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ABSTRACT 

 

In this paper we present a solution of the problem related to the construction of ovoids in Q
+
 (7, q), see [1].  For this 

purpose we use the point-line geometry D4,2(q) as an isomorphic to the finite classical polar space Q
+
(7,q) (�

+
(8,q)).  

Further, an upper bounds for the size of ovoids in Q
+
 (7, q) is obtained. 
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1.  INTRODUCTION: 

 

Many authors interested in the existence and non-existence of ovoids in finite  classical polar spaces.  In [2] Thas 

proved that Q-(2n+1,q), n>2, has no ovoid.  In [4] the nonsingular hyperbolic quadric Q+(5, q) has an ovoid, and under 

a certain condition Q+(7, q) has an ovoid. In this paper we construct an ovoid for Q+(7, q) by using the correspondence 

between the point–line geometry D4,2(q) and the hyperbolic classical polar spaces �+(8, q), see [5].  For the 

isomorphism between the non singular hyperbolic quadrics Q+ (7, q) and the classical polar space �+ (8, q), see [3].  

Further we present an upper pound for the ovoid.   

 

Basic definitions. 

 

Let P be a finite classical polar spaces of rank r � 2.  An ovoid O of P is a pointset of P, which has exactly one point in 

common with every maximal totally isotropic subspace or maximal singular subspace of P, see [4]. 

 

The following definitions can be found in [6]. 

 

A given set I, a geometry Γ over I is an ordered triple Γ= (X,�, D), where X is a set, D is a partition {Xi} of X indexed 

by I, Xi are called components, � is a symmetric and reflexive relation on X called incidence relation such that: A 

point-line geometry (P, L) is simply a geometry for which �I� = 2, one of the two types is called points, in this notation 

the points are the members of P and the other type is called lines. Lines are the members of L. If p∈P and l∈L, then 

p∗ l if and only if p∈l. In point-line geometry (P, L), it's said that two points of P are collinear if and only if they are 

incident with a common line. 

 

A subspace of a point-line geometry Γ = (P, L) is a subset X⊆P such that any line which has at least two of its incident 

points in X has all of its incident points in X. A hyperplane of point line geometry is a proper subspace meets each line 

in at least one point. �X� means the intersection over all subspaces containing X, where X ⊆ P. Lines incident with 

more than two points are called thick lines, but those incident with exactly two points are called thin lines. 

 

x⊥ means a set of all points in P collinear with x, including x itself. A clique of P is a set of points in which every pair 

of points are collinear. A partial linear space is a point-line geometry (P, L), in which every pair of points are incident 

with at most one line and all lines have cardinality at least 2. A point line geometry Γ = (P, L) is called singular or 

(linear) if every pair of points is incident with a unique line. 

 

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there is a chain of distinct subspaces 

∅ ≠ X0 ⊂ X1⊂...⊂Xn such that Xi is singular  for  each i, Xi ≠ Xj , i ≠ j , for example rank (∅) = -1, rank({p}) = 0 where 

p is a point and rank(L) = 1 where L a line. 
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In a point-line geometry Γ = (P, L), a path of length n is a sequence of n+1 (x0, x1,.., xn) where, (xi,xi+1) are collinear, x0 

is the initial point and xn is the end point. A geodesic from a point x to a point y is a path of minimal possible length 

with initial point x and end point y. This length is denoted by dΓ (x, y). Diameter of Γ is the maximal distance between 

the points of Γ, i.e, diameter (Γ) = maximum {d(x, y), x, y∈Γ}. A geometry Γ is called connected if and only if for any 

two of its points are connected by a bath. A subset X of P is said to be convex if X contains all points of all geodesics 

connecting two points of X. 

 

A polar space is a point-line geometry Γ=(P, L) satisfying the Buekenhout-Shult axiom: 

 

For each point-line pair (p, l) with p not incident with l; p is collinear with one or all points of l, that is �p⊥∩l�= 1 or 

else p⊥⊃l. Clearly this axiom is equivalent to saying that p⊥ is a geometric hyperplane of Γ for every point p∈ P. 

