
International Journal of Mathematical Archive-9(2), 2018, 257-260 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 9(2), Feb. – 2018                                                                                                  257 

 
CHARACTERIZATION OF A FOUR-DIMENSIONAL 

 LORENTZIAN MANIFOLDS USING JACOBI OPERATOR 
 

Prof. Dr. Sci. VESELIN TOTEV VIDEV*  
 

Dept. Mathematics and Informatics,  
Trakia University, 6000 Stara Zagora, Bulgaria, Europe Union.  

 
(Received On: 27-11-17; Revised & Accepted On: 18-01-18) 

 
 

ABSTRACT 
In the present note we characterize a four-dimensional Lorentzian manifolds using characteristic coefficients of the 
Jacobi operator.  
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An n-dimensional Riemannian manifold M with metric g is called a Lorentzian manifold if at any point p∈M, the 
tangent space Mp  to the manifold  is an n-dimensional vector space with signature  (-,+,...,+) or (+,+,...,+,-). An unit 
tangent vector X is called spacelikе tangent vector if g(X, X) = 1 and X is called timelike tangent vector if g(X, X) = -1.  
The set of all spacelike unit tangent vectors in the tangent space Mp  we denote by S+

pM, and the set of all unit timelike 
tangent vectors in Mp, we denote by S−pM.  If  ∇ is the Levi-Civita connection induced by g, then the curvature tensor R 
of type (1, 3), on the manifold M,  is defined by the equality   

R(x, y, z) = [ , ]z z zx y x y∇ +∇ −∇ , 

where x, y, z∈Mp, p∈М, and [.,.] are the Lee brackets.  Using this tensor we define the curvature tensor of type (0, 4) in 
the following way:  

R(x, y, z, u) = g(R(x, y, z), u) . 
 
The curvature tensor R has the following properties:  

R(x, y, z, u) = - R(y, x, z, u) = - R(x, y, u, z), 
R(x, y, z, u) + R(y, z, x, u) + R(z, x, y, u) = 0, 
R(x, y, z, u) = R(z, u, x, y), 
σxyz(∇xR)(y, z, u) = 0, 

where x, y, z, u∈S±pM, and σ  is a cyclic sum over x, y, z.  The Ricci tensor ρ  on the manifold M is a bilinear symmetric 
function defined by the equality:  

ρ(x, y) = trace (z→ R(z, x, y)), 
where x, y, z∈S±pM, p∈М. Any Lorentzian manifold M with the property  

     ρ(x, y) =λg(x, y), 
λ=const., x, y∈S±pM  is called Einstein Lorentzian manifold [1].  
 
Let M be a four-dimensional Lorentzian manifold and let е1, е2, е3, е4 (e4∈S−pM) be an arbitrary Lorentzian basis in the 
tangent space Mp, at a point p∈M. A bivector space ∧2Mp is a 6-dimensional vector space of signature (+,+,+,-,-,-),  in 
which e1∧e2, e1∧e3,  e1∧e4, e3∧e4, e4∧e2, e2∧e3  is an orthonormal basis, where ∧ is the second exterior product in Mp, 
p∈М[1].   
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Proposition 1[4]: Let M be a four-dimensional Einstein Lorentzian manifold. Then at any point p∈M, there exist a 
Lorentzian basis е1,е2, е3, е4(e4∈S−pM) in the tangent space Mp, such that the matrix of the curvature operator ℜ in 
bivector space ∧2Mp, with respect to the orthonormal basis  e1∧e2 , e1∧e3 ,  e1∧e4 , e3∧e4 , e4∧e2, e2∧e3,  has the form: 

 
 
 

M N

-N M
, 

where M  and  N  are one of  the following three types: 

0 01
0 02
0 0 3

α

α

α

=

 
 
 
 
 

M ,  

0 01
0 02
0 0 3

β

β

β

=

 
 
 
 
 

N ,                                                                                     I 

        α1+α2+α3=λ        , 
       β1+β2+β3=0         ; 

0 01
0 1 02
0 0 12

α

α

α

= +

−

 
 
 
 
 

M ,      

0 01
0 12
0 1 2

β

β

β

=

 
 
 
 
 

N ,                                                                    II 

α1+2α2=λ        , 
β1+2β2 =0        ; 

1 0
1 0
0 0

α
α

α
=
 
 
 
 

M ,      
0 0 0
0 0 1
0 1 0

= −
−

 
 
 
 

N ,            3α=λ .                                                                   III 

 
We call this basis Petrov basis of type I, II or III.   
 
