Ovoids in the Hyperbolic Quadrics Q⁺ (7, q)

Abdelsalam Abou Zayda*

Mathematics Department, Alaqsa University, Gaza, Palestine

E-mail: zayda8@hotmail.com

(Received on: 14-05-11; Accepted on: 18-09-11)

ABSTRACT

In this paper we present a solution of the problem related to the construction of ovoids in Q^+ (7, q), see [1]. For this purpose we use the point-line geometry $D_{4,2}(q)$ as an isomorphic to the finite classical polar space Q^+ (7,q) (Q^+ (8,q)). Further, an upper bounds for the size of ovoids in Q^+ (7, q) is obtained.

Keywords: Finite classical polar spaces- ovoids-point-line geometry

2000 MSC: 05B25, 51E20.

1. INTRODUCTION:

Many authors interested in the existence and non-existence of ovoids in finite classical polar spaces. In [2] Thas proved that $Q^{-}(2n+1,q)$, n>2, has no ovoid. In [4] the nonsingular hyperbolic quadric $Q^{+}(5,q)$ has an ovoid, and under a certain condition $Q^{+}(7,q)$ has an ovoid. In this paper we construct an ovoid for $Q^{+}(7,q)$ by using the correspondence between the point–line geometry $D_{4,2}(q)$ and the hyperbolic classical polar spaces $\Omega^{+}(8,q)$, see [5]. For the isomorphism between the non singular hyperbolic quadrics $Q^{+}(7,q)$ and the classical polar space $\Omega^{+}(8,q)$, see [3]. Further we present an upper pound for the ovoid.

Basic definitions.

Let P be a finite classical polar spaces of rank $r \ge 2$. An ovoid O of P is a pointset of P, which has exactly one point in common with every maximal totally isotropic subspace or maximal singular subspace of P, see [4].

The following definitions can be found in [6].

A given set I, a geometry Γ over I is an ordered triple $\Gamma = (X,_{\square}, D)$, where X is a set, D is a partition $\{X_i\}$ of X indexed by I, X_i are called components, $_{\square}$ is a symmetric and reflexive relation on X called incidence relation such that: A point-line geometry (P, L) is simply a geometry for which |I| = 2, one of the two types is called points, in this notation the points are the members of P and the other type is called lines. Lines are the members of L. If $p \in P$ and $l \in L$, then p * 1 if and only if $p \in I$. In point-line geometry (P, L), it's said that two points of P are collinear if and only if they are incident with a common line.

A subspace of a point-line geometry $\Gamma = (P, L)$ is a subset $X \subseteq P$ such that any line which has at least two of its incident points in X has all of its incident points in X. A **hyperplane** of point line geometry is a proper subspace meets each line in at least one point. $\langle X \rangle$ means the intersection over all subspaces containing X, where $X \subseteq P$. Lines incident with more than two points are called thick lines, but those incident with exactly two points are called thin lines.

 x^{\perp} means a set of all points in P collinear with x, including x itself. A clique of P is a set of points in which every pair of points are collinear. A partial linear space is a point-line geometry (P, L), in which every pair of points are incident with at most one line and all lines have cardinality at least 2. A point line geometry $\Gamma = (P, L)$ is called singular or (linear) if every pair of points is incident with a unique line.

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there is a chain of distinct subspaces $\emptyset \neq X_0 \subset X_1 \subset ... \subset X_n$ such that X_i is singular for each $i, X_i \neq X_j$, $i \neq j$, for example rank $(\emptyset) = -1$, rank $(\{p\}) = 0$ where p is a point and rank (L) = 1 where L a line.

In a point-line geometry Γ = (P, L), a path of length n is a sequence of n+1 $(x_0, x_1, ..., x_n)$ where, (x_i, x_{i+1}) are collinear, x_0 is the initial point and x_n is the end point. A geodesic from a point x to a point y is a path of minimal possible length with initial point x and end point y. This length is denoted by $d_{\Gamma}(x, y)$. Diameter of Γ is the maximal distance between the points of Γ , i.e, diameter (Γ) = maximum $\{d(x, y), x, y \in \Gamma\}$. A geometry Γ is called connected if and only if for any two of its points are connected by a bath. A subset X of P is said to be convex if X contains all points of all geodesics connecting two points of X.

