
International Journal of Mathematical Archive-9(2), 2018, 135-145 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 9(2), Feb. – 2018                                                                                                               135 

 
Γ-SEMI SUB NEAR-FIELD SPACES OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD PART I 

 
Smt. THURUMELLA MADHAVI LATHA1 

Research Scholar, Junior Lecturer, Department of Mathematics,  
APSWREIS Tadepalli, Guntur District, Amaravathi, Andhra Pradesh, INDIA. 

 
Dr T V PRADEEP KUMAR2 

Assistant Professor of Mathematics, 
A N U College of Engineering & Technology 

Department of Mathematics, Acharya Nagarjuna University 
Nambur, Nagarjuna Nagar 522 510. Guntur District. Andhra Pradesh, INDIA. 

 
Dr N V NAGENDRAM*3 

Professor of Mathematics, 
Kakinada Institute of Technology & Science (K.I.T.S.) 
Department of Humanities & Science (Mathematics) 

Tirupathi (Vill.) Peddapuram (M), Divili 533 433 
East Godavari District. Andhra Pradesh, INDIA. 

 
(Received On: 22-12-17; Revised & Accepted On: 15-01-18) 

 
 

ABSTRACT 
In this paper we introduce the semi sub near-field spaces in Γ-near- field space over a near-field (PART I), and we 
three Smt. Thurumella Madhavi Latha, Dr. T  V  Pradeep Kumar and Dr. N V Nagendram together investigate the 
related properties of generalization of a semi sub near-field spaces in Γ-near-filed space over a near-field. 
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SECTION 1: INTRODUCTION 
 
In this paper, Part I consisting two important sections we introduce the semi sub near-field spaces in Γ-near- field space 
over a near-field, and we three Smt. Thurumella Madhavi Latha, Dr. T  V  Pradeep Kumar and Dr. N V Nagendram 
together investigate the related properties of generalization of a semi sub near-field spaces in Γ-near- field space over a 
near-field. 
 
As a generalization of a semi sub near-field spaces in Γ-near- field space over a near-field, introduced the notion of 
semi sub near-field spaces in Γ-near- field space over a near-field, extended many classical notions of semi sub near-
field spaces in Γ-near- field space over a near-field.  In this chapter we develop the algebraic theory of semi sub near-
field spaces in Γ-near- field space over a near-field. 
 
The notion of a semi sub near-field spaces in Γ-near- field space over a near-field is introduced and some examples are 
given. Further the terms; commutative semi sub near-field spaces in Γ-near- field space, quasi commutative semi sub 
near-field spaces in Γ-near- field space, normal semi sub near-field spaces in Γ-near- field space, left pseudo 
commutative semi sub near-field spaces in Γ-near- field space, right pseudo commutative semi sub near-field spaces in 
Γ-near-filed space are introduced. It is proved that (1) if S is a commutative semi sub near-field spaces in Γ-near- field 
space then S is a quasi commutative semi sub near-field spaces in Γ-near- field space, (2) if S is a quasi commutative 
semi sub near-field spaces in Γ-near- field space then S is a normal semi sub near-field spaces in Γ-near- field space,     
(3) if S is a commutative semi sub near-field spaces in Γ-near- field space, then S is both a left pseudo commutative and 
a right pseudo commutative semi sub near-field spaces in Γ-near- field space over a near-field. Further the terms; left 
identity, right identity, identity, left zero, right zero, zero of a semi sub near-field spaces in Γ-near- field space over a 
near-field are introduced. It is proved that if a is a left identity and b is a right identity of a semi sub near- field spaces  
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in Γ-near- field space, then a = b. It is also proved that any Γ-semi sub near- field spaces in Γ-near-filed space has at 
most one identity. It is proved that if a is a left zero and b is a right zero of a semi sub near-field spaces in Γ-near- field 
space, then a = b and also it is proved that any Γ-semi sub near-field spaces in Γ-near-filed space over a near-field  has 
at most one zero element. 
 
