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ABSTRACT 
We make an investigation of the convective heat and mass transfer flow of a micropolar fluid in a rectangular duct 
with non liner density temperature. The equations governing the flow of heat and mass transfer are non linear coupled 
equations. It is not possible to find closed form solutions; therefore we solve these equations by using Galerkin finite 
element analysis with three noded triangular elements. The temperature, concentration and angular velocity 
distributions are analyzed for different values of G, R, D-1, P, Sc, γ, α, λ and N. The rate of heat and mass transfer and 
couple stress evaluated numerically for a different parametric values. 
 
Keywords: Heat and Mass Transfer, Rectangular Duct, Temperature, Micropolar fluid, Density. 
 
 
1. INTRODUCTION 
 
Natural convection is of great importance in many applications of industries. Convection plays an authoritative role in 
crystal growth on which it affects the composition of fluid phase and temperature at the phase interface whose 
consequence results in a single crystal poor crystal quality is due to turbulence. It is the base in modern electronics 
industry to produce pure and perfect crystals that are used to make laser rods, transistors. Infrared detectors, microwave 
devices, memory devices, and Ic’s (Integrated circuits). Natural convection harmfully affects local growth conditions 
and increases the overall transport rate. As high power electronic packaging and component density keep increasing 
substantially with the fast growth of electronic technology, effective cooling of electronic equipment has become 
exceptionally necessary. Therefore, the natural convection in an enclosure has become increasingly important in 
engineering applications in recent years. Through studies of the thermal behavior of the fluid in a partitioned enclosure 
is helpful to understand the more complex processes of natural convection in practical applications number of studies, 
numerical and experimental, concerned with the natural convection in an enclosure with or without a divider were 
conducted in past years. 
 
Convective heat transfer in a porous duct which is rectangular and the vertical walls are maintained at two different 
temperatures and the horizontal walls being insulated is a problem which has grabbed interest by several authors 
verschoor and greebler [26] have investigated heat transfer in enclosures experimentally. From the literature we find 
that the influence of viscous dissipation on heat transfer has been examined for different shapes. kamotoni et.al [15]   
has examined Experimental study of natural convection in shallow enclosures with horizontal temperature and 
concentration gradients. 
 
Shanthi et.al [23] has examined Finite element analysis of convective heat and mass transfer flow of a viscous 
electrically conducting fluid through a porous medium in a rectangular cavity with dissipation. She has examined the 
influence of dissipation on radiation on double diffusive flow of a viscous fluid in the rectangular cavity. Umadevi et.al 
[24] has examined Finite Element Analysis of double-diffusive heat transfer flow in rectangular duct with thermo-
diffusion and radiation effects under inclined magnetic field. Chamka et.al [5, 6]  have examined, Unsteady MHD 
Convective Heat and Mass transfer past a semi-infinite vertical permeable moving plate with heat absorption, Heat and 
mass transfer in a porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field. 
Several relevant analytical and experimental studies have been reported during the past decades. Excellent reviews 
have been given by Ostrach [17] and Catton [3, 4]. Samuels and Churchill [21] presented the stability of fluids in 
rectangular region heated from below and obtained the critical Rayleigh numbers with finite differences approximation.  
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Fig.1 

SCHEMATIC DIAGRAM OF THE FLOW MODEL 
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Ozoe et.al [18, 19] determined experimentally and numerically the natural convection in an inclined long channel with 
a rectangular cross-section, and found the effects of inclination angle and aspect ratio on the circulation and rate of heat 
transfer. Sesha sailaja et.al [22] studied Effect of non-linear density temperature variation on convective heat transfer of 
a viscous fluid through a rectangular cavity. Al-Nimr [1] discussed analytical solution for transient laminar fully 
developed free convection in vertical annulai. The theory of micropolar fluids developed by Erigen [9, 10 and 11] has 
been a popular filed of research in recent years. In this theory, the local effects arising from the microstructure and the 
intrinsic motions of the fluid elements are taken into account. It has been expected to describe properly the non-
Newtonian behavior of certain fluids, such as liquid crystals, ferro liquids, colloidal fluid, and liquids with polymer 
additives. Recently, Jena and Bhattacharya [14] studied the effect of microstructure on the thermal convection in a 
rectangular box heated from below with Galerkin’s method, and obtained critical Rayleigh numbers for various 
material parameters. Badruddin et.al [2] has examined Heat transfer in porous cavity under the influence of radiation 
and viscous dissipation. Gnanaprasunamba et.al [12] studied Convective heat and mass transfer flow of a Rectangular 
Duct With soret and dufour effects and heat sources. Rajakumari [20] have studied Convective Heat and Mass Transfer 
flow Micro polar fluid in a Rectangular duct with heat sources. Wang et.al [28, 29] presented the study of the natural 
convection of micropolar fluids in an inclined rectangular enclosure. Cha-Kaungchen et.al [7] have investigated 
numerically the steady laminar natural convection flow of a micropolar fluid in a rectangular enclosure.  
 
