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ABSTRACT 
The purpose of the present paper is to introduce new subclasses of the function class of bi-univalent functions by using 
Salagean operator. Furthermore, we obtain estimates on the coefficients and for functions of these subclasses. Relevant 
connections of well-known results are briefly indicated. 
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1. INTRODUCTION 
 
Let A denote the class of analytic functions ( )f z  of the form  

2
( ) n

n
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f z z a z
∞

=

= +∑                                                                                                                     (1.1) 

in the unit disc { }: 1U Z Z= <  and let S denote the subclass of A consisting function of the type (1.1) which are 

normalized and univalent in U.  
 
It is well known that every Sf ∈  has an inverse 1−f defined by 
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where 
1 2 2 3 3 4

2 2 3 2 2 3 4( ) (2 ) (5 5 ) ......f w w a w a a w a a a a w− = − + − − − + +  
 
A function Azf ∈)( is said to be bi-univalent in U if both )(zf  and )(1 zf −  are univalent in U . Let ∑ denote 
the class of bi-univalent functions in U given by the Taylor-Maclaurin series expansion (1.1). Examples of functions in 

the class ∑ are 

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   and so on. 

 
However, the familiar Koebe function is not a member of ∑ . Other common examples of functions in S such as 

2

2zz −  and 21 z
z
−

are also not members of ∑ . 

 
Lewin [3] investigated the Bi-univalent function class ∑ showed that .5.12 <a
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Subsequently by Brannan and Clunie [1] conjectured that .22 ≤a  
 
The study of Bi-univalent functions is a recent topic of study in Geometric Function Theory. Several researchers for 
example see ([5], [7], [8]) introduced the various new subclass of the bi-univalent function class ∑ and obtained non 

sharp bounds on the initial coefficients 2a  and .3a  
 
To prove our main results, we shall require the following lemma due to [2].  
 
Lemma 1.1: If Ph∈  then 2≤kc for each ,k where P is the family of all functions h analytic in U  for which 

( ){ } ,0Re >zh ........1)( 3
3

2
21 ++++= zczczczh for .Uz∈  

 
2. MAIN RESULT 
 
Definition 2.1: A function ( )f z  given by (1.1) is said to be in the class ,n

α
∑ℜ  if the following conditions are satisfied 

f ∈∑  and  
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where the function g  is given by 

( ) ( ) ( )2 2 3 3 4
2 2 3 2 2 3 42 5 .....g w w a w a a w a a a a w= − + − − − + +                                   (2.3) 

and nD stands for the differential operator introduced by Salagean [6]. 
 
We first state and prove the following result. 
 
Theorem 2.1: Let ( )f z  given by (1.1) be in the function class ,n

α
∑ℜ . Then 
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Proof: We can write the argument inequalities in (2.1) and (2.2) equivalently as follows: 

( ) ( )[ ] ( ) ( )[ ]
1 1

,
n nD f z D g wQ z and L w

z z
α α

+ +

= =                                                         (2.5) 

respectively, where ( )Q z  and ( )L w  satisfy the following inequalities  

( ){ } ( ) ( ){ } ( )UwwLandUzzQ ∈>ℜ∈>ℜ 00 .                                                                 

(2.6) 
 
Furthermore, the functions ( )Q z  and ( )L w  have the forms: 

( ) 2
1 21 ......Q z c z c z= + + +                                                                                                      (2.7) 

and 
( ) 2

1 21 ......L w l w l w= + + +                                                                                                     (2.8) 

respectively. Now, equating the coefficients of  
( )1nD f z

z

+

 with  ( )[ ]Q z α  and the coefficient of  
( )1nD g w
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+

 

with  ( )[ ]L w α   
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12
12 lan α=− +                                                                                                                             (2.11) 

( ) ( ) 2
123

2
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+=−+ ααα                                                                                        (2.12) 

 
From (2.9) and (2.11), we get  

1 1c l= −  
and 

( )2 3 2 2 2 2
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Also, from (2.10), (2.12) and (2.13), we find that 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 2 2
2 2 2 1 1

1 2 2 3 2
2 2 2 2

1
2 3

2
1

2 3 2 .
2

n

n n

a l c l c

a l c a

α α
α

α
α

α

+

+ +

−
= + + +

−
= + +

 

 
Therefore, we have  
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α α+ += +
+ −  

 
Which, in conjunction with the following well-known inequalities (see [2], page 41) 

2 2c ≤  and 2 2,l ≤   
 
gives us the desired estimate on 2a  as asserted in (2.4). 
 
Next, in order to find the bound on

3a  by subtracting (2.12) from (2.10), we get  
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Upon substituting the values of 2

2a  from (2.13) and observing that  
 2 2

1 1 .c l=  
 
It follows that 

( ) ( )2 2
3 1 2 21 1

1 1
4 2 3n na c c lα α+ += + −  

 
The familiar inequalities (cf. [2], page 41) 
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would now yield 
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This completes the proof of Theorem 2.1. 
 
3. COEFFICIENT BOUNDS 
 
Coefficient Bounds for the function class , ( )n β∑ℜ   
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Definition 3.1: A function ( )f z  given by (1.1) is said to be in the class ( ), ( ) 0 1n β β∑ℜ ≤ <  if the following 

conditions are satisfied f ∈∑  and  

( )
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                                                                      (3.2) 

where the function g  is given by (2.3). 
 
Theorem 3.1: Let ( )f z  given by (1.1) be in the function class ( ), ( ) 0 1 .n β β∑ℜ ≤ <  Then 
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Proof: First of all, the argument inequalities in (3.1) and (3.2) can easily be rewritten in their equivalent forms: 

( ) ( ) ( ) ( ) ( ) ( )
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respectively, where ( )Q z  and ( )L w  satisfy the following inequalities  
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Moreover, the functions ( )Q z  and ( )L w  have the following forms: 

( ) 2
1 21 ...................Q z c z c z= + + +                                                                                       (3.5) 

and 
( ) 2

1 21 ...............,L w l w l w= + + +                                                                                         (3.6) 
 
As in the proof of Theorem 2.1, by suitably comparing coefficient, we get 
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From (3.7) and (3.9), we get  
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Also, from (3.8) and (3.10), we find that 
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This gives the bound on 2 ,a  as asserted in (3.3). 
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Next, in order to find the bound on 3 ,a by subtracting (3.10) from (3.8), we get  

( ) ( )( )1 1 2
3 2 2 22 3 3 1 ,n na a c lβ+ +− = − −  

 
which, upon substituting the values of 2

2a  from (3.11), yields 
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This last equation, together with the well-known estimates: 

1 1 22, 2, 2c l c≤ ≤ ≤  and, 2 2l ≤  
 
would lead us to the following inequality: 
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Therefore, we have 
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1 21 .
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This completes the proof of theorem 3.1. 
 
Remarks 1: If we put n = 0 then we obtain the corresponding results of Srivastava et.al [7].  
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