector of biases. Without loss of generality we henceforth assume that all nonlinearities are 
hyperbolic tangents or tanh, although the minimum requirement is to have all nonlinearities of a sector type. A 
recurrent network of the above system containing just one layer is already cast in the form (1). An RMLP with 𝑛 layers 
without global feedback (𝑉𝑛 = 0) can be analyzed for stability using (1) layer by layer. However, the above system 
with (𝑉𝑛 ≠ 0) must be modified to fit the form (1). To transform these equations to (1) we propose to use a special 
state-space extension method. We consider a two layer Recurrent Multilayer Perception (RMLP) with global feedback 
described by          

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
 𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2)                                                                                                                    (4) 

 
The original system above can be transformed into         

𝑥11𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥12𝑘 + 𝑉2𝑥21𝑘 + 𝑏1) 
𝑥12𝑘+1 = 𝑥11𝑘  
𝑥21𝑘+1 = 𝑡𝑎𝑛(𝑊2𝑥22𝑘 + 𝑉1𝑥11𝑘 + 𝑏2) 
𝑥22𝑘+1 = 𝑥21𝑘 .                                                                                                                                                         (5) 

 
The system (5) can now be written in the form suitable for our stability analysis  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜀𝑘  ,          𝜀𝑘  = 𝑐𝑜𝑙(𝜀1𝑘, 𝜀2𝑘) 
𝜀𝑗𝑘 = 𝑡𝑎𝑛ℎ�𝜎𝑗𝑘�,   𝑗 = 1,2, … … … 
𝜎𝑘 = Θ𝑥𝑘 +  𝑏,  𝑏 = 𝑐𝑜𝑙�𝑏1,𝑏2� 
Θ1 = �0,𝑊1,𝑉2,0�,     Θ2 = �𝑉1,0,0,𝑊2�                                                                                                               (6) 
Where, 𝑥 = 𝑐𝑜𝑙(𝑥11𝑥12𝑥21𝑥22)          

𝐴 = �
0 0 0 0
𝐼
0
0

0
0
0

0 0
0
𝐼

0
0
�,  𝐵 = �

𝐼 0
0 0
0 𝐼
0 0

� 

 
We would like to demonstrate that the system (5) may be converted to two independent systems which are counterparts 
of the original system (5). We can write  

𝑥12𝑘+2 = 𝜑1(𝑥12𝑘 , 𝑥21𝑘 )                   
𝑥21𝑘+2 = 𝜑2 �𝑥21𝑘 ,𝜑1(𝑥21𝑘 , 𝑥21𝑘 )�                                                                                                                           (7) 

 
We note that this system is identical to the original system        

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1)  
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2)  

 
Since one time step of the system  

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2)                                     

 
Corresponds to two time steps of the system 

𝑥11𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥12𝑘 + 𝑉2𝑥21𝑘 + 𝑏1)         
𝑥12𝑘+1 = 𝑥11𝑘  
𝑥21𝑘+1 = 𝑡𝑎𝑛(𝑊2𝑥22𝑘 + 𝑉1𝑥11𝑘 + 𝑏2)          
𝑥22𝑘+1 = 𝑥21𝑘 . 

 
Indeed let us choose 𝑥120 = 𝑥10, 𝑥210 = 𝑥20, then 𝑥11 = 𝑥122 , 𝑥21 = 𝑥212 , etc. for the second counterpart, we have    

𝑥22𝑘+2 = 𝜑2(𝑥11𝑘 , 𝑥22𝑘 ) 
𝑥11𝑘+2 = 𝜑1 �𝑥11𝑘 ,𝜑1(𝑥11𝑘 , 𝑥22𝑘 )�                                                                                                                           (8) 
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The system,      

𝑥22𝑘+2 = 𝜑2(𝑥11𝑘 , 𝑥22𝑘 ) 
𝑥11𝑘+2 = 𝜑1 �𝑥11𝑘 ,𝜑1(𝑥11𝑘 , 𝑥22𝑘 )� 

 
Corresponds to the following system:         

𝑥2𝑘+1 = tanh(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2) 
𝑥1𝑘+1 = tanh(𝑊1𝑥1𝑘 + 𝑉2𝑥2𝑘+1 + 𝑏1)                                                                                                                  (9)  

 
It is easy to see that the system,          

𝑥2𝑘+1 = tanh(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2)        
𝑥1𝑘+1 = tanh(𝑊1𝑥1𝑘 + 𝑉2𝑥2𝑘+1 + 𝑏1) 

 
Is like the original system 

𝑥1𝑘+1 = (𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2) 

 
For which the forward propagation begins with the second layer and ends with the first layer it is the other way around 
for the system    

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2). 