 

A point-line geometry Γ = (P, L) is called a projective plane only in case if satisfies the following conditions:  

 

(i)  Γ is a linear space; every two distinct points x, y in P lie exactly on one line 

(ii) Every two lines intersect in one point 

(iii) There are four points no three of them are on a line 

 

A point-line geometry Γ = (P, L) is called a projective space if the following conditions are satisfied: 

 

(i) Every two points lie exactly on one line  

(ii) If l1, l2 are two lines l1∩l2
≠ ∅, then �l1, l2� is a projective plane. (�l1,l2� means the smallest subspace of Γ containing 

l1 and l2.) 

 

A point-line geometry Γ = (P, L) is called a parapolar space only in case it satisfies the following properties: 

 

(i) Γ is a connected gamma space 

(ii) for every line l, l⊥ s not a singular subspace 

(iii) for every pair of non-collinear points x, y; x⊥ ∩ y⊥ is either empty, a single point, or a non-degenerate polar space 

of rank at least 2 

 

If x, y are distinct points in P and if �x⊥ ∩ y⊥�= 1, then (x, y) is called a special pair and if x⊥ ∩ y⊥ is a polar space, 

hence (x, y) is called a polar pair (or a symplectic pair). A parapolar space is called a strong parapolar space if it has no 

special pairs. 

 

Now we present a definition and the construction of the point-line geometry D4,2(q) to be isomorphic to the hyperbolic 

classical polar space �+(8, q). 

 

Construction of D4,2(q) 

 

 

     

 

 

 

 

 

 

 

 

The geometry D4,2 was defined as an isomorphic to the classical polar space ∆=Ω+(8, F) that comes from a vector space 

of dimension 8 over a finite field  GF(q) with a symmetric bilinear form.  The set S1 consists of all totally isotropic 1-

dimentional subspaces of the vector space V and S2 consists of all totally 2-dimensional subspaces of V.  The two 

classes M1, M2 consist of maximal totally isotropic 4-dimensional subspaces.  Two 4-subspaces fall in the same class if 

their intersection is of even dimension.  Then the geometry D4,2 (F) is a point-line geometry (P, L), whose set of points 

P is corresponding to the class S2, and whose each line is corresponding to the totally isotropic (1, 4)-dimensional 

subspaces (A, B) and A⊆B.  A point C is incident with a line (A, B) if and only if A⊂C⊂B as a subspaces of V. 

 

To define the co linearity, let C1 and C2 be two point (the points are the T.I 2-spaces), then C1 is collinear to C2 if and 

only if the intersection of C1 and C2 is a T.I 1-dimensional space, C1∩C2 in addition to the complement of C1 and C2 

must form a T.I 3-dimensional space and then contained in a T.I 4-space.  The elements of the class M2 are 

corresponding to the class of geometries of type A3,2 that are convex polar spaces of rank 2 and then they represent  

D4,2(q)  

P 

M
 
2  

M1  

 

Polar space ∆∆∆∆  

S1 

L 

A3,2  

S2 
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symplecta in the geometry D4,2.  Then the symplecta of D4,2 (F) are the Grassmannians of type A3,2(F) that are 

corresponding to the collection of TI 4-dimensional spaces. 

 

Notation:  Let the map �: P→ V defined above, i.e., � (p) is the T.I. 2-dimensional subspace corresponding to the 

point p.  We will use � for the rest of the geometry; for example � (A3, 2) is the T.I. 4-dimensional subspace 

corresponding to a geometry of type A3,2.  The inverse map �-1 will be used for the inverse; for example �-1(C) is the 

point corresponding to the T.I. 2-dimensional subspace C. 

 

2. OLD RESULTS: 

 

Let V be a vector space over a finite field F=GF(q), q is a prime power.  The following are finite classical polar spaces: 

 

1- Symplectic Geometry Wn(q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces �x� 
of V for which B(x, x)=0, and L is the set of all 2-dimensional subspaces �x, y� for which B(x, y)=0, for a symplectic 

bilinear form B.  In this case n is even, the polar space is of rank n/2. 

