UNIQUE COMMON FIXED POINT THEOREMS
FOR FOUR MAPS IN DISLOCATED QUASI b-METRIC SPACES

K. P. R. RAO* AND P. M. S. KUMARI

Department of Mathematics,
Acharya Nagarjuna University, Nagarjuna Nagar-522510, (A.P.), India.

(Received On: 05-01-18; Revised & Accepted On: 30-01-18)

ABSTRACT

In this paper, we prove two common fixed point theorems for four mappings in dislocated quasi b-metric spaces.

Subject Classification: 54H25, 47H10.

Keywords: Dislocated quasi b-metric, weakly compatible pair of maps, Cauchy sequence.

1. INTRODUCTION

Zeyada et.al [12] initiated the concept of dislocated quasi metric spaces and generalized the results of Hitzler and Seda [5] in dislocated quasi metric spaces. The notion of b-metric space was introduced by Czerwic [3] in connection with some problems concerning with the convergence of non measurable functions with respect to measure. Recently Klinkeam and Suanoom [7] introduced the concept of dislocated quasi b-metric spaces and which generalize b-metric spaces [3] and quasi b-metric spaces [10] and proved some fixed point theorems in it by using cyclic contractions. The authors [1, 4, 7, 8, 9, 11] etc. Obtained fixed, common fixed points theorems in dislocated quasi b-metric spaces using various contraction conditions for single and two maps. In this paper, we prove two common fixed point theorems for four maps in dislocated quasi b-metric spaces and we also give examples to support our theorems.

First we recall some known definitions and lemmas.

Definition 1.1: Let X be a non-empty set, s ≥ 1 (a fixed constant) and d: X×X→[0,∞) be a function. consider the following condition on d.

(1.1.1) d(x, x) = 0, ∀x ∈ X,
(1.1.2) d(x, y) = d(y, x) = 0 ⇒ x = y, ∀x, y ∈ X,
(1.1.3) d(x, y) = d(y, x), ∀x, y ∈ X,
(1.1.4) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X,
(1.1.5) d(x, y) ≤ s[d(x, z) + d(z, y)], ∀x, y, z ∈ X.

(i) If d satisfies (1.1.2), (1.1.3) and (1.1.4) then d is called a dislocated metric and (X, d) is called a dislocated metric space.
(ii) If d satisfies (1.1.1), (1.1.2) and (1.1.4) then d is called a quasi metric and (X, d) is called a quasi metric space.
(iii) If d satisfies (1.1.2) and (1.1.4) then d is called a dislocated quasi metric or dq-metric and (X, d) is called a dislocated quasi metric space.
(iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space.
(v) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called a b-metric and (X, d) is called a b-metric space.
(vi) If d satisfies (1.1.4) and (1.1.5) then d is called a dislocated quasi b-metric and (X, d) is called a dislocated quasi b-metric space or dq-metric space.

Definition 1.2: Let (X, d) be a dq b-metric space. A sequence {x_n} in (X, d) is said to be
(i) dq b convergent if there exists some point x ∈ X such that \(\lim_{n \to \infty} d(x, x_n) = 0 = \lim_{n \to \infty} d(x_n, x) \).
In this case x is called a dq b-limit of \{x_n\} and we write \(x_n \to x \) as \(n \to \infty \).
(ii) Cauchy sequence if \(\lim_{n,m \to \infty} d(x_n, x_m) = 0 = \lim_{m \to \infty} d(x_m, x_n) \).
The space \((X, d)\) is called complete if every Cauchy sequence in \(X\) is \(d\)-\(b\)-convergent.

One can prove easily the following

Lemma 1.3: Let \((X, d)\) be a \(d\)-\(b\)-metric space and \(\{x_n\}\) be \(d\)-\(b\)-convergent to \(x\) in \(X\) and \(y \in X\) be arbitrary. Then

\[
\frac{1}{s}d(x, y) \leq \liminf_{n \to \infty} d(x_n, y) \leq \limsup_{n \to \infty} d(x_n, y) \leq s(d(x, y) \quad \text{and} \quad \frac{1}{s}d(y, x) \leq \liminf_{n \to \infty} d(y, x_n) \leq \limsup_{n \to \infty} d(y, x_n) \leq s(d(x, y)).
\]

Note: \(\frac{1}{s}d(x, y) \leq \max\{d(x, z), d(z, y)\} \forall x, y, z \in X.\)

Definition 1.4: [6] Let \(X\) be a non-empty set and \(S, T: X \to X\) be given self maps on \(X\). The pair \((S, T)\) is said to be weakly compatible if \(STx = TSx\) whenever there exists \(x \in X\) such that \(Sx = Tx\).