SECTION 2:  PRELIMINARIES 
 
In section 2, the terms; Γ-semi sub near-field space, Γ-semi sub near- field space generated by a sub near-field space, 
cyclic Γ-semi sub near- field space of a Γ-semi near-field space and cyclic Γ-semi near-field space are introduced. It is 
proved that (1) the non-empty intersection of any two Γ-semi sub near-field spaces of a Γ-semi near-field space T is a 
Γ-semi near-field space of T, (2) the nonempty intersection of any family of Γ-semi sub near-field spaces of a Γ-semi 
near-field space T is a Γ-semi near-field space of T. It is also proved that if B is a non-empty subset of a Γ-semi near-
field space T, then the Γ-semi sub near-field space of T generated by B is the Inter-section of all Γ-semi sub near-field 
spaces of T containing B. 
 
2.1. Γ-Semi Sub Near-Field Space Of Γ- Near-Field Space Over A Near-Field. 
 
In this section, the notion of a Γ-semi sub near-field space is introduced and some examples are given. Further the 
terms commutative Γ-semi sub near-field space, quasi commutative Γ-semi sub near-field space, normal Γ-semi sub 
near-field space, left pseudo commutative Γ-semi sub near-field space, right pseudo commutative Γ-semi sub near-field 
space are introduced. It is proved that (1) if S is a commutative Γ-semi sub near-field space then S is a quasi 
commutative Γ-semi sub near-field space, (2) if S is a quasi commutative Γ-semi sub near-field space then S is a 
normal Γ-semi sub near-field space, (3) if S is a commutative Γ-semi sub near-field space, then S is both a left pseudo 
commutative and a right pseudo commutative Γ-semi sub near-field space. Further the terms; left identity, right 
identity, identity, left zero, right zero, zero of a Γ-semi sub near-field space are introduced. 
 
It is proved that if a is a left identity and b is a right identity of a Γ-semi sub near-field space S, then a = b. It is also 
proved that any Γ-semi sub near-field space S has at most one identity. It is proved that if a is a left zero and b is a right 
zero of a Γ-semi sub near-field space S, then a = b and it is also proved that any Γ-semi sub near-field space S has at 
most one zero element. 
 
We now introduce the notion of a Γ-semi sub near-field space of Γ-near-field space over a near-field. 
 
Definition 2.1: Γ-semi sub near-field space. Let S and Γ be two non-empty sets. Then S is called a Γ-semi sub near-
field space if there exist a mapping from S × Γ × S → S which maps (a, α, b) →aαb satisfying the condition: 
(aγb)µc = aγ(bµc) for all a, b, c ∈ S and γ, µ ∈ Γ. 
 
Note 2.2: Let S be a Γ-semi sub near-field space. If M and L are two sub near field spaces of S, we shall denote the set 
{aγb : a ∈ M, b ∈ L and γ ∈ Γ} by MΓL. 
 
In the following some examples of Γ-semi sub near-field spaces are given. 
 
Example 2.3: Let S be the set of all non-positive integers and Γ be the set of all non-positive even integers. If aαb 
denote as usual multiplication of integers for a, b ∈ S and α ∈ Γ, then S is a Γ-semi sub near-field space. 
 
Example 2.4: Let Q be the set of rational numbers and Γ = K be the set of natural numbers. Define a mapping from     
Q × Γ × Q to Q by aαb = usual product of a, α, b; for a, b ∈ Q, α ∈ Γ. Then Q is a Γ-semi sub near-field space. 
 
Example: 2.5: Let S = {5n + 4: n is a positive integer} and Γ = {5n + 1: n is a positive integer}. Then S is a Γ-semi sub 
near-field space with the operation defined by aαb = a + α + b where a, b ∈ S, α ∈ Γ and + is the usual addition of 
integers. 
 
Example 2.6: Let S be the set of all integers of the form 4n+1 where n is an integer and Γ denote the set of all integers 
of the form 4n+3. If aγb is a + γ + b, for all a, b ∈ S and γ ∈ Γ, then S is a Γ-semi sub near-field space. 
 
