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ABSTRACT 

The variational iteration method (VIM) is a powerful tool for solving large amount of problems. In this article, 

the variational iteration method has been used to obtain exact solutions of the two-dimensional diffusion 
equation. The idea of variational iteration method was first introduced by He in 1997 [1]. The variational 
iteration method,  a correction functional is constructed by a general Lagrange multiplier which can be 
identified via a variational theory. The variational iteration method has successfully been applied to many 
situations [2-5]. Tow illustrative examples are given to demonstrate the effectiveness of the present method. 
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1. INTRODUCTION 
  
Consider the following two-dimensional diffusion equation with the following initial condition  
 

     

2 2

2 2
,

u u u

t x y
α
� �∂ ∂ ∂

= +� �
∂ ∂ ∂� �

                                                                             (1.1) 

With initial condition 
 

     ( ) ( ), ,0 , , 0 , 1.u x y f x y x y= ≤ ≤                                                                                       (1.2) 

 
In this article, we use the variational iteration method to solve this kind of equations. To illustrate its basic 
idea of the method, we consider the following general nonlinear equation 
 

     ( ) ( ) ( ).Lu t Nu t g t+ =                                                                                                                          (1.3)                                 

Where, L is a linear operator, N is a nonlinear operator and ( )g t  an inhomogeneous term. 

 
According to the variational iteration method, we can construct a correction functional as follows:  
 

        ( ) ( ) ( ) ( ) ( ) ( )( )1
0

,
t

n n n n
u t u t Lu Nu g dλ ξ ξ ξ ξ ξ+ = + + −� �

                                                  
(1.4) 

Where λ  is a general Lagrange
’
s multiplier, which can be identified optimally via the variational theory, and 

n
u�  is a restricted variation which means 0

n
uδ =� [6]. 

 
It is obvious now that the main steps of He’s variational iteration method require first the determination of the 

Lagrangian multiplier λ  that will be identified optimally. Having determined the Lagrange multiplier, the 

successive approximations 1, 0
n

u n+ ≥ . Of the solution u  will be readily obtained upon using any selective  
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function
0u . Consequently, the solution 

 

      
( ) ( )lim n

n
u x u x

→∞
= .                                                                                                                                (1.5) 

 
In other words, the correction functional (1.4) will give several approximations, and therefore the exact 
solution is obtained at the limit of the resulting successive approximations. 

 
2. ANALYSIS OF TWO-DIMENSIONAL DIFFUSION EQUATION: 
 
    Now for solving Eq. (1.1), by VIM, we construct a correction functional in the following form 
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After some calculations, we obtain the following stationary conditions: 
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The Lagrange multiplier, can be easily identified as 1.λ = −  

 
Substituting the identified multiplier in to equation (2.1), we would have the following iteration formula 
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We start with the initial approximation of ( ), ,0u x y given by Eq. (1.2). Using the above iteration formula, we 

can obtain the other components as follows: 
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3. ILLUSTRATIVE EXAMPLES: 
 

Example: 1 For the first test problem consider (1.1) with 1α =  and ( ) ( ), expf x y x y= + , the exact 

solution is given with 
 

     ( ) ( ), , exp 2 .u x y t x y t= + +                                                                                                                 (3.1)

     

                                                              

                                                                                                                     
For solving by the variational iteration method we obtain the recurrence relation 
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Let us start with an initial approximation ( ) ( ) ( )0 , , , exp .u x y t f x y x y= = + applying the iteration formula 

(2.4). We can obtain directly the other components as 
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And exact solution will be as  
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Example: 2 For the first test problem consider (1.1) with 1α =  and ( ) ( ) ( ), 1 expf x y y x= + , the exact 

solution is given with 
 

     ( ) ( ) ( ), , 1 exp .u x y t y x t= + +                                                                                                              (3.5) 

                                                                                                                          
For solving by the variational iteration method we obtain the recurrence relation 
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Let us start with an initial approximation ( ) ( ) ( ) ( )0 , , , 1 exp .u x y t f x y y x= = + applying the iteration 

formula (2.4). We can obtain directly the other components as 
 

      

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

2

2 3

3

0

, , 1 exp 1 exp ,

1
, , 1 exp 1 exp 1 exp ,

2

1 1
, , 1 exp 1 exp 1 exp 1 exp ,

2 6

, , , , 1 exp ,
!

kn

n n

k

u x y t y x y x t

u x y t y x y x t y x t

u x y t y x y x t y x t y x t

t
u x y t u x y t y x

k=

= + + +

= + + + + +

= + + + + + + +

= = +�

�

�

             (3.7)

 

And exact solution will be as  
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4. CONCLUSION: 
 
In this paper, variation iteration method (VIM) has been successfully applied to find the exact solution of two-
dimensional diffusion equation. The obtained solution shows that the method is vary convenient and effective 
to solve wide classes of problems. The method was used in a direct way without using linearization, 
perturbation or restrictive assumptions. Also VIM provides more realistic series solutions that converge very 
rapidly in real physical problems.      
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