Definition 1.5: [2] Let \(X\) be a non-empty set and \(f, g: X \to X\) be mappings. If there exists \(x \in X\) such that \(fx = gx\). Then \(x\) is called a Coincidence point of \(f\) and \(g\) and \(fx\) is called a point of Coincidence of \(f\) and \(g\).

Now we prove our main result.

2. MAIN RESULT

We need the following definition

Definition 2.1: For the fixed constant \(s \geq 1\), let \(\Phi_s\) denote the set of all functions \(\phi: [0, \infty) \to [0, \infty)\) satisfying the following

\((\phi_1)\) : \(\phi\) is monotonically non-decreasing ,

\((\phi_2)\): \(\sum_{n=1}^{\infty} s^n \phi^n(t) < \infty\) for all \(t > 0\),

\((\phi_3)\) : \(\phi(t) < t\) for \(t > 0\).

Clearly \((\phi_1)\) and \((\phi_3)\) implies \(\phi(0) = 0\).

Theorem 2.2: Let \((X, d)\) be a complete dislocated quasi \(b\)-metric space with fixed constant \(s \geq 1\) and \(f, g, S, T: X \to X\) be continuous mappings satisfying

\[
(2.2.1) \quad d(fx, gy) \leq \phi \left(\max \left\{ d(Sx, Ty), \frac{1}{2s}d(Sx, fx), \frac{1}{2s}d(Ty, gy), \frac{1}{2s}d(Sy, gy), \frac{1}{2s}d(Tx, fx) \right\} \right)
\]

\(\forall x, y \in X\), where \(\phi \in \Phi_s\),

\[
(2.2.2) \quad d(gx, fy) \leq \phi \left(\max \left\{ d(Tx, Sy), \frac{1}{2s}d(Tx, gx), \frac{1}{2s}d(Sy, fy), \frac{1}{2s}d(Sy, gx), \frac{1}{2s}d(Tx, fy) \right\} \right)
\]

\(\forall x, y \in X\), where \(\phi \in \Phi_s\),

\[
(2.2.3) \quad f(X) \subseteq T(X) \quad \text{and} \quad g(X) \subseteq S(X).
\]

\[
(2.2.4) \quad fS = SF \quad \text{and} \quad gT = TG.
\]

Then \(f, g, S\) and \(T\) have a unique common fixed point in \(X\).

Proof: Let \(x_0 \in X\).

Define \(y_{2n} = f x_{2n} = Tx_{2n+1}, y_{2n+1} = g x_{2n+1} = Sx_{2n+2}, \quad n=0,1,2,\ldots\)

Case-(i): Suppose \(\max \{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\} = 0\) for some \(n\).

Without loss of generality assume that \(n=2m\).

Then \(y_{2m+1} = y_{2m}\).

Using \((2.2.1), (2.2.2)\) and \((\phi_1)\), we get

\[
d(y_{2m}, y_{2m+1}) = d(fx_{2m}, gx_{2m+1})
\]

\[
\leq \phi \left(\max \left\{ \max \{d(y_{2m-1}, y_{2m}), d(y_{2m}, y_{2m+1})\}, \frac{1}{2s}d(y_{2m-1}, y_{2m}), \frac{1}{2s}d(y_{2m}, y_{2m+1}), \frac{1}{2s}d(y_{2m}, y_{2m+1}) \right\} \right),
\]

from Note

\[
= \phi \left(\max \left\{ d(y_{2m-1}, y_{2m}), d(y_{2m}, y_{2m+1}) \right\} \right).
\]

© 2018, IJMA. All Rights Reserved
and
\[d(y_{2m+1}, y_{2m}) = d(gx_{2m+1}, fx_{2m}) \]
\[\leq \phi(\max\{d(y_{2m}, y_{2m-1}), y_{2m-1}, d(y_{2m}, y_{2m+1}), y_{2m+1}\}) \]
\[\leq \phi(\max\{d(y_{2m-1}, y_{2m}), d(y_{2m}, y_{2m+1}), y_{2m-1}, y_{2m+1}\}) \]
\[= \phi(\max\{d(y_{2m}, y_{2m-1}), d(y_{2m-1}, y_{2m}), d(y_{2m}, y_{2m+1}), d(y_{2m+1}, y_{2m})\}) \]