Wilson and Rydin [30] discussed bifurcation phenomenon in a rectangular cavity. Veera Suneela Rani et.al [25] 
discussed Radiation Effects on Convective Heat and Mass Transfer Flow in a Rectangular Cavity. The effect of the 
highest on the location of the divider is investigated. Also the effects of material parameters or micropolar fluids. Davis 
et.al [8] have investigated the effects, the characteristic parameters of micropolar fluids on mixed convection in a 
cavity.   
 
2. FORMULATION OF THE PROBLEM 

 
We consider the mixed convective heat and mass transfer flow of a viscous, 
incompressible, micropolar fluid in a saturated porous medium confined in the 
rectangular duct whose base length is  a and height b. The heat flux on the base 
and top walls is maintained constant. The Cartesian coordinate system is chosen 
with origin on the central axis of the duct and its base parallel to X-axis, we 
assume that 
(i) The convective fluid and the porous medium are everywhere in local thermo 

dynamic equilibrium. 
(ii) There is no phase change of the fluid in the medium. 
(iii) The properties of the fluid and of the porous medium are homogeneous and 

isotropic. 
(iv) The porous medium is assumed to be closely packed so that Darcy’s 

momentum law is adequate in the porous medium.  
(v) The Boussinesq approximation is applicable, 
 
Under the assumption the governing equations are given by 
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where u′ and v′ are Darcy velocities along direction. T′, C, p′ and g′ are the temperature, micro rotation, pressure and 
acceleration due to gravity, Tc and Th are the temperature on the cold and warm side walls respectively. ρ, µ, v, β0 and 
β1 are the density, coefficients of viscosity, kinematic viscosity and thermal expansion of the fluid, β٭ volumetric 
expansion with mass Fraction k1 is the permeability of the porous medium, γ1, k are the micropolar and material 
constant pressure. 
 
The boundary conditions are 

u′ = v′ = 0         on the boundary of the duct 
T′ = Th, C=Ch              on the side wall to the right (x = 1) 
T′ = Tc, C=Cc        on the side wall to the right (x = 0)                                                           (8) 
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Eliminating the pressure p from equations (2) and (3) and using (6) we get 
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Now introducing the following non-dimensional variables  
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The equations (11) – (13) in the non-dimensional form are 
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The non dimensional boundary conditions are 

Y = Ψx = 0 on the boundary 
θ = 1 , C=1  on  x = 1 
θ = 0, C=0    on  x = 0 
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3. SOLUTION OF THE PROBLEM 
 
Finite Element Analysis 
 
The region is divided into a finite number of three nodded triangular elements, in each of which the element equation is 
derived using Galerkin weighted residual method. In each element fi the approximate solution for an unknown f in the 
variation formulation is expressed as a linear combination of shape function ( )i

kN k = 1, 2, 3, which are linear 
polynomials sin x and y. This approximate solution of the unknown f coincides with actual values of each node of the 
element. The variation formulation results in 3x3 matrix equation (stiffness matrix) for the unknown local nodal values 
of the given element. The stiffness matrices are assembled in terms of global nodal values using inter element 
continuity and boundary conditions resulting in global matrix equation. 
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In each case there are r distinct global nodes in the finite element domain and fp = (p =1, 2...r) is the global nodal values 
of any unknown f defined over the domain  
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Where the first summation denotes summation over s elements and the second one represents summation over the 
independent global nodes and i

N
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p N=φ , if p is one of the local nodes say k of the element ei = 0, pf ′ s are determined 

from the global matrix equation. Based on these lines we now make a finite element analysis of the given problem 
governed by (14) – (16) subject to the conditions. 
 