 

2- Hypebolic Geometry Ω+(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces 

�x� of V for which B(x, x)=0, and L is the set of all 2-dimensional �x, y� for which B(x, y)=0, for a hyperbolic bilinear 

form B.  In this case n is even, the polar space is of rank n/2. 

 

3- Elliptic Geometry Ω-(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces �x� of 

V for which B(x, x)=0, and L is the set of all 2-dimensional �x, y� for which B(x, y)=0, for elliptic bilinear form B.  In 

this case n is even, the polar space is of rank (n/2)-1. 

 

4- Orthogonal Geometry Ω(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces 

�x� of V for which B(x, x)=0, and L is the set of all 2-dimensional �x, y� for which B(x, y)=0, for orthogonal bilinear 

form B.  In this case n is odd, the polar space is of rank n/2. 

 

5- Hermitian Geometry H+
n(q

2) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces �x� 
of V for which B(x, x)=0, and L is the set of all 2-dimensional �x, y� for which B(x, y)=0, for a Hermitian bilinear form 

B.  In this case n is odd, the polar space is of rank (n-1)/2. 

 

For the result to come it is useful to present the following theorems that determine the numbers of points and the 

maximal totally isotropic spaces.  For the proofs see [2]. 

 

2.1 Theorem: The numbers of points of the finite classical polar spaces are given by the following formulae: 

 

)1()1()( 2

2 −−= qqqW
n

n , 

)1()1()12( 2 −−=+Ω qqn
n

, 

)1()1)(1(),2( 1 −−+=Ω −+ qqqqn nn
, 

)1()1)(1(),2( 1 −+−=Ω −−
qqqqn

nn
, 

)1()1)(1(),2( 222 −+−=+ qqqqnH nn
. 

 

2.2 Theorem: The numbers of maximal totally singular subspaces of the finite classical polar spaces are given by the 

following formulae: 

),1(...)1)(1())(( 22

2 +++=� n

n qqqqW  

),1(...)1)(1()),12(( 12 +++=+Ω +� nqqqqn  

),1(...)1)(1(2)),2(( 2 +++=Ω� + nqqqqn  

),1(...)1)(1()),2(( 32 +++=Ω� − n
qqqqn  

).1(...)1)(1()),2(( 32 +++=� + nqqqqnH  

 

2.3 Proposition: [7]. The number of subspaces of dimension k in a vector space of dimension n over GF(q) is given by: 

)(...))(1(

)(...))(1(
1

1

−

−
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Remark: This number is called a Gaussian coefficient, and is denoted by: 

q
k

n
�
�

	
�



�
. 

 

2.4. Theorem: [7] Let V be equipped with a bilinear form then the number of Totally isotropic k-subspaces is the 

following: 

 

                                                   in the symplectic case W(2n,q).          

 

                                                   in the orthogonal case Ω(2n+1,q). 

 

 

                                                   in the hyperbolic case Ω+(2n,q). 

  

 

                                                   in the elliptic case Ω-(2n+2,q). 

 

 

 

The following theorem identifies the number of ovoids and spreads in the finite classical polar spaces.  For the proof of 

that theorem see [2]. 

 

2.5 Theorem: [2]  Let O be an ovoid and S be a spread of the finite classical polar space P.  Then 

,1),( 2/)1( +=== +n

n qSOqWPFor  

,1),,12( +==+Ω= nqSOqnPFor  

,1),,22( +==+Ω= + n
qSOqnPFor  

,1),,22( 1 +==+Ω= +− n
qSOqnPFor  

,1),,2( 12 +=== +n
qSOqnHPFor  

,1),,12( 122 +==+= +nqSOqnHPFor  

 

3.  THE MAIN RESULT: 

 

First we construct an ovoid in the classical polar space Ω+(8, q) by constructing an ovoid in the point-line geometry 

D4,2(q) (which is isomorphic to Ω+(8, q)) and then it is considered an ovoid to Q+(7, q) which is isomorphic to Ω+(8, q). 