The Jacobi operator RX is a symmetric linear operator in the tangent space Mp, at a point p∈M, defined by the equality 
[3]: 

RX(u)=R(u, X, X) ,             X∈S±pM . 
 
Since X is an eigenvector of RX, with the corresponding eigenvalue 0, then the characteristic equation of RX has the 
form:  

1 1 2 2 1( ... ( 1) ( 1) ) 01 2 2 1
n n n n nc c J c J c J c Jn n
− − − − −− + + + − + − =− − ,                                           (1) 

where     
J1(p; X) = ρ(X,X),         X∈S±pM.                                                                                                          (2) 

If  trace J1(p; X) is a pointwise constant, for any tangent vector X∈S±pM, at any  point p∈M, then from (2) it follows 
that M is an Einstein Lorentzian manifold. An n-dimensional Lorentzian manifold M is called Osserman Lorentzian 
manifold if at any point p∈M, the characteristic coefficients of the Jacobi operator RX   are a constants for any tangent 
vector X∈S±pM,  at any point p∈M[2].   
 
Proposition 2[2]: An n-dimensional (n ≥ 3) Lorentzian manifold M is an Osserman manifold if and only if M  is a  
space of constant sectional curvature.  
 
Further we consider the case when M is a four-dimensional Lorentzian manifold, then the characteristic equation of the 
Jacobi operator has the form  

3 2( ) 01 2 3c c J c J c J− + − =      .  

If the characteristic coefficient J3(p; X) = 0, for any tangent vector X∈S±pM, at any point p∈M, then we have the 
following:  
 
Theorem: M is a four-dimensional Einstein Lorentzian manifold such that the characteristic coefficient J3(p; X) = 0,  
for any Jacobi operator  RX,  X∈S±pM,  at any point  p∈М,  if and only if one of the following cases is true:  

a) M is a space of constant sectional curvature; 
b) M is a reducible space with metric which is  reduce to  the following two quadratic forms: 

( ) ( )2 2 2 2 2 2 2cos cos1 1 2 3 3 4ds dx x dx dx x dxλ λ= + + − ;    λ>0                                                                   (3)               

( ) ( )2 2 2 2 2 2 2
1 1 2 3 3 4ds dx ch x dx dx ch x dxλ λ= + − + − − ;  λ<0                                                                    (4)  
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c)  M  is a space of maximal mobility with metric: 

( ) ( )2 2 2 2 2 2sin1 1 4 2 1 4 3 4ds dx sh x x dx x x dx dx= + − + − − .                                                                              (5) 

 
Proof: Let M be an Einstein Lorentzian manifold and let e1, e2, e3, e4  (е4 ∈S−pM) be a Petrov basis of type I. If a and b 
are an arbitrary real numbers with the property a2 - b2 =1, then the orthonormal basis  

ae1+be4, be1+ae4,  e2 , e3                                                                                                                     (6) 
is a Lorentzian basis in Mp. Using the characteristic equation of the Jacobi operator  

1 2
Rae be+ , with respect to this 

basis, we obtain: 

( ) ( )2 22 2( ; ) 03 1 2 3 1 2 1 2 1 2J p ae be a bα α α α α β β+ = − − + − =
      

,                                      (7) 

and from here, at а=1, and b=0, we get  
( ; )3 1J p e =α1α2α3=0.                                                                                                                         (8) 

 
If α1=α2=α3=0,  then M is flat. If at least one of α1, α2, α3 is different from zero, suppose α3, then from (8) it follows 
that α1α2=0, and then from (7) we obtain  

( ) ( )2 22 2
1 2 1 2a b α α β β− + −  

 
 =0 . 

 
From here it follows that α1=α2=0, β1=β2 and using second property of the curvature tensor R, we obtain β3=-2β1.  
That means that for the invariants of the Petrov basis of type I, we have: 

α1 =const.,   α2=α3=0,      β1=β2,       β3= -2β1.                                                                                   (9) 
 
Let η1, η2, η3, η4, η5, η6 be an eigenvector basis of  the curvature operator ℜ  in ∧2Mp, and let , , , , ,1 2 3 1 2 3k k k k k k  are 

the corresponding eigenvalues.  Let  kj = αj+iβj , where  i2=-1, and j=1,2,3. From (9) it follows that the matrix of ℜ, 
with respect to η1, η2, η3, η4, η5, η6  has the form: 

2 0 0 0 0 01 1
0 0 0 0 01
0 0 2 0 0 01(
0 0 0 2 0 01 1
0 0 0 0 01
0 2

) =

0 0 0 0 1

i

i

i

i

i

i

α β

β

β

β α

β

ℜ

β

−

−

−

−

 
 
 
 
 
 
 
 
 

. 