 
For each state vector 𝑥𝑙  of a layer 𝑙 of an 𝑛 −th RMLP we introduce 𝑛 copies 

𝑥11𝑘+1 = 𝑡𝑎𝑛ℎ�𝑊1𝑥𝑙𝑛𝑘 + 𝑉𝑙−1𝑥𝑙−1,1
𝑘 + 𝑏𝑙� 𝑙 = 1,2, … .𝑛(𝑚𝑜𝑑 𝑛) 

𝑥12𝑘+1 = 𝑥11𝑘             
𝑥13𝑘+1 = 𝑥12𝑘  
  …………..                    
𝑥1𝑛𝑘+1 = 𝑥𝑙,𝑛−1𝑘                                                                                                                                                     (10) 

 
It can be seen that  𝑥1𝑛𝑘+1 = 𝑥𝑙,𝑛−1𝑘  has the form        

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝜀𝑘,    𝜎𝑘 = Θ𝑥𝑘 +  𝑏 = �
𝜎1
…
𝜎𝑛
� 

 
Equation (10) can be interpreted as describing 𝑛 independent process in the RMLP 

𝑥1𝑘+1 = tanh(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = tanh(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘+1 + 𝑏2) 
𝑥3𝑘+1 = tanh(𝑊3𝑥3𝑘 + 𝑉2𝑥2𝑘+1 + 𝑏3) 
𝑥𝑛𝑘+1 = tanh(𝑊𝑛𝑥𝑛𝑘 + 𝑉𝑛−1𝑥𝑛−1𝑘+1 + 𝑏𝑛) 

 
And it is the general form illustrated in the example above for 𝑛 = 2. Each process represents a system that is a 
counterpart of the original system,    

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1)       
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2) 
𝑥3𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊3𝑥3𝑘 + 𝑉2𝑥2𝑘 + 𝑏3)      
 ……………………………………        
𝑥𝑛𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊𝑛𝑥𝑛𝑘 + 𝑉𝑛−1𝑥𝑛−1𝑘+1 + 𝑏𝑛)                                           

 
It differs from systems represented by other process. For instance, a system with the state vector  
𝑐𝑜𝑙(𝑥1𝑛 , 𝑥2,𝑛−1, 𝑥3,𝑛−2 … … … . 𝑥𝑛1) can be written as,     

𝑥1𝑛𝑘+𝑛 = 𝜙1(𝑥1𝑛𝑘 , 𝑥2,𝑛−1
𝑘 , 𝑥3,𝑛−2

𝑘 , … … . . 𝑥𝑛1𝑘 )       
𝑥2,𝑛−1
𝑘+𝑛 = 𝜙2(𝑥1𝑛𝑘 , 𝑥2,𝑛−1

𝑘 , 𝑥3,𝑛−2
𝑘 , … … . . 𝑥𝑛1𝑘 )        

   . .         
𝑥1𝑛𝑘+𝑛 = 𝜙𝑛(𝑥1𝑛𝑘 , 𝑥2,𝑛−1

𝑘 , 𝑥3,𝑛−2
𝑘 , … … . . 𝑥𝑛1𝑘 )                                                                                                       (11) 

 
Where vector functions 𝜑𝑖 may be compositions of the functions 𝑡𝑎𝑛ℎ with appropriate arguments. However, there are 
no compositions of nonlinear functions in (10), which is important for stability analysis. Setting 𝑘 + 𝑛 instead of 𝑘 + 1 
as the time index of the left-hand side of (11), we arrive at a system which is an exact equivalent of the system (i). 
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Since             

