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ABSTRACT 
Let G = (V, E) be a simple graph with n vertices. A function f : V(G) → {0, 1} is said to be a sum cordial labeling if  
for each edge e = uv, the induced map f *(uv) = (f(u) + f(v)) (mod 2) satisfies the conditions |vf(0) − vf(1)| ≤ 1 and    
|ef(0) − ef(1)| ≤ 1 where vf(i)  and ef(i) are the number of vertices and edges with label i, i ∈{0, 1}  respectively. A graph 
G is said to be sum cordial if it has a sum cordial labeling.  In this paper, we prove that certain classes of zero-divisor 
graphs of commutative rings are sum cordial. 
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1. INTRODUCTION 
 
All graphs considered in this paper are finite, simple and undirected. A detailed study of applications on graph labeling 
is carried out Bloom and Golomb [3]. The complete summary of graceful and harmonious graphs and the results along 
with some open problems can be found in J. Gallian’s [5] dynamic survey of graph labeling. The notion of cordial 
graphs were introduced by I. Cahit [4] in 1987, as a weaker version of both graceful and harmonious graphs. J. Shiama, 
introduced the concept of sum cordial [7] in 2012. Let G = (V, E) be a simple graph with n vertices. A function              
f : V(G) → {0, 1} is said to be a sum cordial labeling if  for each edge e = uv, the induced map f *(uv) = (f(u) + f(v)) 
(mod 2) satisfies the conditions |vf(0) − vf(1)| ≤ 1 and |ef(0) − ef(1)| ≤ 1 where vf(i) and ef(i) are the number of vertices 
and edges with label i, i ∈{0, 1} respectively. A graph G is said to be sum cordial graph if it has a sum cordial labeling. 
The idea of a graph associated to zero-divisors of a commutative ring was introduced by I. Beck [2] in 1988. Later it 
was modified by D.F Anderson and P.S Livingston [1] and accordingly, for a commutative ring R, the zero-divisor 
graph Γ(R) is the simple undirected graph with vertex set Z(R)*, the set of all non-zero divisors in R and two distinct 
vertices x and y are adjacent if xy = 0. The complement G  of the graph G is the graph with vertex set V(G) and two 
vertices are adjacent in G  if and only if they are not adjacent in G. For graph theoretic terminology and standard 
notation we follow F. Harray [6]. The join G1 + G2 of G1 and G2  is a graph with vertex set V(G1) ∪ V(G2) and edge set 
E[G1 + G2] = E(G1) ∪ E(G2) ∪ [uv : u ∈ V(G1) and v ∈ V(G2)]. 
 
In this paper, we prove that certain zero-divisor graphs of commutative rings are sum cordial. 
  
2. SUM CORDIAL LABELING 
 
In this section, we prove that certain classes of zero-divisor graphs are sum cordial. 

 
Theorem 2.1: For any prime number p > 2, Γ(Z2p) is sum cordial. 
 
Proof: Let p > 2 be a prime number. Then the vertex set of Γ(Z2p) is  

V(Γ(Z2p)) = {v1, ..., vp−1, vp} = {2, 4, …, 2(p−1), p} 
and the edge set  

E(Γ(Z2p)) = {vi vp / 1≤ i ≤ p−1}. 
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Define f : V(G) → {0, 1} by  f(vi) = i (mod 2), for  1 ≤ i ≤ p−1 and  f(vp) = 1. 
 

Clearly vf(0) = 
2

1p − ; vf(1) = 1
2

1p
+

− .  

 
Then the induced edge labeling function f * : E(G) → {0, 1}  is given by   





=
even. is i if1
odd; is i if0

)v(vf pi
*  

 

From this we have that ef(0) = 
2

1p −  = ef(1) and so Γ(Z2p) is sum cordial.         

 
Theorem 2.2: For any prime number p > 3, the zero-divisor graph Γ(Z3p) is sum cordial. 
 
Proof: Let p > 3 be a prime number. Then  

Z *(Z3p) = {u1, u2, v1, ..., vp−1} 
 

where u1 = p, u2 = 2p and vi = 3i for 1 ≤ i ≤ p − 1. From this, we have that  
E(Γ(Z3p)) = {u1vi, u2vi, 1 ≤ i ≤ p − 1}. 