 
Since the set of η1, η2, η3, η4, η5, η6 is a reducible basis, then there exist a Lorentzian basis v1, v2, v3, v4 (v4∈S−pM) in 
Mp, p∈М, with respect to which all non-zero curvature components are:  

R(v1, v2, v2, v1) =- R(v3, v4, v4, v3) = α1-2iβ1,   
R(v1, v3, v3, v1) =- R(v2, v4, v2,v 4) = iβ1, 
R(v2, v3, v3, v2) =- R(v1, v4, v4, v1) =-2iβ1

.
 

 
Using the characteristic equation of the Jacobi operators Rv2

 with respect to v1, v2, v3, v4 (v4∈S−pM) we obtain that Rv2
 

has an eigenvalues ( )
2 1

,1 1

i

g v v

β−
, ( )

2 1
,3 3

i

g v v

β
, ( )

2 1
,4 4

i

g v v

β
.  

 
Using that Rv2

 is diagonalizable and under the assumption ( ; )3 2J p v =0, we get β1=0 and according to (9), for the 
invariants of the Petrov basis of type I we have  

α1= const., and    α2=α3=β1=β2=β3=0   .                                                                                           (10) 
 
If α1=0, then M is flat.  If α1≠0, then M is a reducible space with a metric form given by (3) and (4) [4].  Conversely if 
M is a reducible Einstein Lorentzian manifold, such that at any point p∈М, there exist a Petrov basis in the tangent 
space Mp, which invariants fulfill (10).  If X∈Sp

±M  is an arbitrary tangent vector in the tangent space Mp, at a point 
p∈M , for which   
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4

1
X a ei ii
= ∑

=
                         ,                                                                                                           (11) 

where ai   are an arbitrary real numbers, then the characteristic equation of RX ,  has the form: 

( )( )( )( )2 2 2 2 2 2 2 29 03 1 4 2 3 1 3c c c a a a aα β α− + − + + = , 

and from here it follows that ( ; )3J p X = 0.  
 
If e1, e2, e3, e4 (е4∈S−pM) is a Petrov basis of type II, then using the characteristic equations of the Jacobi operators  
Rae1+be4

 and  Rae2+be4
, with respect to this basis, and the conditions  ( ; ) ( ; ) 03 1 4 3 2 4J p ae be J p ae be+ = + = , we obtain 

the system: 
(α2-1)α2

2 + (α2+1)9β2
2 = 0, 

(α2+1)α2
2 + (α2-1)9β2

2 = 0. 
 
From here it follows that α2=β2=0 and then using the characteristic equation of the Jacobi operator Re1

 with respect to 

the same basis, and the condition ( ; ) 03 1J p e = , we obtain α1=0. Since β2=0, then from the second property of the 

curvature tensor R, we get β1=0. That means that for the invariants of the Petrov basis of type II, holds                         
α1=α2=β1=β2=0,   which means that M is a space of maximal mobility with metric of the form (5)[4]. Conversely if M 
is a four-dimensional Lorentzian manifold, with metric of  the form (5), then for any tangent vector X∈S±pM, given by 
(11), and for the corresponding Jacobi operator RX , we have: 

2( ) 0 ( ) ( )3 4 1 3 4 1 3 4
20 ( ) ( ) ( )3 4 2 3 4 2 3 4( ; ) 03 2 2 2 2( ) ( )1 3 4 2 3 4 1 2 2 1

2 2 2 2( ) ( )1 3 4 2 3 4 1 2 2 1

a a a a a a a a

a a a a a a a a
J p X

a a a a a a a a a a

a a a a a a a a a a

+ − + − +

− + − + +
= =
− + − + − −

− + − + − −

. 

 

 
Finally if e1, e2, e3, e4 (е4 ∈S−pM) is a Petrov basis of type III, then using characteristic equation of  the Jacobi operator 
Re1, with respect to this basis, we obtain ( ; ) 03 1J p e = , which means that M must to be a symmetric space, and which 
according to the results of  Petrov is impossible[4]. 
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