Let ψi, θi and Ni be the approximate values ψ, θ and N in a element ei 
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Substituting the approximate value ψi, θi, Ci and ωi for Ψ, θ, C and ω   respectively in (14) 
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Under Galaerkin method this is made orthogonal over the domain ei to the respective shape functions (weight function)  
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Using Green’s theorem we reduce the surface integral (24) and (25) without affecting ψ terms and obtain 
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where Γ1 is the boundary of ei, substituting  for ψi, θi, Ci and ωi in equation (26) and eqn (27) we get 
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p QQ  are column matrices? 
 
Repeating the above process with each of s elements, we obtain sets of such matrix equations. Introducing the global 
coordinates and global values for )( i

pQ  and making use of inter element continuity and boundary conditions relevant 
to the problem the above stiffness matrices are assembled to obtain a global matrix equation. This global matrix is rxr 
square matrix if there are r distinct global nodes in the domain of flow considered. 
 
Similarly substituting ψi θi, ωi,

 and φi in (16) and defining the error and following the Galerkin method we obtain using 
Green’s Theorem, (6.3.10) reduces to 

1
1 .

i i i i ii i i i
k k k k kN N N N NRD N NGD d

x x y y x x x y yλ

−
−

Ω

  ∂ ∂ ∂ ∂ ∂∂Ψ ∂Ψ ∂ ∂
+ + + + Ω  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∫  

1 1
i i i i

i i
k knx ny d RD N ny ny d GD N nxd

x y x y
ω ω− −

Γ Γ Γ

   ∂Ψ ∂Ψ ∂ ∂
= + Γ + + Γ = Γ   ∂ ∂ ∂ ∂   
∫ ∫ ∫                    (31) 

 
In obtaining eqn (10) the Green’s Theorem is applied with reference to derivatives of Ψ without affecting θ terms. 
Using eqn (20) in eqn (29) we have 

∑ ∫∫ ∑












Ω
∂
∂

++Ω







∂
∂

∂
∂

+
∂
∂

∂
∂

Ψ
ΩΩ

−

m

i
L

k
i
k

L

i
L

i
k

i
m

i
m

i
ki

m d
x

N
rNNGDd

y
N

y
N

x
N

x
N

)21(( 2
21 θ  

ikdNdny
y

N
y

nx
x

N
x

N i
ii

k

iiii
i
k ∫∫ Γ=Ω+Γ








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
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
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
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
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+










∂
∂

+
∂
Ψ∂

= θ                                               (32) 

 
In the problem under consideration, for computational purpose, we choose uniform mesh of 10 triangular elements. The 
domain has vertices whose global coordinates are (0, 0), (1, 0) and (1, c) in the non-dimensional form. Let e1, e2…..e10 
be the ten elements and let θ1, θ2,….θ10   be the global values of θ, C1, C2,….C10 be the global values of  C and ω1, ω2, 
ω3,…….., ω10 be the global values of  ω  and ψ1, ψ2 ….ψ10 are the global values of  ψ  at the global nodes of the domain. 
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SHAPE FUNCTIONS AND STIFFNESS MATRICES 
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h
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h
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The global matrix for θ is  

A1 X1= B1                                                                                                                    (33) 
 
The global matrix for N is  

A2 X2 = B2                                                                                                                    (34) 
 
The global matrix ψ is 

A3 X3 = B3                                                                                                                    (35) 
 
The global matrix C is 

A4 X4= B4                                                                                                                    (36) 
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Similarly A4 and B3 matrices. 
 
The domain consist two horizontal levels and the solution for Ψ, θ, C and ω at each level may be expressed in terms of 
the nodal values as follows, 

In the horizontal strip    0 ≤y ≤
3
h

 

Ψ = (Ψ1N1
1+ Ψ2N1

2+ Ψ7N1
7) H (1- τ1) 

    = Ψ1 (1-4x)+ Ψ24(x-
h
y

)+ Ψ7 ( h
y4

 (1- τ1 )  
10
3

x ≤ ≤ 
 

  

Ψ = (Ψ2N3
2+ Ψ3N3
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3 3
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h
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h
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h
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Ψ = (Ψ3N5
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h
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where     τ1= 4x ,           τ2 = 2x ,                 τ3 = 3
4x

 ,   

τ4= 4(x-
h
y

) ,     τ5= 2(x-
h
y

) ,      τ6 = 
3
4

(x-
h
y

) 

And H represents the Heaviside function. 
 