𝑥1𝑛 = 𝑥1, 
𝑥2,𝑛−1 =  𝑥2 
𝑥3,𝑛−2 = 𝑥3                 
………….. 
𝑥𝑛1 = 𝑥𝑛 

 
In this case, it is also natural to count the forward propagation of signals sequentially from the first layer of   

𝑥1𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊1𝑥1𝑘 + 𝑉𝑛𝑥𝑛𝑘 + 𝑏1) 
𝑥2𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊2𝑥2𝑘 + 𝑉1𝑥1𝑘 + 𝑏2) 
𝑥3𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊3𝑥3𝑘 + 𝑉2𝑥2𝑘 + 𝑏3)        
…………………………………… 
𝑥𝑛𝑘+1 = 𝑡𝑎𝑛ℎ(𝑊𝑛𝑥𝑛𝑘 + 𝑉𝑛−1𝑥𝑛−1𝑘+1 + 𝑏𝑛). 

 
For other 𝑛 − 1 process with state vectors   

𝑐𝑜𝑙(𝑥11, 𝑥2𝑛 , 𝑥3.𝑛−1, … … , 𝑥𝑛2)         
𝑐𝑜𝑙�𝑥12, 𝑥21, 𝑥3,𝑛, … … … . . 𝑥𝑛3�      
 ………………………………..                   
𝑐𝑜𝑙�𝑥1,𝑛−1, 𝑥2,𝑛−2, 𝑥3,𝑛−3, … … … … . . 𝑥𝑛𝑛� 

 
Their system differ (i) only by the order in which signals propagate through the layers. Stability is established at once 
for all n processes(11), counterparts of the original system (i). If this is possible, then the global stability of the original 
system (i) and the system (10) follows immediately. Based on theorem (1) there is a special case which is being 
discussed below. Consider the form                       

 𝑝𝑘+1 = 𝑃1𝑄1𝑃2𝑄2 … … . .𝑃𝑞𝑄𝑞𝑝𝑘                                                                                                                      (12)  
 
Where 𝑝𝑘 ∈ 𝑅𝑛 is a state vector, 𝑄𝑗are known matrices and 𝑃𝑗 are diagonal matrices.  The problem is to  check  
Lyapunov stability of the system 𝑝𝑘+1 = 𝑃1𝑄1𝑃2𝑄2 … … . .𝑃𝑞𝑄𝑞𝑝𝑘 for all matrices 𝑃𝑗 satisfying the condition              
0 ≤ 𝑃𝑗 ≤ 𝐼. The system (i) and (12) have different forms but the system (i) can be transformed into the form of (12) 
                    

𝑥𝑘+1 =

⎝

⎜⎜
⎛

𝐼
0
0
0
0
0

0
𝐼
0
0
0
0

0
0
…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

0
0
0
0
0
𝑓𝑞⎠

⎟⎟
⎞

.

⎝

⎜⎜
⎛

𝐼
0
0
0
0
0

0
𝐼
0
0
0
0

0
0…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼

𝑉𝑞−1

0
0
0
0
0
𝑊𝑞⎠

⎟⎟
⎞

……. 

                                                                    

⎝

⎜⎜
⎛

𝑓1
0
0
0
0
0

0
𝐼
0
0
0
0

0
0
…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

0
0
0
0
0
𝐼⎠

⎟⎟
⎞

.

⎝

⎜⎜
⎛

𝑊1
0
0
0
0
0

0
𝐼
0
0
0
0

…
0…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

𝑉𝑞
0
0
0
0
𝐼 ⎠

⎟⎟
⎞
𝑥𝑘 

    
Where 𝑓𝑗(𝑠) = 𝑡𝑎𝑛ℎ(𝑠) , 𝑥𝑘 = 𝑐𝑜𝑙�𝑥1𝑘 … … … 𝑥𝑞𝑘 � and all the off diagonal blocks are set to zero. The system has the 
form (12) with      

𝑃1 =

⎝

⎜⎜
⎛

𝐼
0
0
0
0
0

0
𝐼
0
0
0
0

0
0
…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

0
0
0
0
0
𝑓𝑞⎠

⎟⎟
⎞

… … … … … … … 

 