Thus
\[\max\{d(y_{2m}, y_{2m+1}), d(y_{2m+1}, y_{2m})\} \leq \phi(\max\{d(y_{2m-1}, y_{2m}), d(y_{2m}, y_{2m+1})\}) \]

From (1.1) and (1.1.2), we have \(y_{2m} = y_{2m+1} \). Thus \(y_{2m+1} = y_{2m+2} \).

Continuing in this way we have
\[y_{2m-1} = y_{2m} = y_{2m+1} = \cdots \]

Thus \(y_{n-1} = y_n = y_{n+1} = \cdots \)

Hence \(\{y_n\} \) is a constant Cauchy sequence.

Case-(ii): suppose \(\max\{d(y_n, y_{n+1}), d(y_{n+1}, y_n)\} \neq 0 \) for all \(n \).

As in (1), we have
\[\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n})\} \leq \phi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\}) \]

If \(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\} \leq 0 \), then from (2), using (\(\phi_3 \)), we get
\[\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n})\} = 0, \text{ which is a contradiction to Case (ii).} \]

Hence \(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\} > \max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n})\} \).

Now from (2), \(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n})\} \leq \phi(\max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1})\}) \)

This is true for \(n = 1, 2, 3, \ldots \)

Hence \(\max\{d(y_n, y_{n+1}), d(y_{n+1}, y_n)\} \leq \phi(\max\{d(y_{n-1}, y_n), d(y_n, y_{n+1})\}) \)

\[\cdots \cdots \cdots \]

\[\leq \phi(\max\{d(y_0, y_1), d(y_1, y_0)\}) \]

Now for all positive integers \(n \) and \(p \), consider, using (4),
\[d(y_{np}, y_{np+1}) \leq s^p d(y_{np}, y_{np+1}) + s^{p+1} d(y_{np+1}, y_{np+2}) + \ldots + s^{np+1} d(y_{np+p}, y_{np+p+1}) \]

since \(s^p \phi(t) \) converges for all \(t > 0 \).

Thus we have \(\lim_{n \to \infty} d(y_n, y_{n+p}) = 0 \).

Therefore, we have \(\lim_{n \to \infty} d(y_n, y_{n+p}) = 0 \).

Also using (4), we have
\[d(y_{np+1}, y_{np+2}) \leq s^p d(y_{np+1}, y_{np+2}) + s^{p+1} d(y_{np+2}, y_{np+3}) + \ldots + s^{np+1} d(y_{np+p}, y_{np+p+1}) + s^{np+2} d(y_{np+p+1}, y_{np+p+2}) \]

since \(s^p \phi(t) \) converges for all \(t > 0 \).

Hence we have \(\lim_{n \to \infty} d(y_{np+1}, y_{np+2}) = 0 \).
Thus \(\{y_n\} \) is a Cauchy sequence in \(X \).

Since \(X \) is a complete dislocated quasi b – metric space, there exists \(z \in X \) such that \(\{y_n\} \) converges to \(z \).

Since \(S \) and \(f \) are continuous and \(Sf = fS \), we have

\[
S_z = \lim_{n \to \infty} Sy_{2n} = \lim_{n \to \infty} Sfx_{2n} = \lim_{n \to \infty} fy_{2n-1} = fz.
\]

Similarly, since \(T \) and \(g \) are continuous and \(Tg = gT \), we have \(Tz = gz \).

Using (2.2.1), (2.2.2), \((\varphi_1)\) and Note, we get

\[
d(Sz, Tz) = d(fz, gz) \leq \varphi\left(\max\left\{d(Sz, Sz), \frac{1}{2s}d(Sz, Tz), \frac{1}{2s}d(Tz, Sz), \frac{1}{2s}d(Sz, Sz) \right\} \right)
\]

which in turn yields from \((\varphi_3)\) and (1.1.2) that \(Sz = Tz \).