A polar space is a point-line geometry Γ =(P, L) satisfying the Buekenhout-Shult axiom:

For each point-line pair (p, l) with p not incident with l; p is collinear with one or all points of l, that is $|p^{\perp} \cap l| = 1$ or else $p^{\perp} \supset l$. Clearly this axiom is equivalent to saying that p^{\perp} is a geometric hyperplane of Γ for every point $p \in P$.

A point-line geometry $\Gamma = (P, L)$ is called a projective plane only in case if satisfies the following conditions:

- (i) Γ is a linear space; every two distinct points x, y in P lie exactly on one line
- (ii) Every two lines intersect in one point
- (iii) There are four points no three of them are on a line

A point-line geometry $\Gamma = (P, L)$ is called a projective space if the following conditions are satisfied:

- (i) Every two points lie exactly on one line
- (ii) If l_1 , l_2 are two lines $l_1 \cap l_2 \neq \emptyset$, then $\langle l_1, l_2 \rangle$ is a projective plane. ($\langle l_1, l_2 \rangle$ means the smallest subspace of Γ containing l_1 and l_2 .)

A point-line geometry $\Gamma = (P, L)$ is called a **parapolar space** only in case it satisfies the following properties:

- (i) Γ is a connected gamma space
- (ii) for every line l, l^{\perp} s not a singular subspace
- (iii) for every pair of non-collinear points x, y; $x^{\perp} \cap y^{\perp}$ is either empty, a single point, or a non-degenerate polar space of rank at least 2

If x, y are distinct points in P and if $|x^{\perp} \cap y^{\perp}| = 1$, then (x, y) is called a special pair and if $x^{\perp} \cap y^{\perp}$ is a polar space, hence (x, y) is called a polar pair (or a symplectic pair). A parapolar space is called **a strong** parapolar space if it has no special pairs.

Now we present a definition and the construction of the point-line geometry $D_{4,2}(q)$ to be isomorphic to the hyperbolic classical polar space $\Omega^+(8, q)$.

Construction of D_{4,2}(q)

The geometry $D_{4,2}$ was defined as an isomorphic to the classical polar space $\Delta = \Omega^+(8, F)$ that comes from a vector space of dimension 8 over a finite field GF(q) with a symmetric bilinear form. The set S_1 consists of all totally isotropic 1-dimensional subspaces of the vector space V and S_2 consists of all totally 2-dimensional subspaces of V. The two classes M_1 , M_2 consist of maximal totally isotropic 4-dimensional subspaces. Two 4-subspaces fall in the same class if their intersection is of even dimension. Then the geometry $D_{4,2}(F)$ is a point-line geometry (P, L), whose set of points P is corresponding to the class S_2 , and whose each line is corresponding to the totally isotropic (1, 4)-dimensional subspaces (A, B) and $A\subseteq B$. A point C is incident with a line (A, B) if and only if $A\subset C\subset B$ as a subspaces of V.

To define the co linearity, let C_1 and C_2 be two point (the points are the T.I 2-spaces), then C_1 is collinear to C_2 if and only if the intersection of C_1 and C_2 is a T.I 1-dimensional space, $C_1 \cap C_2$ in addition to the complement of C_1 and C_2 must form a T.I 3-dimensional space and then contained in a T.I 4-space. The elements of the class M_2 are corresponding to the class of geometries of type $A_{3,2}$ that are convex polar spaces of rank 2 and then they represent

Abdelsalam Abou Zayda*/Ovoids in the Hyperbolic Quadrics $Q^+(7,q)$ /IJMA-2(9), Sept.-2011, Page: 1657-1661 symplecta in the geometry $D_{4,2}$. Then the symplecta of $D_{4,2}$ (F) are the Grassmannians of type $A_{3,2}(F)$ that are corresponding to the collection of TI 4-dimensional spaces.

Notation: Let the map Ψ : $P \rightarrow V$ defined above, i.e., Ψ (p) is the T.I. 2-dimensional subspace corresponding to the point p. We will use Ψ for the rest of the geometry; for example Ψ ($A_{3, 2}$) is the T.I. 4-dimensional subspace corresponding to a geometry of type $A_{3,2}$. The inverse map Ψ^{-1} will be used for the inverse; for example $\Psi^{-1}(C)$ is the point corresponding to the T.I. 2-dimensional subspace C.