𝑃𝑞 =  

⎝

⎜⎜
⎛

𝑓1
0
0
0
0
0

0
𝐼
0
0
0
0

0
0
…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

0
0
0
0
0
𝐼⎠

⎟⎟
⎞

… … … … … … … .. 
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𝑄1 =  

⎝

⎜⎜
⎛

𝐼
0
0
0
0
0

0
𝐼
0
0
0
0

0
0…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼

𝑉𝑞−1

0
0
0
0
0
𝑊𝑞⎠

⎟⎟
⎞

… … … … … … 

 

𝑄2 =  

⎝

⎜⎜
⎛

𝑊1
0
0
0
0
0

0
𝐼
0
0
0
0

…
0…
0
0
0

0
0
0
𝐼
0
0

0
0
0
0
𝐼
0

𝑉𝑞
0
0
0
0
𝐼 ⎠

⎟⎟
⎞

. 

 
If there exist diagonal positive – definite matrices 𝐷𝑗  such that  �𝐷𝑗𝑄𝑗𝐷𝑗+1−1 � < 1 for all 𝑗 = 1, … … . , 𝑞(𝑚𝑜𝑑 𝑞), then 
the system (12) is stable.                                                                                                                     
 
PROBLEM FORMULATION 
               
Consider the following recurrent neural networks with time-varying delay: 𝑥̇ = −𝐴𝑥(𝑡) + 𝑓�𝑊𝑥�𝑡 − 𝜏(𝑡)� + 𝐽�  

𝑥(𝑡) = 𝜑(𝑡),−𝜏 ≤ 𝑡 ≤ 0                                                                                                                                  (13) 
Where, 𝑥(. ) = [𝑥1(. ),𝑥2(. ) … … . , 𝑥𝑛(. )]𝑇 ∈ 𝑅𝑛 is the neuron state vector                        
𝑓�𝑥(. )� = �𝑓1�𝑥1(. )�, 𝑓2�𝑥2(. )�, … … . , 𝑓𝑛�𝑥𝑛(. )��𝑇 ∈ 𝑅𝑛 denote the neuron activation function 𝐽 = �𝑗1, 𝑗2, … … . 𝑗𝑛�

𝑇 ∈
𝑅𝑛 is a constant input vector 𝐴 = 𝑑𝑖𝑎𝑔{𝑎1, 𝑎2, … … . . , 𝑎𝑛} is a positive diagonal matrix 𝑊 is the delayed connection 
weight matrix  𝜏(𝑡) is a time-varying delay satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏 and 𝜏̇(𝑡) ≤ 𝜇 and 𝜑(t) (−𝜏 ≤ 𝑡 ≤ 0) is the initial 
condition. In addition, each neuron activation function in system (1) is assumed to satisfy  

0 ≤ 𝑓𝑖(𝑥)−𝑓𝑖(𝑦)
𝑥−𝑦

≤  𝑙𝑖,∀ 𝑥,𝑦 ∈ 𝑅, 𝑖 = 1,2, … . . ,𝑛                                                                                                (14) 
Where 𝑙𝑖 are some constants.The neural networks of system (13) are so called static neural networks. Under the 
assumption that 𝑊 is invertible and 𝑊𝐴 = 𝐴𝑊 holds and the equation 𝑦(𝑡) = 𝑊𝑥(𝑡) + 𝐽, system (13) can be easily 
rewritten as          

𝑦̇(𝑡)=−𝐴𝑦(𝑡) + 𝑊𝑓 �𝑦�𝑡 −  𝜏(𝑡)�� + 𝐴𝐽                                                                                                       (15)  
 
However, in many applications, static neural networks do not satisfy the transform condition. That is, system 

𝑥̇ = −𝐴𝑥(𝑡) + 𝑓�𝑊𝑥�𝑡 − 𝜏(𝑡)� + 𝐽� 
𝑥(𝑡) = 𝜑(𝑡),−𝜏 ≤ 𝑡 ≤ 0 & 
𝑦̇(𝑡) = −𝐴𝑦(𝑡) + 𝑊𝑓 �𝑦�𝑡 −  𝜏(𝑡)�� + 𝐴𝐽 

 are not always equivalent. Therefore, it is necessary to study the neural networks of system (13)                                                                                                                                 
 