 
Note that |V(Γ(Z3p))| = p + 1.  |E(Γ(Z3p))| = 2p − 2. let us define  f : V(G) → {0, 1}  
 
by f(u1) = 0, f(u2) = 1 and f(vi) =  i (mod 2), 1 ≤ i ≤ p − 1. 
 

It is clear that vf(0) =  
2

1p +  = vf(1).  

 
Then the induced edge labeling function f *: E(G) → {0, 1}  is given by   





=
even. is j if0
odd; is j if1

)u(uf j1
*  

and         




=
even. is j if1
odd; is j if0

)u(uf j2
*  

 

Also we have that ef(0) = 
2

1p −  + 1
2

1p
−=

− p ,  ef(1) = 
2

1p −  + 
2

1p −  = p − 1 and so Γ(Z3p) is sum cordial graph.   

 
Theorem 2.3: For any prime number p ≥ 3, the zero-divisor graph Γ(Z4p) is sum cordial. 
 
Proof: One can partition the vertex set of Γ(Z4p) into V1 = {p, 2p, 3p} = {u1, u2, u3} and 

V2 = {2, 4, …, 2(p − 1), 2(p + 1), ..., 2(2p − 1)} = {v1, v2, ..., vp−1, vp+1, ..., v2p−1}.   
 
Note that the edge set of Γ(Z4p) is nothing but  

E(Γ(Z4p)) = {u1v2, u1v4, ..., u1vp−1, u1vp+1, ..., u1v2p−2, u2v1, u2v2, u2v3, ..., u2vp−1, 
                          u2vp+1, ..., u2v2p−1, u3v2, u3v4, ..., u3vp−1, u3vp+1, ..., u3v2p−2}.  

 

Clearly |V| = 2p + 1, |E| = 2p − 2 + 
2

2)2(2p −  = 4p − 4.  

 
Define f : V(Γ(Z4p)) → {0, 1} by f(u1) = 0, f(u2) = 1, f(u3) = 0;   

f(vj) = j (mod 2), 1 ≤ j ≤ p − 1 and  
f(vj) = ( j − 1) (mod 2), p+1 ≤ j ≤ 2p − 1.  

 
From this we have that vf(0) =  p − 1 + 2 = p + 1; vf(1) = p − 1 + 1 = p. 
 
The induced edge labeling function f * : E → {0, 1} is given by  

f *(u1vj) = f *(u3vj) = 0, j  is even,  1 ≤ j ≤ p − 1,  
f *(u1vj) = f *(u3vj) = 1, j  is odd,  p+1 ≤ j ≤ 2p − 1  and   
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=
even. is j if0
odd; is j if1

)u(uf j2
* , for j ≠ p and 1 ≤ j ≤ 2p − 1   

⇒ ef(0) = 
2

22p −  + 
2

22p −  = 2p − 2 and ef(1) = 2p − 2.  

 
Hence |ef(0) − ef(1)| ≤ 1 and so Γ(Z4p) is sum cordial.            
 
Theorem 2.4: For two distinct primes p and q with p < q, the zero-divisor graph Γ(Zpq) is sum cordial. 

 
Proof: The vertex set of Γ(Zpq) can be partitioned into V1 and V2 where 

V1 = {p, 2p, 3p, ..., (q−1) p} = {u1, u2, ..., uq−1} and 
V2 = {q, 2q, 3q, ..., (p−1) q} = {v1, v2, ..., vp−1}. 

 
The edge set of Γ(Zpq) is given by  

E(Γ(Zpq)) = {ui vj : ui ∈ V1 and vj ∈ V2, 1 ≤ i ≤ q−1, 1 ≤ j ≤ p−1}. 
 
Consider the vertex labeling f : V(Γ(Zpq))  → {0, 1} defined by  

f(ui) = i (mod 2)  for 1 ≤ i ≤ q−1 and  
f(vj) = j (mod 2)  for 1 ≤ j ≤ p−1. 

 
Further note that |E| = (p−1) (q−1) and the induced edge labeling f *: E → {0, 1} is given by  

*
i j

0 both i & j  are odd, 1  i  q 1, 1  j  p 1; and both i&j  are even;
f (u v )

1 otherwise
≤ < − ≤ ≤ −

= 


 

 

Clearly ef(0) = 
2

1)1)(q(p −−  and ef(1) = 
2

1)1)(q(p −− .  