2. OLD RESULTS:

Let V be a vector space over a finite field F=GF(q), q is a prime power. The following are finite classical polar spaces:

- **1- Symplectic Geometry** $W_n(q)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x \rangle$ of V for which B(x, x)=0, and L is the set of all 2-dimensional subspaces $\langle x, y \rangle$ for which B(x, y)=0, for a symplectic bilinear form B. In this case n is even, the polar space is of rank n/2.
- **2- Hypebolic Geometry** $\Omega^+(n, q)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x \rangle$ of V for which B(x, x)=0, and L is the set of all 2-dimensional $\langle x, y \rangle$ for which B(x, y)=0, for a hyperbolic bilinear form B. In this case n is even, the polar space is of rank n/2.
- **3- Elliptic Geometry** $\Omega^{-}(n, q)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x \rangle$ of V for which B(x, x)=0, and L is the set of all 2-dimensional $\langle x, y \rangle$ for which B(x, y)=0, for elliptic bilinear form B. In this case n is even, the polar space is of rank (n/2)-1.
- **4- Orthogonal Geometry** $\Omega(n, q)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x \rangle$ of V for which B(x, x)=0, and L is the set of all 2-dimensional $\langle x, y \rangle$ for which B(x, y)=0, for orthogonal bilinear form B. In this case n is odd, the polar space is of rank n/2.
- **5- Hermitian Geometry** $H_n^+(q^2)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x \rangle$ of V for which B(x, x)=0, and L is the set of all 2-dimensional $\langle x, y \rangle$ for which B(x, y)=0, for a Hermitian bilinear form B. In this case n is odd, the polar space is of rank (n-1)/2.

For the result to come it is useful to present the following theorems that determine the numbers of points and the maximal totally isotropic spaces. For the proofs see [2].

2.1 Theorem: The numbers of points of the finite classical polar spaces are given by the following formulae:

$$\begin{aligned} \left|W_{2n}(q)\right| &= (q^{2n} - 1)/(q - 1)\,,\\ \left|\Omega(2n + 1)\right| &= (q^{2n} - 1)/(q - 1)\,,\\ \left|\Omega^{+}(2n, q)\right| &= (q^{n - 1} + 1)(q^{n} - 1)/(q - 1)\,,\\ \left|\Omega^{-}(2n, q)\right| &= (q^{n - 1} - 1)(q^{n} + 1)/(q - 1)\,,\\ \left|H^{+}(2n, q)\right| &= (q^{2n} - 1)(q^{2n} + 1)/(q^{2} - 1)\,. \end{aligned}$$

2.2 Theorem: The numbers of maximal totally singular subspaces of the finite classical polar spaces are given by the following formulae:

$$\begin{split} \left| \sum (W_{2n}(q)) \right| &= (q+1)(q^2+1) \dots (q^{2n}+1), \\ \left| \sum (\Omega(2n+1,q)) \right| &= (q+1)(q^2+1) \dots (q^{n+1}+1), \\ \left| \sum (\Omega^+(2n,q)) \right| &= 2(q+1)(q^2+1) \dots (q^n+1), \\ \left| \sum (\Omega^-(2n,q)) \right| &= (q^2+1)(q^3+1) \dots (q^n+1), \\ \left| \sum (H^+(2n,q^2)) \right| &= (q+1)(q^3+1) \dots (q^n+1). \end{split}$$

2.3 Proposition: [7]. The number of subspaces of dimension k in a vector space of dimension n over GF(q) is given by:

$$\frac{(q^n-1)(q^n-q)\dots(q^n-q^{k-1})}{(q^k-1)(q^k-q)\dots(q^k-q^{k-1})}$$

Remark: This number is called a *Gaussian coefficient*, and is denoted by: $\begin{bmatrix} n \\ k \end{bmatrix}_a$.