Under assumption  𝑥̇ = −𝐴𝑥(𝑡) + 𝑓�𝑊𝑥�𝑡 − 𝜏(𝑡)� + 𝐽�                        

  𝑥(𝑡) = 𝜑(𝑡),−𝜏 ≤ 𝑡 ≤ 0                                                                               
there is an equilibrium 𝑥∗ of (13). For simplicity, make the transformation (. ) = 𝑥(. ) − 𝑥∗. Then the system (13) can 
be transformed into                    

𝑧̇(𝑡)= −𝐴𝑧(𝑡) + 𝑔 �𝑊𝑧�𝑡 − 𝜏(𝑡)�� 
𝑥(𝑡) = ψ(𝑡),−𝜏 ≤ 𝑡 ≤ 0                                                                                                                                  (16) 

Where 𝑧(. ) = [𝑧1(. ), 𝑧2(. ), … … … . . 𝑧𝑛(. )]𝑇  is the state vector of transformed system (14)𝜓(𝑡) =  𝜑(𝑡) − 𝑥∗ is the 
initial condition and the transformed neuron activation functions is 

𝑔�𝑧(. )� = �𝑔1�𝑧1(. )�,𝑔2�𝑧2(. )�, … … … . .𝑔𝑛�𝑧𝑛(. )��𝑇         
                = 𝑓(𝑊𝑧(. ) + 𝑊𝑥∗ + 𝐽) − 𝑓(𝑊𝑥∗ + 𝐽)                        

 
From (14) it is easy to derive that                                                                                                 

0 ≤ 𝑔𝑖(𝑥)−𝑔𝑖(𝑦)
𝑥−𝑦

≤  𝑙𝑖,∀ 𝑥,𝑦 ∈ 𝑅, 𝑖 = 1,2, … . . ,𝑛                                                                                                (17) 
Based on the analysis above, we know that the problem of how to analyze the stability of system (13) at equilibrium is 
changed into a problem of how to analyze the zero stability of system (16).                                                                                      
 
MAIN RESULTS:  
               
In this section, we will present asymptotical criteria for the considered neural network.                 
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THEOREM:                        
For given diagonal matrix 𝐿 = 𝑑𝑖𝑎𝑔{𝑙1, 𝑙2, … … . 𝑙𝑛} and scalars 𝜏 ≥ 0. 𝜇 ≥ 0 System 
𝑧̇(𝑡) = −𝐴𝑧(𝑡) + 𝑔 �𝑊𝑧�𝑡 − 𝜏(𝑡)�� 

𝑥(𝑡) = ψ(𝑡), −𝜏 ≤ 𝑡 ≤ 0… with 0 ≤ 𝑔𝑖(𝑥)−𝑔𝑖(𝑦)
𝑥−𝑦

≤  𝑙𝑖,∀ 𝑥,𝑦 ∈ 𝑅, 𝑖 = 1,2, … . . ,𝑛 

  is globally asymptotically stable, if there exist matrices 𝑃 =  �𝑃1 𝑃2
∗ 𝑃3

� > 0,𝑍 = �𝑍11 𝑍12
∗ 𝑍22

� > 0,𝑄𝑖 > 0, (𝑖 = 1,2,3), 

Diagonal matrix 𝑅 ≥ 0,𝑈1 ≥ 0,𝑈2 ≥ 0 and appropriately dimensional matrices 𝑀𝑗 = �
𝑀𝑗1

𝑀𝑗2
� (𝑗 = 1,2) such that the 

following inequalities hold    

  q�Ω + 𝜑 + 𝜑𝑇 𝜏𝑀1
𝑇

∗ −𝜏𝑍
� < 0                                                                                                                             (18) 

 

Where 𝑙 = 1,2 and Ω =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Ω11 0 −𝑃2 Ω14 Ω15 Ω16 Ω17
∗ Ω22 0 0 0 0 𝑊𝑇𝐿𝑈2
∗ ∗ −𝑄2 −𝑃3𝑇 −𝑃3𝑇 0 0
∗ ∗ ∗ 0 0 0 𝑃2𝑇

