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ABSTRACT

In this paper we present a solution of the problem related to the construction of ovoids in Q* (7, q), see [1]. For this
purpose we use the point-line geometry Dy(q) as an isomorphic to the finite classical polar space Q*(7,q) (21(8,q)).
Further, an upper bounds for the size of ovoids in Q" (7, q) is obtained.
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1. INTRODUCTION:

Many authors interested in the existence and non-existence of ovoids in finite classical polar spaces. In [2] Thas
proved that Q" (2n+1,q), n>2, has no ovoid. In [4] the nonsingular hyperbolic quadric Q*(5, q) has an ovoid, and under
a certain condition Q*(7, q) has an ovoid. In this paper we construct an ovoid for Q*(7, q) by using the correspondence
between the point-line geometry Dy,(q) and the hyperbolic classical polar spaces Q*(8, q), see [5]. For the
isomorphism between the non singular hyperbolic quadrics Q* (7, q) and the classical polar space Q* (8, q), see [3].
Further we present an upper pound for the ovoid.

Basic definitions.

Let P be a finite classical polar spaces of rank r >2. An ovoid O of P is a pointset of P, which has exactly one point in
common with every maximal totally isotropic subspace or maximal singular subspace of P, see [4].

The following definitions can be found in [6].

A given set I, a geometry I over I is an ordered triple I'= (X, , D), where X is a set, D is a partition {X;} of X indexed
by I, X; are called components, . is a symmetric and reflexive relation on X called incidence relation such that: A
point-line geometry (P, L) is simply a geometry for which |T| = 2, one of the two types is called points, in this notation
the points are the members of P and the other type is called lines. Lines are the members of L. If pe P and 1le L, then
p*1if and only if pel. In point-line geometry (P, L), it's said that two points of P are collinear if and only if they are
incident with a common line.

A subspace of a point-line geometry I" = (P, L) is a subset XCP such that any line which has at least two of its incident
points in X has all of its incident points in X. A hyperplane of point line geometry is a proper subspace meets each line
in at least one point. (X) means the intersection over all subspaces containing X, where XSP. Lines incident with
more than two points are called thick lines, but those incident with exactly two points are called thin lines.

x* means a set of all points in P collinear with x, including x itself. A clique of P is a set of points in which every pair
of points are collinear. A partial linear space is a point-line geometry (P, L), in which every pair of points are incident
with at most one line and all lines have cardinality at least 2. A point line geometry I'= (P, L) is called singular or
(linear) if every pair of points is incident with a unique line.

The singular rank of a space I is the maximal number n (possibly o) for which there is a chain of distinct subspaces
D # Xgc X c...cX, such that X;is singular for each i, X;# X, i# ], for example rank (&) = -1, rank({p}) = 0 where
p is a point and rank(L) = 1 where L a line.
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In a point-line geometry I" = (P, L), a path of length n is a sequence of n+1 (X, Xy,.., X,) Where, (x;,X;;;) are collinear, X
is the initial point and x, is the end point. A geodesic from a point X to a point y is a path of minimal possible length
with initial point x and end point y. This length is denoted by dr (x, y). Diameter of I is the maximal distance between
the points of I, i.e, diameter (I') = maximum {d(x, y), X, yeI'}. A geometry I"is called connected if and only if for any
two of its points are connected by a bath. A subset X of P is said to be convex if X contains all points of all geodesics
connecting two points of X.

A polar space is a point-line geometry I'=(P, L) satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, 1) with p not incident with 1; p is collinear with one or all points of 1, that is | prl |=1or
else p'ol. Clearly this axiom is equivalent to saying that p* is a geometric hyperplane of I for every point pe P.

A point-line geometry I' = (P, L) is called a projective plane only in case if satisfies the following conditions:

(1) T'is a linear space; every two distinct points X, y in P lie exactly on one line
(ii) Every two lines intersect in one point
(iii) There are four points no three of them are on a line

A point-line geometry I' = (P, L) is called a projective space if the following conditions are satisfied:

(i) Every two points lie exactly on one line

(>ii) If 1;, 1, are two lines 1,1, # @, then (13, 1) is a projective plane. ({1;,1,) means the smallest subspace of I" containing
I, and 1,.)

A point-line geometry I" = (P, L) is called a parapolar space only in case it satisfies the following properties:

(1) I is a connected gamma space

(ii) for every line 1, I* s not a singular subspace

(iii) for every pair of non-collinear points x, y; X N y*is either empty, a single point, or a non-degenerate polar space
of rank at least 2

If x, y are distinct points in P and if | x* " y*|= 1, then (x, y) is called a special pair and if x* N y* is a polar space,
hence (x, y) is called a polar pair (or a symplectic pair). A parapolar space is called a strong parapolar space if it has no

special pairs.