2.4. Theorem: [7] Let V be equipped with a bilinear form then the number of Totally isotropic k-subspaces is the following:

$$\begin{bmatrix} n \\ k \\ n \end{bmatrix}_q \prod_{\substack{i=0\\k-1\\k}}^{k-1} (q^{\inf_i the \text{ symplectic case } W(2n,q).}$$
in the orthogonal case $\Omega(2n+1,q).$

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \prod_{\substack{i=0\\k-1\\k}}^{k-1} (q^{\inf_i the \text{ hyperbolic case } \Omega^+(2n,q).}$$

$$\begin{bmatrix} n \\ k \end{bmatrix}_q \prod_{i=0}^{k-1} (q^{\inf_i the \text{ elliptic case } \Omega^-(2n+2,q).}$$

The following theorem identifies the number of ovoids and spreads in the finite classical polar spaces. For the proof of that theorem see [2].

2.5 Theorem: [2] Let O be an ovoid and S be a spread of the finite classical polar space P. Then

For
$$P = W_n(q)$$
, $|O| = |S| = q^{(n+1)/2} + 1$,
For $P = \Omega(2n+1,q)$, $|O| = |S| = q^n + 1$,
For $P = \Omega^+(2n+2,q)$, $|O| = |S| = q^n + 1$,
For $P = \Omega^-(2n+2,q)$, $|O| = |S| = q^{n+1} + 1$,
For $P = H(2n,q)$, $|O| = |S| = q^{2n+1} + 1$,
For $P = H(2n+1,q^2)$, $|O| = |S| = q^{2n+1} + 1$,

3. THE MAIN RESULT:

First we construct an ovoid in the classical polar space $\Omega^+(8, q)$ by constructing an ovoid in the point-line geometry $D_{4,2}(q)$ (which is isomorphic to $\Omega^+(8, q)$) and then it is considered an ovoid to $Q^+(7, q)$ which is isomorphic to $\Omega^+(8, q)$.

3.1 Theorem: Let P be the set of points of the point-line geometry $D_{4,2}(q)$. Then the set $\Delta^{\square}_{2}(p)$ forms an ovoid of the geometry $D_{4,2}$. Where $\Delta^{\square}_{2}(p)$ is the set of all points that are of distance at most 2 from the fixed point p, i.,e., $\Delta^{\square}_{2}(p) = \{x \in P: d(x, p) \leq 2\}$.

Proof: Every maximal totally isotropic in $\Omega^+(8, q)$ corresponds to a line 1 in $D_{4,2}$, so to prove that $\Delta^{\square}_2(p)$ represents ovoid all what to do is to show that every maximal totally isotropic 4-space has 2-space (corresponds to a point r in the line 1) such that $r \in \Delta^{\square}_2(p)$. Now the line 1 that is corresponding to the maximal totally isotropic 4-space is identified by the two points r and s such that $\Psi(r) = \langle x_1, x_3 \rangle$ and $\Psi(s) = \langle x_2, x_3 \rangle$ and let $\Psi(p) = \langle y_1, y_2 \rangle$. Now if $\Psi(p) \subset \Psi(1)$, then $p \in 1$ and $p \in \Delta^{\square}_2(p)$ (because d(p, p) = 0), so $1 \cap \Delta^{\square}_2(p) \neq \varphi$. If $\Psi(p)$ is not contained in $\Psi(1)$, then there are two cases:

- 1. Ψ (I) $\cap \Psi$ (p) = 1-sapace = <x>, x = x_3 = y_2 . If $y_1^{\perp} \cap \Psi$ (I) = <x, x_1 , x_2 >, then < y_1 , x, x_2 > forms a TI 3-space and p is collinear to s. This means that $s \in \Delta^*_2(p)$, then $1 \cap \Delta^{\square}_2(p) \neq \varphi$.
- 2. $\Psi(l) \cap \Psi(p) = 0$ -sapace. If $y_1^{\perp} \cap \Psi(l) = \langle x_3, x_1, x_2 \rangle$ and $y_2^{\perp} \cap \Psi(l) = \langle x_3, x_1, u \rangle$, then there is a point q such that $\Psi(q) = \langle x_3, y_2 \rangle$. Now since $\langle y_1, y_2, x_3 \rangle$ is a TI 3-space, the point q is collinear to the point sand since $\langle y_2, x_3, x_2 \rangle$ form TI

3-spaces, the point q is collinear to the point p which means d (p, s) = 2. Then $s \in \Delta^{\square}_2(p)$, so $1 \cap \Delta^{\square}_2(p) \neq \varphi$. Then every maximal totally isotropic in $\Omega^+(8, q)$ intersect the corresponding of $\Delta^{\square}_2(p)$ in exactly one 2-space. Which means that $\Delta^{\square}_2(p)$ corresponds to a void in $\Omega^+(8, q)$ and then a void to $Q^+(7, q)$.