 
Hence |ef(0) − ef(1)| ≤ 1 and so Γ(Zpq)) is sum cordial.         
 
Theorem 2.5: For any prime number p > 2, the join graph Γ(Z2p) + Γ(Z4) is sum cordial. 
 
Proof: Let G = Γ(Z2p) + Γ(Z4).  
 
The vertex set of the graph G, 

V(G) = {u1, u2, ... up−1, up, x} = {2, 4, ..., 2(p−1), p, x}, where x = 2 ∈ Z4.  
  
Also the edge set of G, 

E(G) = {uiup, uix, upx / 1 ≤ i ≤ p−1}. 
 
Note that |V| = p+1 and |E| = p − 1 + p − 1 + 1 = 2p − 1. 
 
Define the vertex labeling f : V(G) → {0, 1} by 

f(uk) =  k (mod 2) , 1 ≤ k ≤ p and  f(x) = 0. 
 

It is clear that vf(0) = 
2

1p +  = vf(1)  

Then the induced edge labeling f * : E(G) → {0, 1} is given by  





=
even. is i if1
odd; is i if0

)u(uf pi
*  





=
odd. is i if1
even; is i if0

x)(uf i
*  

and         f *(upx) = 1. 
 

From the above ef(0) = 
2

1)(p −  + 
2

1)(p −  = p−1, ef(1) = 
2

1)(p −  + 
2

1)(p −  + 1 = p 

and |ef(0) − ef(1)| ≤ 1. 
Therefore G is sum cordial.           
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Theorem 2.6: For any prime number p > 2, the join graph Γ(Z2p) + Γ(Z9) is sum cordial. 
 
Proof: Let G = Γ(Z2p) + Γ(Z9). The vertex set of the graph G is  

V(G) = {u1, ... up−1, up, x, y}  
          = {2, 4, ..., 2(p−1), p, x, y}, where x = 3 and y = 6 ∈ Z9 and the edge set of G is  

 
E(G) = {uiup, uix, uiy, upx, upy, xy / 1 ≤ i ≤ p−1}. 
 
Note that |V| = p+2 and |E| = p − 1 + p − 1 + p − 1 + 3 = 3p. 
 
Define the vertex labeling f : V(G) → {0, 1} by f(uk) = k (mod 2) for 1 ≤ k ≤ p,  

f(x) = 0 and f(y) = 1.  
 

Clearly  vf(0) = 
2

1p −  +1  and vf(1) = 
2

1p − + 2. 

 
Then the induced edge labeling f *: E(G) → {0, 1} is given by  





=
even. is i if1
odd; is i if0

)u(uf pi
*  





=
odd. is i if1
even; is i if0

x)(uf i
*  





=
odd. is i if0
even; is i if1

y)(uf i
*  

f *(upx) = 1,  f *(upy) = 0 and  f *(xy) = 1. 
 

From the above ef(0) = 
2

1)3(p −  + 1, ef(1) = 
2

1)3(p −  + 2  and  |ef(−1) − ef(1)| ≤ 1. Hence G is sum cordial.      

 
Theorem 2.7: For any prime number p > 2, the join graph Γ(Z2p) + Γ(Z6) is sum cordial. 
 
Proof: Let G = Γ(Z2p) + Γ(Z6).  
 
The vertex set of the graph G,    

V(G) = {u1, ... up−1, up, x, y, z}   
          = {2, 4, ..., 2(p−1), p, x, y, z}, where x = 2, y = 3  and z = 3 ∈ Z6 and the edge set of G  

 
E(G) = {uiup, uix, uiy, uiz, upx, upy, upz, xy, yz / 1 ≤ i ≤ p−1}.  
 
Note that |V| = p + 3 and |E| = p − 1 + p − 1 + p − 1 + p − 1 + 5 = 4p + 1. 
 
Define the vertex labeling f: V(G) → {0, 1} by  

f(uk) = k (mod 2)  for  1 ≤ k ≤ p, f(x) = 0, f(y) = 0 and f(z) = 1.  
 

Note that vf(0) = 
2

1p − + 2; vf(1) = 
2

1p − + 2.   