Now we present a definition and the construction of the point-line geometry D,,(q) to be isomorphic to the hyperbolic
classical polar space Q*(8, q).

Construction of D4(q)

L
5105, @ M,
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Asp
Polar space A Dy2(q)

The geometry Dy, was defined as an isomorphic to the classical polar space A=Q*(8, F) that comes from a vector space
of dimension 8 over a finite field GF(q) with a symmetric bilinear form. The set S; consists of all totally isotropic 1-
dimentional subspaces of the vector space V and S, consists of all totally 2-dimensional subspaces of V. The two
classes M, M, consist of maximal totally isotropic 4-dimensional subspaces. Two 4-subspaces fall in the same class if
their intersection is of even dimension. Then the geometry Dy, (F) is a point-line geometry (P, L), whose set of points
P is corresponding to the class S,, and whose each line is corresponding to the totally isotropic (1, 4)-dimensional
subspaces (A, B) and AcB. A point C is incident with a line (A, B) if and only if AcCcB as a subspaces of V.

To define the co linearity, let C; and C, be two point (the points are the T.I 2-spaces), then C; is collinear to C, if and
only if the intersection of C; and C, is a T.I 1-dimensional space, C;NC, in addition to the complement of C; and C,
must form a T.I 3-dimensional space and then contained in a T.I 4-space. The elements of the class M, are
corresponding to the class of geometries of type Aj, that are convex polar spaces of rank 2 and then they represent
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symplecta in the geometry Ds,. Then the symplecta of D4, (F) are the Grassmannians of type Aj,(F) that are
corresponding to the collection of TI 4-dimensional spaces.

Notation: Let the map ¥: P— V defined above, i.e., ¥ (p) is the T.I. 2-dimensional subspace corresponding to the
point p. We will use ¥ for the rest of the geometry; for example ¥ (A; ,) is the T.I. 4-dimensional subspace
corresponding to a geometry of type Az,. The inverse map ¥ will be used for the inverse; for example ¥™'(C) is the
point corresponding to the T.I. 2-dimensional subspace C.

2. OLD RESULTS:
Let V be a vector space over a finite field F=GF(q), q is a prime power. The following are finite classical polar spaces:

1- Symplectic Geometry W,(q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces (x)
of V for which B(x, x)=0, and L is the set of all 2-dimensional subspaces (x, y) for which B(x, y)=0, for a symplectic
bilinear form B. In this case n is even, the polar space is of rank n/2.

2- Hypebolic Geometry Q*(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces
(x) of V for which B(x, x)=0, and L is the set of all 2-dimensional (x, y) for which B(x, y)=0, for a hyperbolic bilinear
form B. In this case n is even, the polar space is of rank n/2.

3- Elliptic Geometry Q'(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces (x) of
V for which B(x, x)=0, and L is the set of all 2-dimensional (X, y) for which B(x, y)=0, for elliptic bilinear form B. In
this case n is even, the polar space is of rank (n/2)-1.

4- Orthogonal Geometry Q(n, q) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces
(x) of V for which B(x, x)=0, and L is the set of all 2-dimensional (x, y) for which B(x, y)=0, for orthogonal bilinear
form B. In this case n is odd, the polar space is of rank n/2.

5- Hermitian Geometry H*,(q?) is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces (x)
of V for which B(x, x)=0, and L is the set of all 2-dimensional (x, y) for which B(x, y)=0, for a Hermitian bilinear form
B. In this case n is odd, the polar space is of rank (n-1)/2.

For the result to come it is useful to present the following theorems that determine the numbers of points and the
maximal totally isotropic spaces. For the proofs see [2].

2.1 Theorem: The numbers of points of the finite classical polar spaces are given by the following formulae:

W) = (@™ =D/(g=D),
|Q2n+1)|=(g"-D/(q-D).
Q" 2n,q)| = (g"" +1)g" =D/(g-1),
@ Cnq)| = (g -1(g" +D/(g-1),
[H*2n,q)| = (4" =D(g"™" +D/(g* -1).

2.2 Theorem: The numbers of maximal totally singular subspaces of the finite classical polar spaces are given by the
following formulae:

> W, () = (q+1)(@* +1) .. (g7 +D),
2@ +1,9)| = (@ +D(g" +1) ... (¢"" +1),
2@ 2n,)) = 2(q+D(g" +1) .. (¢" +1),
2@ 2n,g)| = (¢*+D(g" +1) .. (4" +1),
> (H @n,g"))| = (q+1(g +1) .. (q" +1).
2.3 Proposition: [7]. The number of subspaces of dimension k in a vector space of dimension n over GF(q) is given by:
(¢"-D¢"~q) - (g"—¢")

¢ -G~ - (¢" 4"
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n
Remark: This number is called a Gaussian coefficient, and is denoted by:

q

2.4. Theorem: [7] Let V be equipped with a bilinear form then the number of Totally isotropic k-subspaces is the
following:

o .
Jip; the symplectic case W(2n,q).
[T@™ 59

q9 2% in the orthogonal case Q(2n+1.g).

n
k
n —i
) H (g +1)
Hi ﬁ (qdn%hﬁ-hp}perbolic case Q'(2n,q).
k|
g =
"] gt cme @ anv2a),
k|1

i=0

The following theorem identifies the number of ovoids and spreads in the finite classical polar spaces. For the proof of
that theorem see [2].