∗ ∗ ∗ ∗ 0 0 𝑃2𝑇
∗ ∗ ∗ ∗ ∗ Ω66 𝑅𝑊
∗ ∗ ∗ ∗ ∗ ∗ Ω77 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

            

𝛷 = [ 𝑀12
𝑇   𝑀22

𝑇   −𝑀12  
𝑇 −𝑀22

𝑇   𝑀11
𝑇   𝑀21

𝑇   0  0 ] with 
Ω11 =  − 𝑃1𝐴 − 𝐴 𝑃1𝑡 +  𝑃2 + 𝑃2𝑇 + 𝑄1 + 𝑄2 +  𝜏𝑍11 − 𝜏𝑍12𝐴 − 𝜏𝐴𝑇𝑍12𝑇 +  𝜏𝐴𝑇𝑍22𝐴 Ω14 =  −𝐴 𝑃2 + 𝑃3𝑇  
Ω15 =  −𝐴 𝑃2 + 𝑃3𝑇  
Ω16 =  − 𝐴 𝑊𝑇𝑅 + 𝑊𝑇𝐿𝑈1 
Ω17 =   𝑃1  +  𝜏𝑍12 −  𝜏𝐴𝑇𝑍22 
Ω22 =  − (1 −  µ)Q1 
Ω66  = 𝑄3  −  2𝑈1 
Ω77 = − (1 −  µ)𝑄3  −  2𝑈2  +  𝜏𝑍22. 

 
Proof:                   
Firstly, we introduce the following Lyapunov Krasovskii functional     

𝑉(𝑡) =  𝑉1(𝑡)  +  𝑉2(𝑡)  +  𝑉3(𝑡)  + 𝑉4(𝑡)                                                                                                       (19) 
Where,  𝑉1(𝑡)  = 𝜒 (𝑡)𝑃𝜒(𝑡) 

𝑉2(𝑡) = 2 ∑ 𝑟𝑖  𝑛
𝑖=1 ∫ 𝑔𝑖(𝑠)𝑑𝑠𝑊𝑖𝑧(𝑡)

0            𝑉3(𝑡) =
 ∫ [𝑧 (𝑠)𝑄1𝑧(𝑠)  +  𝑔 (𝑊𝑧(𝑠))(𝑡)
𝑡−𝜏(𝑡)  

𝑄3𝑔(𝑊𝑧(𝑠))]𝑑𝑠 + � [𝑧 (𝑠)𝑄2𝑧(𝑠) 
(𝑡)

𝑡−𝜏
 

𝑉4(𝑡) =  � � 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠𝑑𝜃
𝑡

𝑡+𝜃

0

−𝜏
 

With     𝜒 (𝑡)  =  [𝑧 (𝑡) (∫ 𝑧(𝑠)𝑑𝑠) ], 𝜂 (𝑠)  =  [𝑧 (𝑠) 𝑧̇ (𝑠)]𝑡
𝑡−𝜏 , 𝑊𝑖 denoting the 𝑖-th row of matrix 𝑊 𝑃 =�𝑃1 𝑃2

∗ 𝑃3
�  > 0, 

 Z =  �𝑍11 𝑍12
∗ 𝑍22

�  > 0,
  
𝑄𝑖

 > 0, (𝑖 = 1, 2, 3),𝑅 =  𝑑𝑖𝑎𝑔{𝑟1, 𝑟2,··· , 𝑟𝑛}  ≥  0. 
 
Calculating the derivative of 𝑉(𝑡) along the solution of system (16) yields   

𝑉̇1(𝑡) = 2𝜒 (𝑡)𝑃 � 𝑧̇(𝑡)
𝑧(𝑡) −  𝑧(𝑡 −  𝜏)� = 2 �

𝑧(𝑡)

∫ 𝑧(𝑠)𝑑𝑠 + ∫ 𝑧(𝑠)𝑑𝑠𝑡−𝜏(𝑡)
𝑡−𝜏

𝑡
𝑡−𝜏(𝑡)