Example 2.7: Let S = {{φ}, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} and Γ = {{φ}, {a}, {a, b, c}}. If for all         
A, C ∈ S and B ∈ Γ, ABC = A ∩ B ∩ C, then S is a Γ-semi sub near-field space. 
  
Example 2.8: Let S = {φ}, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}} and Γ = {{a, b, c}}. If for all A, C ∈ S and     
B ∈ Γ, ABC = A ∩ B ∩ C, then S is a Γ-semi sub near-field space. 
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Example 2.9: Let S be the set of all 2 × 3 matrices over Q, the set of rational numbers and Γ be the set of all 3 × 2 
matrices over Q. Define AαB = usual matrix product of A, α, B; for all A, B ∈ S and for all α ∈ Γ. Then S is a Γ-semi 
sub near-field space. Note that S is not a semi sub near-field space. 
 
Example 2.10: Let S = {- i, 0, i} and Γ = S. Then S is a Γ-semigroup under the multiplication of complex numbers, 
while S is not a semigroup under multiplication of complex numbers. 
 
Example 2.11: Let S be a Γ-semi sub near-field space and α a fixed element in Γ. We define ab = aαb for all a, b ∈ S. 
We can show that (S, .) is a Γ- semi sub near-field space and we denote this Γ-semi sub near-field space by Sα . 
 
Example 2.12: Let S be a semi sub near-field space and Γ be a mapping and also a non-empty sub near-field space. 
Define a mapping from S × Γ × S → S as aαb = ab, for all a, b ∈ S and α ∈ Γ. Then S is a Γ-semi sub near-field space. 
 
Verification: Let a, b, c ∈ S and α,  β ∈ Γ. Then (aαb)βc = (ab)βc = (ab)c = a(bc) = aα(bc) = aα(bβc). Therefore S is a 
Γ-semi sub near-field space. 
 
Note 2.13: Every semi sub near-field space can be considered to be a Γ-semi sub near-field space. Thus the class of all 
Γ-semi sub near-field spaces includes the class of all Γ-semi sub near-field spaces. 
 
Example 2.14: Free Γ-Semi sub near-field space. Let X and Γ be two non-empty Γ-semi sub near-field spaces. A 
sequence of elements α1α1α2α2 …… αn-1 αn-1αn where α1,α2,α3,……….αn ∈ X and α1,α2,α3, ……..,αn ∈ Γ is called a 
word over the alphabet X relative to Γ. The set S of all words with the operation defined from S × Γ × S to S as 
(a1α1a2α2.... an-1αn-1an) γ(b1β1b2β2 …bm-1βm-1bm) = a1α1a2α2 …an-1αn-1an γb1β1b2β2 ……bm-1βm-1bm is a Γ-semi sub near-
field space. This Γ-semi sub near-field space is called free Γ-semi sub near-field space over the alphabet X relative to Γ.  
 
In the following we introduce the notion of a commutative Γ-semi sub near-field space. 
 
Definition 2.15: Commutative Γ-semi sub near-field space. A Γ-semi sub near-field space S is said to be 
commutative provided aγb = bγa for all a, b ∈ S and γ ∈ Γ. 
 
Note 2.16: If S is a commutative Γ-semi sub near-field space then a Γb = b Γa for all a, b ∈ S. 
 
Note 2.17: Let S be a Γ-semi sub near-field space and a, b ∈ S and α ∈ Γ. Then aαaαb is denoted by (aα)2b and 
consequently a α a α a α…..(n terms)b is denoted by (aα)nb.  
 
In the following we introduce a quasi commutative Γ-semi sub near-field space. 
 
Definition 2.18: Quasi commutative sub near-field space.  A Γ-semi sub near-field space S is said to be quasi 
commutative provided for each a,b ∈ S, there exists a natural number n such that aγ b γ (bγ )n a  ∀γ ∈Γ . 
 
Note 2.19: If a Γ-semi sub near-field space S is quasi commutative then for each a, b ∈ S, there exists a natural number 
n such that, aΓb = (bΓ)na. 
 