The expressions for θ are 

In the horizontal strip    0≤ y≤
3
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The expressions for C are 
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Along the strip    
3
h

≤ y≤
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2h
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h
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h
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h
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The expressions for ω are 
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3
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3
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    + (ω6 (2(1-
h
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h
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-4x)) H(1- τ4) 

    + (ω6 (4(1-x)+ ω5(4x-
h
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h
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Along the strip 
3
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h
y
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y4

-3) H(1- τ6)      
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3

x ≤ ≤ 
 

  

 
The dimensionless Nusselt numbers on the non-insulated boundary walls of the rectangular duct are calculated using 
the formula 

Nu = 
1xx

θ

=

∂ 
 ∂ 

  

Sh = 
1x

C
x =

∂ 
 ∂ 

 

Cw =
1xx

ω

=

∂ 
 ∂ 
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Nusselt number on the side wall x=1 in the different regions are 

Nu1 = 2-4 θ3, Sh1 = 2-4 C3, 31 42)( ω−=wC     0≤ y≤
3
h   

Nu2= 2-4 θ6,   Sh2= 2-4 C6,         32 42)( ω−=wC        
3
h ≤ y≤ 2

3
h  

Nu3 = 2-4 θ9,   Sh3 = 2- 4 C9, 33 42)( ω−=wC    
3

2h ≤ y≤1  

The details of a11, b11, ar1, br1, cr1 etc., are shown in appendix. 
 
The equilibrium conditions are 

02
1

1
3 =+ RR ,  03

1
2
3 =+ RR  04

1
3
3 =+ RR ,  05

1
4
3 =+ RR  

02
1

1
3 =+QQ ,  03

1
2
3 =+QQ  04

1
3
3 =+QQ ,  05

1
4
3 =+QQ  

02
1

1
3 =+ SS ,  03

1
2
3 =+ SS  04

1
3
3 =+ SS ,  05

1
4
3 =+ SS                             (37) 

Solving these coupled global matrices for temperature, micro concentration and velocity equations (33–37) respectively 
and using the iteration procedure we determine the unknown global nodes through which the temperature, micro 
rotation and velocity of different intervals at any arbitrary axial cross section are obtained.  
 
4. RESULTS AND DISCUSSION 
 
In this analysis, we investigate the effect of non linear density temperature on convective heat and mass transfer flow of 
a micropolar fluid in a rectangular duct. The equations governing the flow of heat and mass transfer are non linear 
coupled equations. It is not possible to find closed form solutions; therefore we solve these equations by using Galerkin 
finite element analysis with three noded triangular elements. The temperature, concentration, angular velocity have 
been analyzed for different values Grashof number (G), Darcy parameter (𝐷−𝐼), Buoyancy ratio (N), Micropolar 
parameter (R), Schmidt number (Sc), Density ratio (γ), Prandtl number (P). 
 
The temperature distribution (θ) is exhibited in figs (3-18) for different values G, 𝐷−𝐼 , N, R, γ and P at  horizontal 
levels Y= h/3 and Y=2h/3 and vertical levels X=1/3 and 2/3. We follow the convention that the non - dimensional 
temperature (θ) is Positive or negative according as the actual temperature (T) is greater or lesser than Tc, the 
temperature on cold wall. From figs (3-6) we find that an increase in the Grashof number (G) enhances the actual 
temperature at Y=2h/3 and x=1/3 levels  while at the levels y=h/3 and x=2/3, the actual temperature enhances with 
increase in G ≤ 3X 102 and reduces with higher G ≥ 5X 102 .The variation of θ with D-1 shows that lesser the 
permeability of the porous medium (D-1≤10) larger the actual temperature at Y=h/3,2h/3 and X= 2/3 levels and smaller 
at X=1/3 level, for further lowering of the permeability larger the actual temperature at Y=2h/3 and x=1/3 levels and 
smaller at Y=h/3 and x=2/3 levels. The variation of θ with buoyancy ratio (N) is exhibited in figs (7-10) for different 
levels. It is found that when the molecular buoyancy force dominates over the thermal buoyancy force the actual 
temperature reduces at all the levels when the buoyancy forces are in the same direction and for the forces acting in 
opposite direction, the actual temperature enhances at both horizontal levels and vertical level X=2/3 and while at the 
vertical level X=1/3, it reduces in the flow of region. Figs (11-14) represent the variation of θ with Micropolar 
parameter (R). It is found that an increase in R ≤ 200, reduces the actual temperature and enhances with higher R ≥ 300 
at Y=h/3, Y=2h/3 and X=2/3 levels. At X=1/3 level, the actual temperature enhances with lower and higher values of R 
and reduces with intermediate value of R = 200. Figs (15-18) represent of θ with density ratio (γ) shows that an 
increase in γ≤0.03 reduces the actual temperature an d enhances at higher values of γ≥0.05 at y=h/3, 2h/3 and x=1/3 
levels. At x=2/3 level, the actual temperature reduces in the horizontal strip except in the region (0≤y≤ 0.132) enhances 
with higher γ=0.05 and again reduces for still higher at γ=0.07 (Figs.15-18). The variation of θ with prandtl number 
(Pr) shows that lesser the thermal conductivity smaller the actual temperature at y=2h/3 and x=1/3 levels and larger at 
y=h/3 at x=2/3levels. 
 