�
𝑇

�𝑃1 𝑃2
∗ 𝑃3

� �−𝐴𝑧(𝑡)  +  𝑔(𝑊𝑧(𝑡 −  𝜏(𝑡)))
𝑧(𝑡)  −  𝑧(𝑡 −  𝜏) �   

                                                                                                                                                                                         (20) 
&             𝑉̇2(𝑡)  = 2𝑔 (𝑊𝑧(𝑡)𝑅𝑊[−𝐴𝑧(𝑡)  +  𝑔(𝑊𝑧(𝑡 −  𝜏(𝑡)))]                                                                              (21)  
 
Moreover, it can be deduced that                                                                                 

𝑉̇3(𝑡)  ≤  𝑧 (𝑡)[𝑄1 +  𝑄 2 ]𝑧(𝑡) +  𝑔 𝑇 �𝑊𝑧(𝑡)�𝑄 3 𝑔�𝑊𝑧(𝑡)� 

−(1 −  µ) �
𝑧 �𝑡 – 𝜏(𝑡)�𝑄1𝑧 �𝑡 –  𝜏(𝑡)�

+𝑔 �𝑊𝑧 �𝑡 – 𝜏(𝑡)��𝑄3𝑔 �𝑊𝑧 �𝑡 –  𝜏(𝑡)��
� −𝑧 (𝑡 −  𝜏)𝑄2𝑧(𝑡 − 𝜏)                                           (22) 
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and it follows that                                                                       

𝑉̇4(𝑡) ≤  𝜏𝜂  (𝑡)𝑍𝜂(𝑡) − ∫ 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠𝑡
𝑡−𝜏   

 ≤ 𝜏𝑧 (𝑡)�𝑍11 –  𝑍12𝐴 –  𝐴𝑇𝑍12𝑇 + 𝐴 𝑍22�𝑧(𝑡) 
+2𝜏𝑧 (𝑡) [𝑍12 −  𝐴 𝑍22 ]𝑔 �𝑊𝑧�𝑡 −  𝜏(𝑡)�� + 𝜏𝑔 �𝑊𝑧�𝑡 𝑠𝑤 − 𝜏(𝑡)��  𝑍22𝑔 �𝑊𝑧�𝑡 −  𝜏(𝑡)��  

−∫ 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠𝑡
𝑡−𝜏(𝑡) + ∫ 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠𝑡−𝜏(𝑡)

𝑡−𝜏                                                                                 (23) 
According to lemma. For any symmetric positive-definite matrix M > 0, scalar γ > 0, and vector function ω: [0, r] → R 
m such that the integrations concerned are well defined, the following inequality holds:  
𝛾 ∫ 𝜔 (𝑠)𝑊𝜔(𝑠)𝑑𝑠 ≥ (1

0  ∫ 𝜔(𝑠)𝑑𝑠 𝑀(∫ 𝜔(𝑠)𝑑𝑠).𝛾
0

𝛾
0   

 
For any real vectors a, b, and any matrix, Q > 0 with appropriate dimensions, we have 2𝑎 𝑏 ≤  𝑎  𝑋𝑎 +  𝑏 𝑋−1𝑏.            

For any appropriately dimensional matrices  𝑀𝑖  =  �𝑀𝑖1
𝑀𝑖2

�  (𝑖 =  1,2), the enlargement of the following  integral  terms  

can  be conducted    
−∫ 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠𝑡

𝑡−𝜏(𝑡) ≤ 2∫ 𝜂 (𝑠)𝑀1𝜉(𝑡)𝑑𝑠 +𝑡
𝑡−𝜏(𝑡) ∫ 𝜉 (𝑡)𝑀1

𝑇𝑍−1𝑀1𝜉(𝑡)𝑑𝑠𝑡
𝑡−𝜏(𝑡)   

= 2 �∫ 𝑧(𝑠)𝑑𝑠𝑡
𝑡−𝜏(𝑡) �

𝑇
𝑀11𝜉(𝑡) + 2[𝑧 (𝑡) −  𝑧 (𝑡 − 𝜏(𝑡)]𝑀12𝜉(𝑡)  

+ 𝜏(𝑡)𝜉𝑇(𝑡)𝑀1
𝑇𝑍−1𝑀1𝜉(𝑡)                                                                                                        (24)  