Through the following theorem we present an upper pound for the ovoid that is corresponding to $\Delta^{\square}_{2}(p)$ in $Q^{+}(7, q)$.

Abdelsalam Abou Zayda* / Ovoids in the Hyperbolic Quadrics Q^+ (7, q)/ IJMA- 2(9), Sept.-2011, Page: 1657-1661 3.2 Theorem. For any ovoid of Q^+ (7, q), q is finite, we have;

$$|O| \le (q^{n-1}+1)^2(q+1)^2+1.$$

Proof: Let p a point such that the corresponding totally isotropic 2-space in $\Omega^+(8, q)$ is

 Ψ (p) = $\langle x_1, x_2 \rangle$. We give an upper pound for the number of point of the geometry that are at a distance at most 2. Let q be a point in the geometry such that Ψ (q) = $\langle y_1, y_2 \rangle$, then we have two cases:

1- d(p, q)=1, then $\Psi(p) \cap \Psi(q) = 1$ -space. Then the number of 2-space that intersect $\Psi(p)$ in 1-space is equal the number of 1-space in the 2-space $\Psi(p)$ and by Theorem 2.4 this number is given by the formula:

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}_q \prod_{i=0}^0 (q^{n-i-1} + 1) = (q+1)(q^{n-1} + 1),$$

i.,e.,

i.,e.,

$$|O| \le (q^{n-1} + 1) (q + 1)$$

2- d(p, q)=2, then there is a point r such that $\Psi(r) \cap \Psi \Box(p)=1$ -space and $\Psi(r) \cap \Psi(q)=1$ -space. Then every 1-space in $\Psi(r) \cap \Psi \Box(p)$ have (q+1) $(q^{n-1}+1)$ 1-spaces in $\Psi(r) \cap \Psi \Box(q)$. then the total number of ways such that $\Psi(r) \cap \Psi \Box(p)=1$ -space and $\Psi(r) \cap \Psi(q)=1$ -space is $(q+1)^2(q^{n-1}+1)^2$. Then the number of points q such that d(p,q)=2 is $(q+1)^2(q^{n-1}+1)^2$.

$$|O| \le (q^{n-1} + 1)^2 (q+1)^2.$$

Now since $p \in \Delta^{\square}_{2}(p)$ (d(p, p)=0), then

$$|O| \le (q^{n-1} + 1)^2 (q+1)^2 + 1.$$

REFERENCES:

- [1] J. De Beule, A. Klein, K. Metsch and L. Storme "Partial ovoids and partial spreads of classical finite polar spaces", Serdica Mathematical Journal, Volum 34 num. 4, pp. 689-714 (2008).
- [2] J. A., Thas, "Ovoid's and Spreads of finite classical polar spaces". Geom. Dedicata, 10: 135-144 (1981).
- [3] E. E. Shult, "A sporadic ovoid in $\Omega^+(8,7)$ ". Algebras, Groups and geometries, 2: 495-513 (1985).
- [4] J. A. Thas, "Old and new results on spreads and ovoids of finite classical polar spaces", In Combinatorics 90(Gaeta. 1990). Volume 52 of Ann. Descrete Math., pages 529-544. North-Holand. Amsterdam. (1992).
- [5] Abdelsalam Abou zayda, "On hyperplanes of the geometry $D_{4,2}(q)$ and their related codes" Journal of Mathematics and Statistics, 5(1): 72-76 (2009).
- [6] F. Buekenhout and E. E. Shult, "On the foundations of polar geometry". Geom. Dedicata, 3: 155-170, (1974).
- [7] P. J. Cameron, "Projective and Polar Spaces" volume 13 of QMW Maths Notes. Queen Mary and Westfield College, University of London, (1992).