 

3.1 Theorem: Let P be the set of points of the point-line geometry D4,2(q).  Then the set ∆�2(p) forms an ovoid of the 

geometry D4,2.  Where ∆�2(p) is the set of all points that are of distance at most 2 from the fixed point p, i.,e., ∆�2(p) = 

{x∈P: d(x, p)� 2}. 

 

Proof: Every maximal totally isotropic in Ω+(8, q) corresponds to a line l in D4,2, so to prove that ∆�2(p) represents 

ovoid all what to do is to show that every maximal totally isotropic 4-space has 2-space (corresponds to a point r in the 

line l) such that r∈∆�2(p).  Now the line l that is corresponding to the maximal totally isotropic 4-space is identified by 

the two points r and s such that Ψ(r) = <x1, x3> and Ψ(s) = <x2, x3> and let Ψ(p) = <y1, y2>. Now if Ψ(p)⊂ Ψ(l), then 

p∈l and p∈∆�2(p) (because d(p, p) = 0), so l ∩∆�2(p) � �.  If Ψ (p) is not contained in Ψ(l), then there are two cases: 

 

 1.  Ψ (l) ∩Ψ(p) = 1-sapace = <x>, x = x3 = y2.  If y1
⊥∩Ψ(l) = <x, x1, x2>, then <y1, x, x2> forms a TI 3-space and p is 

collinear to s. This means that s ∈∆∗
2(p) , then l ∩∆�2(p) � �. 

 

2.  Ψ (l) ∩Ψ(p) = 0-sapace. If y1
⊥∩Ψ(l) = <x3, x1, x2> and y2

⊥∩Ψ(l) = <x3, x1, u>, then there is a point q such that Ψ(q) 

= <x3, y2>.  Now since <y1, y2, x3> is a TI 3-space, the point q is collinear to the point sand since <y2, x3, x2> form TI  

 

3-spaces, the point q is collinear to the point p which means d (p, s) = 2. Then s ∈∆�2(p), so l ∩∆�2(p) � �. Then every 

maximal totally isotropic in Ω+(8, q) intersect the corresponding οf ∆�2(p) in exactly one 2-space. Which means that  

∆�2(p) corresponds to a void in Ω+(8, q) and then a void to Q+(7, q). 

 

Through the following theorem we present an upper pound for the ovoid that is corresponding to  ∆�2(p) in Q+(7, q). 
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3.2 Theorem.  For any ovoid of Q+(7, q), q is finite, we have; 

 

1)1()1( 221 +++≤ −
qqO

n
. 

 

Proof:  Let p a point such that the corresponding totally isotropic 2-space in Ω+(8, q) is  

Ψ (p) = <x1, x2>.   We give an upper pound for the number of point of the geometry that are at a distance at most 2.   

Let q be a point in the geometry such that Ψ(q) = <y1, y2>, then we have two cases: 

 

1- d(p, q)=1, then Ψ(p)∩ Ψ(q) = 1-space. Then the number of 2-space that intersect Ψ(p) in 1-space is equal the 

number of 1-space in the 2-space Ψ(p) and by Theorem 2.4 this number is given by the formula: 

 

∏
=

−−− ++=+�
�

	
�



� 0

0

11 ),1)(1()1(
1

2

i

nin

q

qqq  

 

i.,e.,  

)1()1( 1 ++≤ −
qqO

n
 

 

2- d(p, q)=2, then there is a point r such that  Ψ(r) ∩ Ψ�(p)=1-space and Ψ(r) ∩ Ψ(q)=1-space.  Then every 1-space in 

Ψ(r) ∩Ψ�(p) have (q+1) (qn -1+1) 1-spaces in Ψ(r) ∩ Ψ�(q). then the total number of ways such that Ψ(r) 

∩ Ψ�(p)=1-space and Ψ(r) ∩ Ψ(q)=1-space  is (q+1)2(qn-1+1)2.   Then the number of points q such that d(p, q)=2 is (q 

+1)2 (qn -1+1)2.   

i.,e., 

.)1()1( 221 ++≤ −
qqO

n
 

 

Now since p∈∆�2(p) (d(p, p)=0),  then 

� O� ≤ (qn -1 + 1)2 (q + 1)2 + 1. 
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