Theorem 2.20: If S is a commutative Γ-semi sub near-field space then S is a quasi commutative Γ-semi sub near-field 
space. 
 
Proof: Suppose that S is a commutative Γ-semi sub near-field space. Let a, b ∈ S. Now aαb = bαa  ⇒ aαb = (bα )1a. 
Therefore S is a quasi commutative Γ-semi sub near-field space. 
 
In the following we introduce the notion of a normal Γ-semi sub near-field space. 
 
Definition 2.21: Normal Γ-semi sub near-field space. A Γ-semi sub near-field space S is said to be normal Γ-semi 
sub near-field space provided aαS = Sαa ∀α ∈Γ and ∀a∈S. 
 
Note 2.22: If a Γ-semi sub near-field space S is normal Γ-semi sub near-field space then aΓS = SΓa for all a ∈ S. 
 
Theorem 2.23: If S is a quasi commutative Γ-semi sub near-field space then S is a normal Γ-semi sub near-field space. 
 
Proof: Let S be a commutative Γ-semi sub near-field space. By theorem 2.20, S is a quasi commutative Γ-semi sub 
near-field space. By theorem 2.23, S is a normal Γ-semi sub near-field space. Therefore every commutative Γ-semi sub 
near-field space is a normal Γ-semi sub near-field space. 
 



Smt. Thurumella Madhavi Latha1, Dr T V Pradeep Kumar2 and Dr N V Nagendram*3 /  
Γ-semi sub near-field spaces of a Γ-near-field space Over near-field Part I  / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                      138  

 
In the following we are introducing left pseudo commutative Γ-semi sub near-field space and right pseudo commutative 
Γ-semi sub near-field space. 
 
Definition 2.23: Left pseudo Commutative Γ-semi sub near-field space.  A Γ-semi sub near-field space S is said to 
be left pseudo commutative provided aΓbΓc = bΓaΓc for all a, b, c ∈ S. 
 
Definition 2.24: Pseudo Commutative Γ-semi sub near-field space. A Γ-semi sub near-field space S is said to be 
right pseudo commutative provided aΓbΓc = aΓcΓb for all a, b, c ∈ S. 
 
Theorem 2.25: If S is a commutative Γ-semigroup, then S is both a left pseudo commutative Γ-semi sub near-field 
space and a right pseudo commutative Γ-semi sub near-field space. 
 
Proof: Suppose that S is commutative Γ-semi sub near-field space. Then aΓbΓc = (aΓb)Γc = (bΓa)Γc = bΓaΓc. 
Therefore S is a left pseudo commutative Γ-semi sub near-field space. Again aΓbΓc = aΓ(bΓc) = aΓ(cΓb) = aΓcΓb. 
Therefore S is a right pseudo commutative Γ-semi sub near-field space. This completes the proof of the theorem. 
 
Note 2.26: The converse of the above theorem is not true. i.e., if S is a left and right pseudo commutative Γ-semi sub 
near-field space then S need not be a commutative Γ-semi sub near-field space. 
 
Example 2.27: Let S = {a, b, c} and Γ = {x, y, z}. Define a binary operation ‘.’ In S as shown in the following table: 
 

. a b c 
a a a a 
b a a a 
c a b c 

 
Define a mapping S × Γ × S → S by aαb = ab for all a, b ∈ S and α ∈ Γ. It is easy to see that S is a Γ-semi sub near-
field space. Now S is a left and right pseudo commutative Γ-semi sub near-field space. But S is not a commutative Γ-
semi sub near-field space. 
 
In the following we are introducing left identity, right identity and identity of a Γ-semi sub near-field space of Γ-semi 
sub near-field space. 
 
Definition 2.28: Left identity. An element ‘α’ of a Γ-semi sub near-field space S is said to be a left identity of S 
provided aαs = s for all s ∈ S and α ∈ Γ. 
 