Let \(\alpha = Sz = Tz \). Then \(S\alpha = S(Sz) = S(fz) = f(Sz) = f\alpha \) and \(T\alpha = T(Tz) = T(gz) = g(Tz) = g\alpha \).

Now using (2.2.1), (2.2.2), \((\varphi_1)\) and from Note, we have

\[
d(S\alpha, \alpha) = d(f\alpha, gz) \leq \varphi\left(\max\left\{d(S\alpha, \alpha), \frac{1}{2s}d(S\alpha, S\alpha), \frac{1}{2s}d(\alpha, \alpha), \frac{1}{2s}d(S\alpha, \alpha), \frac{1}{2s}d(\alpha, S\alpha) \right\} \right)
\]

which in turn yields from \((\varphi_3)\) and (1.1.2) that \(S\alpha = \alpha \).

Similarly we can show that \(T\alpha = \alpha \).

Hence \(\alpha \) is a common fixed point of \(f, g, S \) and \(T \).

One can prove the uniqueness of common fixed point of \(f, g, S \) and \(T \) using (2.2.1) and (2.2.2).

Now we give an example to illustrate the Theorem 2.2.

Example 2.3: Let \(X = [0, 1] \) and \(d(x, y) = (x+2y)^2 \).

Let \(f, g, S, T : X \to X \) be defined by \(fx = \frac{x}{8} \), \(gx = \frac{x}{12} \), \(Sx = \frac{x}{2} \) and \(Tx = \frac{x}{3} \).

Let \(\phi : [0, \infty) \to [0, \infty) \) be defined by \(\phi(t) = \frac{t}{4} \), for \(t \in [0, \infty) \).

Then it is clear that \(d(x, y) = d(y, x) = 0 \Rightarrow x = y \)

Also \(d(x, y) = (x+2y)^2 \leq [(x + 2z) + (z + 2y)]^2 \leq 2[(x + 2z)^2 + (z + 2y)^2] = s[d(x, z) + d(z, y)] \), where \(s = 2 \)

Thus \(d \) is a dislocated quasi b – metric with \(s = 2 \).

Consider \(d(fx, gy) = \left(\frac{x}{8} + \frac{2y}{12}\right)^2 = \left(\frac{3x + 4y}{24}\right)^2 = \left(\frac{x + 2y}{4}\right)^2 \).
\[
\begin{align*}
&= \frac{d(Sx, Ty)}{16} \\
&\leq \frac{1}{4} d(Sx, Ty) \\
&\leq \frac{1}{4} \max \left\{ d(Sx, Ty), \frac{1}{2s} d(Sx, fx), \frac{1}{2s} d(Ty, gy), \frac{1}{2s} d(Sx, gy), \frac{1}{2s} d(Ty, fx) \right\} \\
&= \phi \left(\max \left\{ d(Sx, Ty), \frac{1}{2s} d(Sx, fx), \frac{1}{2s} d(Ty, gy), \frac{1}{2s} d(Sx, gy), \frac{1}{2s} d(Ty, fx) \right\} \right).
\end{align*}
\]

Similarly we can show that
\[
d(gx, fy) \leq \phi \left(\max \left\{ d(Tx, Sy), \frac{1}{2s} d(Tx, gx), \frac{1}{2s} d(Sy, fy), \frac{1}{2s} d(Sy, gx), \frac{1}{2s} d(Tx, fy) \right\} \right).
\]

Clearly \(f(X) = [0, \frac{1}{8}] \subseteq [0, \frac{1}{3}] = T(X) \) and \(g(X) = [0, \frac{1}{12}] \subseteq [0, \frac{1}{2}] = S(X) \).

It is also clear that \(Sf = fS \) and \(Tg = gT \).

For \(t > 0 \),
\[
\text{Consider } \sum_{n=1}^{\infty} s^n \phi^n(t) = \sum_{n=1}^{\infty} \frac{1}{2n} \sum_{n=1}^{\infty} \frac{1}{4^n} = t \left(\frac{\frac{1}{2}}{1 - \frac{1}{4}} \right) = t < \infty.
\]

Thus all conditions of Theorem 2.2 are satisfied. Clearly 0 is the unique common fixed point of \(f \), \(g \), \(S \) and \(T \).

In the similar lines of proof of Theorem 2.2, we prove the following.