The non-dimensional concentration distribution (C) is shown in figs (19-34) for different parametric values at different 
horizontal and vertical levels. We follow the actual concentration enhances with G ≤ 3×10 2 and reduces with G ≥ 5×102 
at both horizontal levels. At x=1/3 level it enhances with G. At higher vertical level x=2/3 level, the actual 
concentration enhances in the horizontal strip (0.132,0.066) and reduces in the region (0,0.66) with increase in G and 
the reversed effect is noticed in the behavior of the actual concentration in the above horizontal strip with higher G=5. 
Figs (23-26) represent the concentration with buoyancy ratio (N). It is found that when the molecular buoyancy force 
dominates over the thermal buoyancy force the actual concentration reduces at y=h/3 and x=1/3 levels irrespective of 
the directions of buoyancy forces. At y=2h/3 and x=2/3 levels, the actual concentration reduces with increase in N > 0 
and enhances with increase │N │ (=0). Figs 27-30 represent the variation of C with micro polar parameter (R). It is 
found that the actual concentration reduces with increase in R ≤ 100 and enhances with higher R ≥ 200. At y=h/3, 2h/3  
and x=2/3 levels, while at x = 1/3 level the actual concentration enhances with R ≤ 200 and reduces with higher           
R ≥ 300.  Figs (31-34) represent the variation of C with density ratio (γ). It is found that at y=h/3, 2h/3 and x=2/3  
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levels, the actual concentration enhances with γ=0.03 and reduces for higher γ = 0.03 and again enhances for still 
higher γ = 0.07. The variation of C with Prandtl number (Pr) is exhibited in Figs (31-34) at different levels. It is found 
the actual concentration reduces at both horizontal levels and x=1/3 level and enhances at higher vertical level x=2/3. 
 
Figs (35-50) represent the variation of angular velocity (ω) for different parametric values at different levels. Figs (35-
38) represent the variation of angular velocity with G and 𝐷−𝐼 . It is found that at y=h/3, 2h/3 and x=2/3 levels the 
angular velocity enhances with G≤3×102 and reduces with higher G≥5×10 2 at all levels. The variation of ω with 𝐷−1 
shows that the angular velocity enhances with 𝐷−1 at y=2h/3 and x=1/3 levels, at y=2/3 it enhances with 𝐷−1≤10 and 
reduces with 𝐷−1≥1.5. At x=2/3, the angular velocity enhances in the horizontal strip (0, 0.33) and reduces in the 
region (0.396, 0.66) (Figs 35-38). The variation of 𝜔 with buoyancy ratio (N), we find that when the molecular 
buoyancy force dominates over the thermal buoyancy force, │ 𝜔│enhances at both horizontal levels and at x=1/3 level 
irrespective of the directions of the buoyancy forces, while at x=2/3 level it enhances with N>0 and an increase in │N│ 
reduces │𝜔│in the horizontal strip (0, 0.033) and enhances in the region (0.396, 0.66) (Figs 39-42). The variation of 𝜔 
with R shows that at y=2h/3 level, │ 𝜔│ reduces with R ≤ 100 and enhances with R ≥ 200. At x=1/3  level, 
│𝜔│ enhances with R ≤ 100, reduces with higher R=0.2 and again enhances with higher R=300. At y=h/3 level, an 
increase in R≤100 enhances │𝜔│ in the vertical strip (0.033, 0.663) and reduces in the region (0.729, 0.927) while for 
higher R ≥ 200 │ 𝜔│ reduces in the region (0.333, 0.663) and enhances in the region (0.729, 0.927). At x=2/3 level 
│𝜔│ reduces with R ≤ 100 and for higher R ≥ 200, we notice an enhancement in │𝜔│ in the region (0.066, 0.33) and 
reduces in the region (0.396, 0.66) and for higher R ≥ 300, │𝜔│ enhances in the entire horizontal strip (0, 0.66) (Fig. 
43-46). Figs (47-50) represent the variation of ω with Prandtl number (P) shows that |ω| reduces with increase in P at 
y=h/3 and x=1/3 levels and enhances at y=2h/3 and x=2/3 levels. The variation of  ω with density ratio (γ) shows that 
an increase in the density ratio γ≤0.03, enhances |ω| at y=h/3 and reduces at x=1/3 level and for higher 𝛾≥0.05, |ω| 
reduces at y=h/3 level and enhances at x=1/3 level at x=2h/3 level, |ω|  reduces with increase in γ≤0.05 and enhances 
with higher γ≥0.07at x=2/3level an increase in γ≤0.03enhances the |ω|  in the horizontal strip (0.066,0.33) and reduces 
in the strip  (0.396,0.66) and higher γ≥0.05 we notice an enhancement in |ω|.      
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Fig. 3 : Variation of θ with  G, D-1 at 
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Fig. 4 : Variation of θ with G, D-1 at 