 
Then the induced edge labeling f *: E(G) → {0, 1} is given by  





=
even. is i if1
odd; is i if0

)u(uf pi
*  





==
odd. is i if1
even; is i if0

y)(ufx)(uf i
*

i
*  





=
odd. is i if0
even; is i if1

z)(uf i
*  

f *(upx) = 1,  f *(upy) = 1, f *(upz) = 0, f *(xy) = 0 and f *(yz) = 1.  
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From the above ef(0) = 
2

1)4(p −  + 2 

           ef(1) = 
2

1)4(p −  + 3 and  

           |ef(0) − ef(1)| ≤ 1.  
 
Therefore G is sum cordial.             
 
Corollary 2.8: For any prime number p > 2, the join graph )Γ()Γ( 4p2 ZZ + is sum cordial. 

 
Proof: Since the graph )Γ()Γ()Γ( 2p4p2 ZZZ ≅+ , by Theorem 2.1, )Γ()Γ( 4p2 ZZ +  is sum cordial.      
 
Theorem 2.9: For any prime number p > 2, the join graph )Γ()Γ( 9p2 ZZ +  is sum cordial. 
 
Proof: Let G = )Γ()Γ( 9p2 ZZ + . The vertex set of the graph G is  

V(G) = {u1, ... up−1, x, y}  
          = {p, 2p, ..., (p−1)p, x, y}, where x = 3 and y = 6 ∈ Z9 and the edge set of G is  
 
E(G) = {uix, uiy, xy / 1 ≤ i ≤ p−1}. 

 
Note that |V| = p+1 and |E| = p − 1 + p − 1 + 1 = 2p − 1. 
 
Define the vertex labeling f : V(G) → {0, 1} by f(uk) =  k  (mod 2),  for 1 ≤ k ≤ p−1, f(x) = 0 and f(y) = 1.  
 

Clearly vf(0) = 
2

1p − +1  and v_f(1) = 
2

1p − +1.  

 
Then the induced edge labeling f *: E(G) → {0, 1} is given by 





=
odd. is i if1
even; is i if0

x)(uf i
*  





=
odd. is   i if0
even; is   i if1

y)(uf i
*  

f *(xy) = 1. 
 
From the above 

ef(0) = 
2

1)(p −  + 
2

1)(p −  = p − 1,  

ef(1)  = 
2

1)(p −  + 
2

1)(p −  + 1 = p  and  satisfies |ef(0) − ef(1)| ≤ 1.  

 
Hence G is sum cordial.               
 
Theorem 2.10: For any prime number p > 2, the join graph )Γ()Γ( 6p2 ZZ +  is a signed product cordial. 
 
Proof: Let G = )Γ()Γ( 6p2 ZZ + .  
 
The vertex set of the graph G is  

V(G) = {u1, ... up−1, x, y, z}   
          = {p, 2p, ..., (p−1)p, x, y, z}, where x = 2, y = 3 and z = 3 ∈ Z6.  

 
Further the edge set of G is  
 
E(G) = {uix, uiy, uiz, xy, yz / 1 ≤ i ≤ p−1}. 
 
Note that |V| = p+2 and |E| = p − 1 + p − 1 + p − 1 + 2 = 3p − 1. 
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Define the vertex labeling f : V(G) → {0, 1} by f(uk) = k (mod 2)  for 1 ≤ k ≤ p−1, f(x) = 0, f(y) = 0 and f(z) = 1.  
 

Clearly vf(0) = 
2

1p − + 2; vf(1) = 
2

1p − + 1. 

 
Then the induced edge labeling f *: E(G) → {0, 1} is given by 





==
odd. is   i if0
even; is   i if1

y)(ufx)(uf i
*

i
*  





=
odd. is i if0
even; is i if1

z)(uf i
*  

f *(xy) = 0 and f *(yz) = 1 
 
From the above  

ef(0) = 
2

1)(p −  + 
2

1)(p −  + 
2

1)(p − + 1 = 
2

1)3(p −  + 1,  

ef(1)  = 
2

1)(p − + 
2

1)(p − + 
2

1)(p − + 1 = 
2

1)3(p −  + 1 and satisfies  

|ef(0) − ef(1)| ≤ 1.  Hence G is sum cordial.         
  
Corollary 2.11: For any prime number p > 2, the join graph )Γ()Γ( 4p2 ZZ +  is sum cordial. 
 
Proof: Since the graph )Γ()Γ( 44 ZZ = , by Corollary 2.8. )Γ()Γ( 4p2 ZZ +  is sum cordial.      
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