Definition 2.29: Right identity. An element ‘α’ of a Γ-semi sub near-field space S is said to be a right identity of S 
provided sαa = s for all s ∈ S and α ∈ Γ. 
 
Definition 2.30: Identity. An element ‘α’ of a Γ-semi sub near-field space S is said to be a two sided identity or an 
identity provided it is both a left identity and a right identity of S. 
 
Theorem 2.31: If a is a left identity and b is a right identity of a Γ-semi sub near-field space S, then a = b. 
 
Proof: Since a is a left identity of S, aαs = s for all s ∈ S and α∈ Γ and hence aαb = b for all α ∈ Γ. Since b is a right 
identity of S, sαb = s for all s ∈ S and α ∈ Γ and hence aα b = a for all α ∈ Γ. Now a = aα b = b. 
 
Theorem 2.32: Any Γ-semi sub near-field space S has at most one identity. 
 
Proof: Let a, b be two identity elements of the Γ-semi sub near-field space S. Now a can be considered as a left 
identity and b can be considered as a right identity of S. By theorem 2.31, a = b. Then S has at most one identity. This 
completes the proof of the theorem. 
 
Note 2.33: The identity (if exists) of a Γ-semi sub near-field space is usually denoted by 1. 
 
Definition 2.34: Γ-monoid sub near-field space. A Γ-semi sub near-field space S with identity is called a Γ-monoid 
sub near-field space. 
 
In the following we are introducing left zero, right zero and zero of a Γ-semi sub near-field space. 
 
Definition 2.35: left zero sub near-field space. An element a of a Γ-semi sub near-field space S is said to be a left 
zero sub near-field space of S provided aαs = a for all s ∈ S and α ∈ Γ. 
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Definition 2.36: right zero sub near-field space. An element a of a Γ-semi sub near-field space S is said to be a right 
zero sub near-field space of S provided sαa = a for all s ∈ S and α ∈ Γ. 
 
Definition 2.37: Two sided zero sub near-field space or zero sub near-field space. An element a of a Γ-semi sub 
near-field space S is said to be a two sided zero sub near-field space or zero sub near-field space provided it is both a 
left zero and a right zero of S. 
 
We are now introducing left zero Γ-semi sub near-field space, right zero Γ-semi sub near-field space and zero Γ-semi 
sub near-field space. 
 
Definition 2.38: left zero Γ-semi sub near-field space. A Γ-semi sub near-field space in which every element is a left 
zero is called a left zero Γ-semi sub near-field space. 
 
Definition 2.39: right zero Γ-semi sub near-field space. A Γ-semi sub near-field space in which every element is a 
right zero is called a right zero Γ-semi sub near-field space. 
 
Definition 2.40: zero Γ-semi sub near-field space or a null Γ-semi sub near-field space. A Γ-semi sub near-field 
space with 0 in which the product of any two elements equals to 0 is called a zero Γ-semi sub near-field space or a null 
Γ-semi sub near-field space. 
 
Theorem 2.41: If a is a left zero and b is a right zero of a Γ-semi sub near-field space S, then a = b. 
 
Proof: Since a is a left zero of S, aαs = a for all s ∈ S, α ∈ Γ and so aαb = a for all α ∈ Γ. Since b is a right zero of S, 
sαb = b for all s ∈ S and α ∈ Γ and hence aαb = b for all α ∈ Γ. Now a = aαb = b. 
 
Theorem 2.42: Any Γ-semi sub near-field space S has at most one zero element (i.e. zero Γ-semi sub near-field space 
or a null Γ-semi sub near-field space). 
 
Proof: Let a, b be two zeros of the Γ-semi sub near-field space S. Now a can be considered as a left zero and b can be 
considered as a right zero. By theorem 2.41, a = b. Thus S has at most one zero. 
 
Note 2.43: The zero (if exists) of a Γ-semi sub near-field space is usually denoted by 0. 
 