3
hy =  level 

-1

-0.5

0

0.5

1

1.5

2

0.333 0.399 0.465 0.531 0.597 0.663 0.729 0.795 0.861 0.927 0.993

x

θ

G  = 102, 2x102, 3x102, 102, 102

D-1= 10,    10,     10,      5,   15

 
Fig. 5 : Variation of θ with  G, D-1 at 
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Fig. 6 : Variation of θ with G, D-1 at 
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Fig. 7 : Variation of θ with  N at 
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Fig. 8 : Variation of θ with N at 
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Fig. 9 : Variation of θ with  N at 
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Fig. 10 : Variation of θ with N at 
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Fig. 11 : Variation of θ with  R at 
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Fig. 12 : Variation of θ with R at 
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Fig. 13: Variation of θ with R at 
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Fig. 14 : Variation of θ with R at 
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Fig. 15 : Variation of θ with  γ, P at 
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Fig. 16 : Variation of θ with γ, P at 
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Fig. 17 : Variation of θ with  γ, P at 
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Fig. 18 : Variation of θ with γ, P at 
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Fig. 19 : Variation of C with  G, D-1 at 
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Fig. 20 : Variation of C with G, D-1 at 
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Fig. 21 : Variation of C with  G, D-1 at 
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Fig. 22 : Variation of C with G, D-1 at 
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Fig. 23: Variation of C with  N at 
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Fig. 24 : Variation of C with N at 
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Fig. 25 : Variation of C with  N at 
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Fig. 26 : Variation of C with N at 
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Fig. 27 : Variation of C with  R at 
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Fig. 28 : Variation of C with R at 
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Fig. 29 : Variation of C with  R at 
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Fig. 30 : Variation of C with R at 
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Fig. 31 : Variation of C with  γ, P at 
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Fig. 32 : Variation of C with γ, P at 
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Fig. 33: Variation of C with  γ, P at 
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Fig. 34 : Variation of C with γ, P at 
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Fig. 35 : Variation of ω with  G, D-1 at 
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Fig. 36 : Variation of ω with G, D-1 at 
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Fig. 37 : Variation of ω with  G, D-1 at 