Theorem 2.4: Let \((X, d)\) be a complete dislocated quasi b-metric space with fixed constant \(s \geq 1 \) and \(f, g : X \to X \) be continuous mappings satisfying
\[
(2.4.1) \quad d(fx, gy) \leq \phi \left(\max \left\{ d(x, y), d(x, fx), d(y, gy), \frac{1}{2s} d(x, gy), \frac{1}{2s} d(y, fx) \right\} \right) \quad \forall x, y \in X, \text{ where } \phi \in \Phi_s,
\]
\[
(2.4.2) \quad d(gx, fy) \leq \phi \left(\max \left\{ d(x, y), d(x, gx), d(y, fy), \frac{1}{2s} d(y, gx), \frac{1}{2s} d(x, fy) \right\} \right) \quad \forall x, y \in X, \text{ where } \phi \in \Phi_s.
\]

Then \(f \) and \(g \) have a unique common fixed point.

Proof: As in Theorem 2.2, we can show that \(\{x_n\} \) is convergent to \(z \in X \), where \(x_{2n+1} = fx_{2n} \), \(x_{2n+2} = gx_{2n+1} \), \(n = 0, 1, 2, \) and \(x_0 \in X \) is arbitrary.

Since \(f \) is continuous and \(x_n \to z \), we have
\[
z = \lim_{n \to \infty} x_{2n+1} = \lim_{n \to \infty} fx_{2n} = f \left(\lim_{n \to \infty} x_n \right) = fz.
\]

Similarly, since \(g \) is continuous we have \(z = gz \).

Thus \(z \) is a common fixed point of \(f \) and \(g \).

Consider \(d(z, z) = d(fz, gz) \leq \phi \left(\max \left\{ d(z, z), d(z, z), d(z, z), \frac{1}{2s} d(z, z), \frac{1}{2s} d(z, z) \right\} \right) = \phi(d(z, z)) \)

From (\(\phi \)) follows that \(d(z, z) = 0 \)

Thus \(d(z, z) = 0 \) whenever \(z \) is a common fixed point of \(f \) and \(g \).

Now suppose that \(w \) is another common fixed point of \(f \) and \(g \).

Then \(d(w, w) = 0 \).

Now consider \(d(z, w) = d(fz, gw) \)
\[
\leq \phi \left(\max \left\{ d(z, w), d(z, z), d(w, w), \frac{1}{2s} d(z, w), \frac{1}{2s} d(w, z) \right\} \right)
\]
and
\[
d(w, z) = d(gw, fz)
\leq \phi \left(\max \left\{ d(w, z), d(w, w), d(z, z), \frac{1}{2s} d(w, w), \frac{1}{2s} d(w, z) \right\} \right)
\leq \phi \left(\max \left\{ d(z, w), d(w, z) \right\} \right).
\]
Hence \(\max\{d(z, w), d(w, z)\} \leq \phi(\max\{d(z, w), d(w, z)\})\)

which in turn yields from \((\phi_1)\) and \((1.1.2)\) that \(w = z\).

Hence \(z\) is the unique common fixed point of \(f\) and \(g\).

Theorem 2.5: Let \((X, d)\) be a complete dislocated quasi b-metric space with fixed constant \(s \geq 1\) and \(f, g : X \to X\) be continuous mappings satisfying

\[
(2.5.1) \quad d(fx, fy) \leq \phi\left(\max\left\{d(gx, gy), d(gx, fx), d(gy, fy), \frac{1}{2s}d(gx, fy), \frac{1}{2s}d(gy, fx)\right\}\right) \quad \forall \ x, y \in X, \text{ where } \phi \in \Phi_s,
\]

\[(2.5.2) \quad f(X) \subseteq g(X) \text{ and } fg = gf.\]

Then \(f\) and \(g\) have a unique common fixed point.

Proof: As in Theorem 2.2, we can show that \(\{gx_n\}\) is convergent to \(z \in X\), where \(fx_n = gx_{n+1}, n = 0, 1, 2, \ldots\) and \(x_0 \in X\) is arbitrary.

Since \(f\) and \(g\) are continuous and \(fg = gf\), we have \(fz = \lim_{n \to \infty} fgx_n = \lim_{n \to \infty} gfx_n = gz\).

Thus \(fz\) is a point of coincidence of \(f\) and \(g\).