Notation 2.44: Let S be a Γ-semi sub near-field space. If S has an identity, let S1 = S and if S does not have an identity, 
let S1 be the Γ-semi sub near-field space S with an identity adjoined usually denoted by the symbol 1. Similarly if S has 
a zero, let S0 = S and if S does not have a zero, let S0 be the Γ-semi sub near-field space S with zero adjoined usually 
denoted by the symbol 0. 
 
SECTION 3: MAIN RESULTS 
 
In this section, Following terms left Γ-sub near-field space, right Γ- sub near-field space, Γ- sub near-field space, proper 
Γ- sub near-field space, trivial Γ- sub near-field space, maximal left Γ- sub near-field space, maximal right Γ- sub near-
field space, maximal Γ- sub near-field space, Γ- sub near-field space generated by a sub near field space B, principal 
left Γ- sub near-field space, principal right Γ- sub near-field space, principal Γ- sub near-field space of a Γ-sub near-
field space over a near-field are introduced. Also left duo Γ-semi sub near-field space, right duo Γ-semi sub near-field 
space, duo Γ-semi sub near-field space, left simple Γ-semi sub near-field space, right simple Γ-semi sub near-field 
space and simple Γ-semi sub near-field space are introduced. It is proved that (1) the nonempty intersection of two left 
Γ- sub near-field spaces of a Γ-semi sub near-field space T is a left Γ- sub near-field space of T, (2) the nonempty 
intersection of any family of left Γ - sub near-field spaces of a Γ-semi sub near-field space T is a left Γ - sub near-field 
space of T, (3) the union of two left Γ - sub near-field spaces of a Γ –semi sub near-field space T is a left Γ - sub near-
field space of T and (4) the union of any family of left    Γ- sub near-field spaces of a Γ –semi sub near-field space T is 
a left Γ - sub near-field space of T. It is also proved that (1) the nonempty intersection of two right Γ- sub near-field 
spaces of a Γ-semi sub near-field space T is a right Γ- sub near-field space of T, (2) the nonempty intersection of any 
family of right Γ - sub near-field spaces of a Γ –semi sub near-field space T is a right Γ - sub near-field space of T, (3) 
the union of two right Γ - sub near-field spaces of a Γ –semi sub near-field space T is a right Γ - sub near-field space of 
T and (4) the union of any family of right Γ - sub near-field spaces of a Γ –semi sub near-field space T is a right Γ- sub 
near-field space of T. Further it is proved that (1) the nonempty intersection of two Γ- sub near-field spaces of a Γ-semi 
sub near-field space T is a Γ- sub near-field space of T, (2) the nonempty intersection of any family of Γ- sub near-field 
spaces of a Γ-semi sub near-field space T is a Γ- sub near-field space of T, (3) the union of two Γ- sub near-field spaces 
of a Γ-semi sub near-field space T is a Γ - sub near-field space of T and (4) the union of any family of Γ- sub near-field 
spaces of a Γ-semi sub near-field space T is a Γ- sub near-field space of T. 
 



Smt. Thurumella Madhavi Latha1, Dr T V Pradeep Kumar2 and Dr N V Nagendram*3 /  
Γ-semi sub near-field spaces of a Γ-near-field space Over near-field Part I  / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                      140  

 
It is proved that if T is a Γ-semi sub near-field space and a ∈ T then (i) L(a) = a∪T Γa, (ii) N(a) = a∪a ΓS, (iii) J(a) = a 
∪ aΓT ∪ TΓa ∪ TΓaΓT. It is proved that a Γ- semi sub near-field space T is a duo Γ- semi sub near-field space if and 
only if x Γ S1 = S1 Γx for all x ∈ T. Further it is also proved that every normal Γ- semi sub near-field space is a duo Γ- 
semi sub near-field space. It is proved that (1) a Γ –semi sub near-field space T is a left simple Γ –semi sub near-field 
space if and only if T Γa = T for all a ∈ T, (2) a Γ –semi sub near-field space T is a right simple Γ –semi sub near-field 
space if and only if a Γ T = T for all a ∈ T, (3) a Γ –semi sub near-field space T is a simple Γ –semi sub near-field 
space if and only if TΓaΓT = T for all a ∈ T. 
 