3
1x =  level 

-6

-5

-4

-3

-2

-1

0

1

0 0.066 0.132 0.198 0.264 0.33

y

ω

G  = 102, 2x102, 3x102, 102, 102

D-1= 10,    10,     10,      5,   15

 
Fig. 38 : Variation of ω with G, D-1 at 
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Fig. 39 : Variation of ω with  N at 
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Fig. 40 : Variation of ω with N at 
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Fig. 41 : Variation of ω with  N at 
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Fig. 42 : Variation of ω with N at 
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Fig. 43 : Variation of ω with  R at 
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Fig. 44 : Variation of ω with R at 
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Fig. 45 : Variation of ω with  R at 
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Fig. 46 : Variation of ω with R at 
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Fig. 47 : Variation of ω with  γ, P at 
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Fig. 48 : Variation of ω with γ, P at 
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The rate of heat transfer (Nusselt number) at x=1 shown in table 1 and 2 for different parametric values. It is found that 
the Nusselt number in the lower quadrants enhances with increase in G an increase in G≤3×10 2 reduces |Nu| in the 
middle quadrant and reduces on the upper quadrant while for higher G≥5×10 2 we notice depreciation in |Nu| on the 
middle quadrant and enhancement on the upper quadrants. An increase in 𝐷−𝐼 ≤ 10 enhances |Nu| at all the quadrants 
while for higher 𝐷−1 ≥ 15, |Nu| enhances on the lower quadrant and reduces on the middle and upper quadrants. With 
respect to buoyancy ratio N we find that |Nu| reduces on lower and middle quadrants on enhances or upper quadrant 
with increase in N>0 while an increase in |N|<0 we notice a depreciation in |Nu| at all the quadrants. With respect to 
micro polar parameter R., we find that |Nu| enhances with R on the lower and upper quadrants while on the middle 
quadrant, it reduces with R≤0.1 and enhances with higher R≥0.3. With respect to Prandtl number (P) we find that |Nu| 
enhances on lower and upper quadrants and reduces on middle quadrant with increase in P. The variation of |Nu| with 
density ratio (γ) shows that an increase in γ≤0.03, |Nu| reduces on the lower and middle quadrants and enhances the 
upper quadrant while for higher γ ≥ 0.05, we notice a reversed effect. 
 
The rate of mass transfer (Sherwood number) on x=1 represented in tables 3 and 4 for different parametric variations. It 
is found that the Sherwood number enhances on lower and middle on a quadrant with increase in G while Sherwood 
number on the upper quadrant reduces with G≤3×102 and enhances with higher G≥5×102. The variation of  Sh with 𝐷−𝐼 
shows that  lesser the permeability of porous medium  smaller the Sherwood number on all the three quadrants  and for 
further lowering of permeability larger the Sherwood number. Sh with respect to buoyancy ratio. We find that when the 
molecular buoyancy force dominates over the thermal buoyancy force the rate of mass transfer enhances on the lower 
and upper quadrants and reduces in the middle quadrant when the molecular buoyancy forces are in the same direction 
and for the forces acting in opposite direction the Sherwood number depreciates on all three quadrants. An increase in 
R≤ 100 enhances the Sherwood number on the lower and middle quadrants and reduces on the middle quadrant and for 
higher R≥0.3 the Sherwood number reduces on the lower middle quadrant. The variation of ‘Sh’ with Prandtl number P 
Shows that lesser the thermal conductivity larger Sh on lower and upper quadrants and smaller on the middle quadrant. 
The variation of Sh with density ratio (γ) shows that an increase in γ≤0.03 reduces the Sh on all three quadrants and for 
higher γ≥0.05 we notice an enhancement in ‘Sh’ on the lower and upper  quadrants and reduces on the middle quadrant 
(Table 4). 
 
The couple stress (Cw) is shown in tables (5&6) for different parametric variations. It is found that an increase in G 
reduces the couple stress on the middle quadrant and enhances on the upper quadrant. Lesser the permeability of porous 
medium, Smaller the couple stress on the middle and the upper quadrants when the molecular buoyancy force 
dominates over the thermal buoyancy force the couple stress enhances when the buoyancy forces are same direction 
and forces acting in opposite direction Cw reduces on the lower quadrant. With respect to R we find that the Cw on the 
middle upper quadrant reduces with R≤ 100 and enhances with higher R> 300 (Table 5).  An increase in the Prandtl 
number P reduces Cw on the all quadrants. With respect to density ratio γ, we find that the couple stress enhances with 
increase in γ. Thus the nonlinear density temperature relation results an enhancement in Cw on the quadrants (Table 6). 

 
Table-1: Nusselt Number (Nu) 

y I II III IV V VI VII VIII IX X  
Nu1 2.08144 2.11484 2.1744 2.4852 2.244 2.0812 10.4804 2.5548 2.2628 1.97892 
Nu2 -1.43732 -1.70824 1.65664 1.438 -0.14836 -0.39732 0.10692 -0.0216 -0.19124 -0.04432 
Nu3 2.0156 2.0078 2.0436 2.2568 -0.0068 2.044 2.0912 1.98736 2.0764 1.99364 

G 1×102 3×102 5×102 1×102 1×102 1×102 1×102 1×102 1×102 1×102 

D⁻¹ 10 10 10 5 15 10 10 10 10 10 
N 1 1 1 1 1 2 -0.5 -0.8 1 1 
R 100 100 100 100 100 100 100 100 200 300 

 
Fig. 49 : Variation of ω with  γ, P at 
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Fig. 50: Variation of ω with γ, P at 
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Table-2: Nusselt Number (Nu) 