Consider \(d(fz, fz) \leq \phi\left(\max\left\{d(fz, fz), d(fz, fz), d(fz, fz), \frac{1}{2s}d(fz, fz), \frac{1}{2s}d(fz, fz)\right\}\right) = \phi(d(fz, fz))\)

which in turn yields from \((\phi_3)\) that \(d(fz, fz) = 0\).

Thus if \(fz\) is a point of coincidence of \(f\) and \(g\) then \(d(fz, fz) = 0\).

Suppose \(fw\) is another point of coincidence of \(f\) and \(g\) then \(d(fw, fw) = 0\).

From \((2.5.1)\) and \((\phi_1)\), we have

\[
d(fz, fz) \leq \phi\left(\max\left\{d(fz, fz), d(fz, fz), d(fw, fw), \frac{1}{2s}d(fz, fz), \frac{1}{2s}d(fw, fz)\right\}\right)
\]

and

\[
d(fw, fz) \leq \phi\left(\max\left\{d(fw, fz), d(fw, fw), d(fz, fz), \frac{1}{2s}d(fw, fz), \frac{1}{2s}d(fz, fw)\right\}\right)
\]

Thus we obtain

\[
\max\{d(fz, fz), d(fw, fz)\} \leq \phi(\max\{d(fz, fz), d(fw, fz)\})
\]

which in turn yields from \((\phi_1)\) and \((1.1.2)\) that \(fz = fw\).

Thus \(fz\) is the unique point of coincidence of \(f\) and \(g\).

Let \(\alpha = fz = gz\).

Since \(fg = gf\) we have \(f\alpha = fgz = gfz = g\alpha\).

Hence \(f\alpha\) is a point of coincidence of \(f\) and \(g\).

Thus \(fz = f\alpha\) which implies that \(\alpha = f\alpha = g\alpha\).

Hence \(\alpha\) is a common fixed point of \(f\) and \(g\).

Suppose \(\beta\) is another common fixed point of \(f\) and \(g\).

That is \(\beta = f\beta = g\beta\).

Hence \(f\beta\) is a point of coincidence of \(f\) and \(g\).

But \(fz\) is the unique point of coincidence of \(f\) and \(g\).

Hence \(f\beta = fz\) which implies that \(\beta = \alpha\).

Thus \(\alpha\) is the unique common fixed point of \(f\) and \(g\).
Corollary 2.6: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant $s \geq 1$ and $f : X \to X$ be continuous mapping satisfying

$$(2.6.1) \quad d(fx, fy) \leq \phi \left(\max \left\{ d(x, y), d(x, fx), d(y, fy), \frac{1}{2s}d(x, fy), \frac{1}{2s}d(y, fx) \right\} \right) \quad \forall x, y \in X,$$

where $\phi \in \Phi_s$.

Then f have a unique common fixed point in X.

Proof: It follows from Theorem 2.5.

Now by replacing the continuities of all mappings and completeness of space X by weakly compatibility pairs of mappings and completeness of one of subspace and using some other contractive conditions, we prove a common fixed point theorem for four maps in dislocated quasi b-metric spaces. Actually we prove the following Theorem.

Theorem 2.7: Let (X, d) be a dislocated quasi b-metric space with fixed constant $s \geq 1$ and $f, g, S, T : X \to X$ be mappings satisfying

$$(2.7.1) \quad d(fx, gy) \leq \phi \left(\frac{1}{2s} \max \left\{ d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx) \right\} \right) \quad \forall x, y \in X,$$

$$(2.7.2) \quad d(gx, fy) \leq \phi \left(\frac{1}{2s} \max \left\{ d(Tx, Sy), d(Tx, gx), d(Sy, fy), d(Sy, gx), d(Tx, fy) \right\} \right) \quad \forall x, y \in X,$$

$$(2.7.3) \quad f(X) \subseteq T(X) \quad \text{and} \quad g(X) \subseteq S(X),$$

$$(2.7.4) \quad \text{One of } S(X) \text{ and } T(X) \text{ is a complete subspace of } X \quad \text{and}$$

$$(2.7.5) \quad \text{The pairs } (f, S) \text{ and } (g, T) \text{ are weakly compatible.}$$

Then f, g, S and T have a unique common fixed point in X.