2.5 Theorem: [2] Let O be an ovoid and S be a spread of the finite classical polar space P. Then
For P=W,(q), 0| =S| =¢""""? +1,

For P=Q(2n+1lq), |0|=|S|=¢"+1,
For P=Q'(2n+2,9), |0|=|S|=q¢"+L,
For P=Q (2n+2,9), |0|=|S|=¢""+1,
For P= H(2n,q), 0] =S| = ¢ +1,
For P=H(2n+1,q"), |0|=[S|=¢""+1,

3. THE MAIN RESULT:

First we construct an ovoid in the classical polar space Q*(8, q) by constructing an ovoid in the point-line geometry
D,,(q) (which is isomorphic to Q*(8, q)) and then it is considered an ovoid to Q*(7, q) which is isomorphic to Q*(8, q).

3.1 Theorem: Let P be the set of points of the point-line geometry D, ,(q). Then the set A (p) forms an ovoid of the
geometry Dy,. Where A »(p) is the set of all points that are of distance at most 2 from the fixed point p, i.,e., A »(p) =
{xeP:d(x, p)<2}.

Proof: Every maximal totally isotropic in Q*(8, q) corresponds to a line 1 in Dy, so to prove that A ,(p) represents
ovoid all what to do is to show that every maximal totally isotropic 4-space has 2-space (corresponds to a point r in the
line 1) such that re A »(p). Now the line I that is corresponding to the maximal totally isotropic 4-space is identified by
the two points r and s such that ¥(r) = <x;, x3> and ¥(s) = <x,, X5> and let ¥(p) = <y, y»>. Now if ¥(p)c ¥(), then
pel and pe A ,(p) (because d(p, p) = 0), so 1 NA »(p) # ¢. If ¥ (p) is not contained in (1), then there are two cases:

1. ¥ (1) n¥(p) = 1-sapace = <x>, X = X3=y,. If ylLr‘\‘P(l) = <X, X1, X»>, then <y, X, x,> forms a TI 3-space and p is
collinear to s. This means that s € A"(p) , then 1 NA"5(p) % ¢.

2. ¥ (I) "¥(p) = O-sapace. If y,""¥(1) = <xs, X, x> and y,"N¥(1) = <x3, X;, u>, then there is a point q such that ¥(q)
= <X3, y»>. Now since <y, y», x3> is a TI 3-space, the point q is collinear to the point sand since <y,, X3, X,> form TI

3-spaces, the point q is collinear to the point p which means d (p, s) = 2. Then s € A »(p), so 1 NA »(p) # ¢. Then every
maximal totally isotropic in Q*(8, q) intersect the corresponding of A"5(p) in exactly one 2-space. Which means that

A" 5(p) corresponds to a void in Q*(8, q) and then a void to Q*(7, q).

Through the following theorem we present an upper pound for the ovoid that is corresponding to A »(p) in Q*(7, q).
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3.2 Theorem. For any ovoid of Q*(7, q), q is finite, we have;

0] < (@" "+ D2 (g+ 1) +1.

Proof: Let p a point such that the corresponding totally isotropic 2-space in Q*(8, q) is
Y (p) = <xi, xo>. We give an upper pound for the number of point of the geometry that are at a distance at most 2.
Let q be a point in the geometry such that ¥(q) = <y, y»>, then we have two cases:

1- d(p, q)=1, then ¥(p)n W¥(q) = 1-space. Then the number of 2-space that intersect W(p) in 1-space is equal the
number of 1-space in the 2-space W¥(p) and by Theorem 2.4 this number is given by the formula:

2] o
[J H(q””’1 +1)=(g+D(g"" +1),

0| <(g""+1 (g+1)

2- d(p, q)=2, then there is a point r such that W¥(r) N W[(p)=1-space and ¥(r) N ¥(g)=1-space. Then every 1-space in
Y(r) "¥Y0L(p) have (g+1) (¢" 141 1-spaces in W(r) NWIl(g). then the total number of ways such that ¥(r)
N W (p)=1-space and ¥(r) N ¥(q)=1-space is (q+1)2(q“'1+1)2. Then the number of points q such that d(p, q)=2 is (g
+1)% (¢" '+ 1)

i..e.,

0| <(g"" +1)* (g +1)°.

Now since pe A »(p) (d(p, p)=0), then
lol<(@ " + D (g+ 1)+ 1.
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