3.1. Γ-semi sub normal near-field space of Γ-semi sub near-field space over near-field 
 
The term Γ-semi sub normal near-field space plays a special role in the theory of Γ-semi sub near-field spaces. In this 
section, the terms; Γ-semi sub normal near-field space, Γ- semi sub normal near-field space generated by a sub near-
field space, cyclic Γ- semi sub normal near-field space of a Γ-semi sub near-field space  and cyclic Γ-semi sub near-
field space are introduced. It is proved that (1) the nonempty intersection of two Γ- semi sub normal near-field spaces 
of a Γ-semi sub near-field space S is a Γ- semi sub normal near-field space of S, (2) the non-empty intersection of any 
family of Γ- semi sub normal near-field space of a Γ-semi sub near-field space S is a Γ- semi sub normal near-field 
space of S. It is also proved that if A is a nonempty Γ- semi sub near-field space of a Γ-semi sub near-field space S, 
then the Γ-semi sub normal near-field space of S generated by A is the intersection of all Γ- semi sub normal near-field 
spaces of S containing A. 
  
Definition 3.2: Let S be a Γ-semi sub normal near-field space. A non-empty subset T of S is said to be a Γ- semi sub 
normal near-field space of S if aγb ∈ T, for all a, b ∈ T and γ ∈ Γ. 
 
Note 3.3: A non-empty Γ-semi sub near-field space T of a Γ-semi sub normal near-field space S is a Γ-semi sub normal 
near-field space of S iff TΓT ⊆ T. 
 
Example 3.4: Let S = [0, 1] and Γ = {1/n: n is a positive integer}. Then S is a Γ-semi sub near-field space under the 
usual multiplication. Let T = [0, 1/2]. Now T is a non-empty Γ-semi sub near-field space of S and aγb ∈ T, for all        
a, b ∈ T and γ ∈ Γ. Then T is a -semi sub near-field space of S. 
 
Theorem 3.5: The nonempty intersection of two Γ-semi sub near-field spaces of a Γ-semi sub near-field space S is a Γ-
semi sub near-field space of S. 
 
Proof: Let T1, T2 be two Γ-semi sub near-field spaces of S. Let a, b ∈ T1∩T2 and γ ∈ Γ. 
a, b ∈ T1∩T2 ⇒ a, b ∈ T1 and a, b ∈ T2 
a, b ∈ T1, γ ∈ Γ, T1 is a Γ-semi sub near-field space of S ⇒ aγb ∈ T1. 
a, b ∈ T2, γ ∈  Γ, T2 is a Γ-semi sub near-field space of S ⇒ aγb ∈ T2. 
aγb ∈ T1, aγb ∈ T2⇒ aγb ∈ T1∩T2. Therefore T1∩T2 is a Γ-semi sub near-field space of S. This completes the proof of 
the theorem. 
 
Theorem 3.6: The nonempty intersection of any family of Γ-semi sub near-field spaces of a Γ-semi sub near-field 
space S is a Γ-semi sub near-field space of S. 
 
Proof: Let {Tα } α∈ ∆ be a family of Γ-semi sub near-field spaces of S and let T = ∩Tα 
   α∈ ∆. 
Let a, b ∈ T and γ ∈ Γ. 
a, b ∈ T ⇒ a, b ∈ ∩Tα 
                          α∈ ∆. 
 ⇒ a, b ∈ Tα for all α ∈ Δ. 
a, b ∈ Tα, γ ∈ Γ, Tα is a Γ-semi sub near-field space of S ⇒ aγb ∈ Tα . 
aγb ∈ Tα for all α ∈ Δ ⇒ aγb ∈ Tα 
∀ α ∈ ∆ ⇒ aγb ∈ T. 
 
Therefore T is a Γ-semi sub near-field space of S. This completes the proof of the theorem. 
 