Proof: As in proof of Theorem 2.2 the sequence $\{y_n\}$ is Cauchy in X, where $y_{2n} = fx_{2n} = Tx_{2n+1}$ and $y_{2n+1} = gx_{2n+1} = Sx_{2n+2}, n = 0, 1, 2,...$.

Suppose $S(X)$ is complete subspace of X.

Since $y_{2n+1} = Sx_{2n+2} \subseteq SX$, there exist $z, u \in X$ such that $y_{2n+1} \rightharpoonup z = Su$.

By Lemma 1.3, (2.7.1), (ϕ_1) and continuity of ϕ, we get

$$\frac{1}{s}d(fu, z) \leq \liminf_{n \to \infty} d(fu, gx_{2n+1}) \leq \liminf_{n \to \infty} \phi \left(\frac{1}{2s} \max \left\{ d(z, y_{2n}), d(z, fu), d(y_{2n}, y_{2n+1}), d(z, y_{2n+1}), d(y_{2n}, fu) \right\} \right)$$

$$\leq \liminf_{n \to \infty} \phi \left(\frac{1}{2s} \max \left\{ 0, d(z, fu), 0, 0, d(z, fu) \right\} \right) \leq \phi \left(\frac{1}{s}d(z, fu) \right) \leq \phi \left(\frac{1}{s} \max \left\{ d(z, fu), d(fu, z) \right\} \right) \quad (1)$$

Also we can show that $\frac{1}{s}d(z, fu) \leq \phi \left(\frac{1}{s} \max \left\{ d(z, fu), d(fu, z) \right\} \right) \quad (2)$

From (1) and (2) $\frac{1}{s} \max \left\{ d(fu, z), d(z, fu) \right\} \leq \phi \left(\frac{1}{s} \max \left\{ d(z, fu), d(fu, z) \right\} \right)$

which in turn yields from (ϕ_1) and (1.1.2) that $fu = z$. Thus $Su = z = fu$.

Since (f, S) is weakly compatible, we have $Sz = S(Su) = S(fu) = f(Su) = fz$.

By Lemma 1.3, (2.7.1), (ϕ_1) and continuity of ϕ, we obtain

$$\frac{1}{s}d(Sz, z) = \frac{1}{s}d(fz, z) \leq \liminf_{n \to \infty} d(fz, gx_{2n+1}) \leq \liminf_{n \to \infty} \phi \left(\frac{1}{2s} \max \left\{ d(Sz, y_{2n}), d(Sz, Sz), d(y_{2n}, y_{2n+1}), d(Sz, y_{2n+1}), d(y_{2n}, Sz) \right\} \right)$$

$$\leq \liminf_{n \to \infty} \phi \left(\frac{1}{2s} \max \left\{ d(Sz, y_{2n}), 2s \max \left\{ d(Sz, z), d(z, Sz) \right\}, 2s \max \left\{ d(y_{2n}, z), d(z, y_{2n+1}) \right\} \right\} \right) \right) \leq \phi \left(\frac{1}{s} \max \left\{ d(Sz, z), 2s \max \left\{ d(Sz, z), d(z, Sz) \right\}, 0, 0, d(Sz, z), d(z, Sz) \right\} \right)$$

$$\leq \phi \left(\frac{1}{s} \max \left\{ d(Sz, z), d(z, Sz) \right\} \right) \quad (3)$$
Also we can show that \(\frac{1}{s} d(z, Sz) \leq \phi \left(\frac{1}{s} \max \{d(Sz, z), d(z, Sz)\} \right) \) \hspace{1cm} (4)

From (3) and (4), \(\frac{1}{s} \max \{d(Sz, z), d(z, Sz)\} \leq \phi \left(\frac{1}{s} \max \{d(Sz, z), d(z, Sz)\} \right) \)

which in turn yields from (\(\phi \)) and (1.1.2) that \(Sz = z \).

Thus \(Sz = z = fz \). \hspace{1cm} (5)

Since \(f(X) \subseteq T(X) \), there exists \(\alpha \in X \) such that \(T\alpha = fz \).