Y I II III IV V 
Nu1 2.08144 2.0044 2.1272 2.1376 2.7744 
Nu2 -1.43732 0.071 -0.264 -0.04824 0.18768 
Nu3 2.0156 2.1184 2.0644 2.064 2.2644 
γ 0.01 0.03 0.05 0.07 0.01 
P 7 7 7 7 1.71 

                                            
Table-3: Shear wood number (Sh) 

Y I II III IV V VI VII VIII IX X 
Sh1 2.32784 2.5398 2.7564 3.1732 2.9756 2.3672 3.1868 2.19328 2.96 1.88492 
Sh2 -0.46152 -0.93376 1.18156 -1.7148 -0.682 0.00572 -0.82036 0.1128 0.02288 -0.03676 
Sh3 2.22972 2.09136 2.2052 2.4144 12.0256 2.2972 2.3448 1.9272 2.462 1.96684 
G 1×102 3×102 5×102 1×102 1×102 1×102 1×102 1×102 1×102 1×102 

D⁻¹ 10 10 10 5 15 10 10 10 10 10 
N 1 1 1 1 1 2 -0.5 -0.8 1 1 
R 100 100 100 100 100 100 100 100 200 300 

 
Table-4: Shear wood number (Sh) 

Y I II III IV 
Sh1 2.32784 2.1656 2.5168 2.9028 
Sh2 -0.46152 -1.0812 -1.06352 -0.02908 
Sh3 2.22972 2.1828 2.4356 2.31332 
γ 0.01 0.03 0.05 0.01 
P 7 7 7 1.71 

 
Table-5: Couple Stress (Cω) 

Y I II III IV V VI VII VIII IX X 
Cω1 2 2 2 2 2 2 2 2 2 2 
Cω2 19.9858 6.85 3.5364 7.632 14.328 48.088 4.8588 2.40768 5.0088 12.97388 
Cω3 -1.21936 -5.24888 -5.6778 0.952 0.9252 -3.34612 -2.54032 -1.728 0.5084 22.05612 

G 1×102 3×102 5×102 1×102 1×102 1×102 1×102 1×102 1×102 1×102 

D⁻¹ 10 10 10 5 15 10 10 10 10 10 
N 1 1 1 1 1 2 -0.5 -0.8 1 1 
R 100 100 100 100 100 100 100 100 200 300 

 
Table-6: Couple Stress (Cω) 

Y I II III IV V 
Cω1 2 2 2 2 2 
Cω2 19.9858 44.0268 35.8264 118.436 12.6364 
Cω3 -1.21936 -1.71156 -2.17528 -3.79176 -2.04512 
γ 0.01 0.03 0.05 0.07 0.01 
P 7 7 7 7 1.71 

 
5. CONCLUSIONS 
 

 The aim of this analysis is to investigate the effect of non linear density temperature variation on flow 
characteristics. The non linear coupled equations governing the flow heat and mass transfer have been solved 
by using Finite Element Method with linear approximations functions. The temperature, concentration, micro 
rotation, couple stress. Rate of heat and mass transfer have been discussed for different values of governing 
parameters.  

 The important conclusion of these analysis are it is observed from the profiles that the actual temperature 
reduces with increases in γ ≤ 0.03 and enhances with higher γ = 0.05. At y =2h/3, h/3, x= 1/3 levels. At x=2/3 
level it reduces with increase in γ.  

 The actual concentration enhances with γ ≤ 0.03 and reduces with higher γ ≥ 0.05 and again enhances with 
still higher γ = 0.07. At y=h/3 and 2h/3 at both the vertical levels. 

 The actual concentration enhances with γ the micro rotation ( ω) reduces with γ ≤ 0.05 and enhances with        
γ ≥ 0.07 .At y=2h/3 level. At y= h/3 and x=1/3 levels the micro rotation enhances with γ ≤ 0.03 and reduces 
with higher γ = 0.05. At x=2/3 level the micro rotation enhances with γ. 

 The rate of heat transfer reduces with γ≤ 0.03 and enhances with higher γ = 0.05 for the lower and middle 
quadrants while on the upper quadranant |Nu| enhances with γ. 
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 The couple stress enhance with γ in all the three quadranants. The rate of mass transfer reduces with γ ≤ 0.03 

and enhances with higher γ =0.05 and lower and upper quadranant while on the middle quadranant |Sh| 
reduces with γ.     
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