 
−  ∫ 𝜂 (𝑠)𝑍𝜂(𝑠)𝑑𝑠 ≤ 2 ∫ 𝜂 (𝑠)𝑡−𝜏(𝑡)

𝑡−𝜏
𝑡−𝜏(𝑡)
𝑡−𝜏 𝑀1𝜉(𝑡)𝑑𝑠 +  ∫ 𝜉 (𝑡)𝑀2

𝑇𝑍−1𝑀2𝜉(𝑡)𝑑𝑠𝑡−𝜏(𝑡)
𝑡−𝜏   

                            =2 �∫ 𝑧(𝑠)𝑑𝑠𝑡−𝜏(𝑡)
𝑡−𝜏 �

𝑇
𝑀21𝜉(𝑡)  +  �𝑧 �𝑡 –  𝜏(𝑡)� − 𝑧 (𝑡 − 𝜏)�.      

                                  𝑀22𝜉(𝑡) 𝜏(𝑡)𝜉𝑇(𝑡)𝑀2
𝑇𝑍−1𝑀2𝜉(𝑡)                                                                                     (25)         

Where 𝜉 (𝑡)  =  [𝑧 (𝑡)𝑧 �𝑡 − 𝜏(𝑡)�𝑧 (𝑡 − 𝜏) �∫ 𝑧(𝑠)𝑑𝑠𝑡
𝑡−𝜏(𝑡) �

𝑇
�∫ 𝑧(𝑠)𝑑𝑠𝑡−𝜏(𝑡)

𝑡−𝜏 �
𝑇
𝑔 (𝑊𝑧(𝑡)) 𝑔 (𝑊𝑧(𝑡 −  𝜏(𝑡)))].                               

 
From (17) it is well known that there exist diagonally matrices 𝑈1  ≥  0 𝑎𝑛𝑑 𝑈2 ≥  0  such that the following 
inequalities 

2𝑔 (𝑊𝑧(𝑡))𝑈1[𝐿𝑊𝑧(𝑡) − 𝑔(𝑊𝑧(𝑡))]  ≥  0                                                                                                     (26)                          
2𝑔 (𝑊𝑧(𝑡 − 𝜏(𝑡)))𝑈2[𝐿𝑊𝑧(𝑡) − 𝑔(𝑊𝑧(𝑡 −  𝜏(𝑡)))] ≥ 0                                                                              (27) 

Where 𝐿 =  𝑑𝑖𝑎𝑔{𝑙1, 𝑙2,··· , 𝑙𝑛}.   
 
Adding the terms on the left hand side of (26) & (27) to 𝑉̇(𝑡) yield       

𝑉̇(𝑡)  ≤  𝜉 (𝑡){Ω + 𝛷 + 𝛷 +  𝜏(𝑡)𝑀1
𝑇𝑍−1𝑀1 + [𝜏 − 𝜏(𝑡)]𝑀2

𝑇𝑍−1𝑀2}𝜉(𝑡)                                          (28) 
 
It is clear that the inequalities Ω + 𝛷 + 𝛷 + 𝜏𝑀1

𝑇𝑍−1𝑀1 < 0                              
Ω + 𝛷 + 𝛷 + 𝜏𝑀2

𝑇𝑍−1𝑀2 < 0 
can guarantee 𝑉̇(𝑡)  < 0, which indicates that 𝑉(𝑡)  ≤  𝑉(0). 
 
From the schur complement the inequalities                                                                                                  

Ω + 𝛷 + 𝛷 + 𝜏𝑀1
𝑇𝑍−1𝑀1 < 0 

Ω + 𝛷 + 𝛷 + 𝜏𝑀2
𝑇𝑍−1𝑀2 < 0 

are equivalent to the condition q�Ω + 𝜑 + 𝜑𝑇 𝜏𝑀1
𝑇

∗ −𝜏𝑍
� < 0 in the proceeding theorem. Then the global asymptotic 

stability for neural network 𝑧̇(𝑡)= −𝐴𝑧(𝑡) + 𝑔 �𝑊𝑧�𝑡 − 𝜏(𝑡)�� and 𝑥(𝑡) = ψ(𝑡), −𝜏 ≤ 𝑡 ≤ 0 is achieved. 
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