From (2.7.1) and (\(\phi \)) we have

\[
\begin{align*}
d(T\alpha, g\alpha) &= d(fz, g\alpha) \\
&\leq \phi \left(\frac{1}{2s} \max \{d(T\alpha, T\alpha), d(T\alpha, g\alpha), d(T\alpha, T\alpha)\} \right) \\
&\leq \phi \left(\frac{1}{2s} \max \{d(T\alpha, g\alpha)\} \right) \\
&\leq \phi \left(\frac{1}{2s} \max \{2s \max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\}\} \right) \\
&\leq \phi \left(\frac{1}{s} \max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \right) \\
&\leq \phi \left(\max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \right) \\
&\leq \phi \left(\phi \left(\max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \right) \right) \hspace{1cm} (6)
\end{align*}
\]

Similarly we have \(d(g\alpha, T\alpha) \leq \phi \left(\max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \right) \) \hspace{1cm} (7)

From (6) and (7), \(\max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \leq \phi \left(\max \{d(T\alpha, g\alpha), d(g\alpha, T\alpha)\} \right) \)

which in turn yields from (\(\phi \)) and (1.1.2) that \(T\alpha = g\alpha \).

Thus \(g\alpha = z = T\alpha \).

Since \((g, T) \) is a weakly compatible pair, we have \(gz = Tz \).

From (2.7.1) and (\(\phi \)) we have

\[
\begin{align*}
d(z, gz) &= d(fz, gz) \\
&\leq \phi \left(\frac{1}{2s} \max \{d(z, gz), d(z, z), d(gz, gz), d(z, gz), d(gz, z)\} \right) \\
&\leq \phi \left(\frac{1}{2s} \max \{d(z, gz), 2s \max \{d(z, gz), d(gz, z)\}, 2s \max \{d(gz, z), d(z, gz)\}\} \right) \\
&\leq \phi \left(\frac{1}{s} \max \{d(z, gz), d(gz, z)\} \right) \\
&\leq \phi \left(\max \{d(z, gz), d(gz, z)\} \right) \hspace{1cm} (8)
\end{align*}
\]

Similarly we have \(d(gz, z) \leq \phi \left(\max \{d(gz, z), d(z, gz)\} \right) \) \hspace{1cm} (9)

From (8) and (9), \(\max \{d(z, gz), d(gz, z)\} \leq \phi \left(\max \{d(gz, z), d(z, gz)\} \right) \)

which in turn yields from (\(\phi \)) and (1.1.2) that \(gz = z \).

Hence \(Tz = gz = z \) \hspace{1cm} (10)

From (5) and (10) we have \(fz = Sz = z = Tz = gz \).

Thus \(z \) is a common fixed point of \(f, g, S \) and \(T \).

The uniqueness of common fixed point follows easily from (2.7.1) and (2.7.2).

Now we provide the following example to support our Theorem 2.7

Example 2.8: Let \(X = [0, 1] \) and \(d(x, y) = (x + 2y)^2 \).

Let \(f, g, S, T : X \to X \) be defined by \(fx = \frac{x^2}{16} \), \(gx = \frac{x^2}{24} \), \(Sx = \frac{x^2}{2} \) and \(Tx = \frac{x^2}{3} \).

Let \(\phi : [0, \infty) \to [0, \infty] \) be defined by \(\phi(t) = \frac{t}{\theta} \), for \(t \in [0, \infty) \).
As in Example 2.3, \(d \) is a dislocated quasi \(b \)– metric with \(s = 2 \).

Consider
\[
\begin{align*}
d(fx, gy) &= \left(\frac{x^2}{16} + \frac{2y^2}{24} \right)^{\frac{2}{2}} \\
&= \left(3x^2 + 4y^2 \right)^{\frac{2}{6 \times 8}} \\
&= \left(\frac{x^2 + 2y^2}{8} \right)^{\frac{2}{8}} \\
&= d(Sx, Ty)^{\frac{1}{2}} \\
&\leq \frac{1}{2s^2} \max\{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)\} \\
&= \phi \left(\frac{1}{2s^2} \max\{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)\} \right).
\end{align*}
\]

Thus (2.7.1) is satisfied.

Clearly one can verify the remaining conditions (2.7.2), (2.7.3), (2.7.4) and (2.7.5).

Clearly 0 is the unique common fixed point of \(f, g, S \) and \(T \).

REFERENCES

7. C.Eam and C.Suanoom, Dislocated quasi-\(b \)-metric spaces and fixed point theorems for cyclic contractions, Fixed point theory and applications, 2015, (2015), 12 pages.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]