In the following we are introducing a Γ-semi sub near-field space which is generated by a sub near-field space and a 
cyclic Γ-semi sub near-field space of Γ-semi near-field space over a near-field. This completes the proof of the 
theorem. 
 
Definition 3.7: Γ-semi sub near-field space of S generated by A. Let S be a Γ-semi sub near-field space and A be a 
non-empty sub near-field space of S. The smallest Γ-semi sub near-field space of S containing A is called a Γ-semi sub 
near-field space of S generated by A. It is denoted by < A >. 
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Theorem 3.8: Let S be a Γ-semi sub near-field space and A be a nonempty sub near-field space of S.  
Then < A > = {a1 α1 a2 α2…….an-1 αn-1 an : n ∈ N, a1, a2, ….., an ∈ A, α1, α2, …., αn-1 ∈ Γ}. 
 
Proof: Let T = {a1 α1 a2 α2…an-1 αn-1 an : n ∈ N, a1, a2, …an ∈ A, α1, α2, …, αn-1 ∈ Γ}. 
Let a, b ∈ T and γ ∈ Γ. 
 
a∈ T⇒ a=a1 α1 a2 α2……am-1 αm-1am where a1, a2, …am ∈ A,α1, α2, …, αm-1∈ Γ. 
 
b∈T⇒ b= b1 β1 b2 β2……bn-1 βn-1 bn where b1, b2, …bn ∈ A, β1, β2, …, βn-1 ∈ Γ. 
 
Now aγb = (a1 α1 a2 α2……am-1 αm-1am) γ (b1 β1 b2 β2……bn-1 βn-1 bn) ∈ T. 
 
Therefore T is a Γ- semi sub near-field space of S. 
 
Let K be a Γ- semi sub near-field space of S such that A ⊆ K. 
 
Let a ∈ T. Then a = a1 α1 a2 α2……an-1 αn-1an where a1, a2, …an ∈ A, α1, α2, …, αm-1∈ Γ 
a1, a2, …an ∈ A, A ⊆ K ⇒ a1, a2, …an ∈ K. 
 
a1, a2, …an ∈ K, α1, α2, …, αn-1 ∈ Γ, K is a Γ- semi sub near-field space of sub near-field space over near-field. 
 
⇒ a1 α1 a2 α2……an-1 αn-1an ∈ K ⇒ a ∈ K. Therefore, T ⊆ K. 
 
So T is the smallest Γ- semi sub near-field space S of sub near-field space over near-field containing A. Hence              
< A > = T. 
 
Theorem 3.9: Let S be a Γ- semi sub near-field space and A be a non-empty sub near-field space of S. Then < A > = 
The intersection of all Γ- semi sub near-field spaces of S containing A. 
 
Proof: Let Δ be the set of all Γ- semi sub near-field spaces of S containing A. 
 
Since S is a Γ- semi sub near-field space of S containing A, S ∈ Δ. So Δ ≠ ∅. 
 
Let T* = 



∆∈T

T . Since A ⊆ T for all T ∈ Δ, A ⊆T* . 

By theorem 3.4, T* is a Γ- semi sub near-field space of S. 
 
Since T* ⊆ T for all T ∈ Δ, T* is the smallest Γ- semi sub near-field space of S containing A. Therefore T* = < A >. This 
completes the proof of the theorem. 
 
Definition 3.10: cyclic Γ-semi sub near-field space. Let S be a Γ-semi sub near-field space of Γ-sub near-field space 
over a near-field space. A Γ-semi sub near-field space T of S is said to be cyclic Γ-semi sub near-field space of S if T is 
generated by a single element sub near-field space of S. 
 
Note 3.11: Let T be a Γ-semi sub near-field space of Γ-semi sub near-field space S. Then T is cyclic iff                          

T =  ( ) aa
n

Nn

1−

∈

Γ


, for some a ∈ S. 

 
Definition 3.12: cyclic Γ- semi sub near-field space. A Γ-semi sub near-field space S is said to be a cyclic Γ- semi sub 
near-field space if S is a cyclic Γ- semi sub near-field space of S itself. 
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