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ABSTRACT 

In this paper, an attempt has been made to formulate a delayed SEIRS (Susceptible – Exposed – Infectious – 
Recovered – Susceptible) e – epidemic model with anti-malicious software and death due to malicious objects in 
computer network. It is proved that the malicious objects-free periodic solution is globally attractive if the rate of use 
of anti-malicious software is large enough and the solution is uniformly persistent if the rate is less than some critical 
value by using the comparison theorem. Our results indicate that a long latent period of the malicious objects or a 
proper use of anti-malicious software rate will lead to extinction of the malicious objects. Numerical methods are used 
to solve and simulate the system of equations developed and analyze the attacking behavior of malicious objects in the 
computer network. 
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INTRODUCTION 
 
Now a days computer networks have become an essential tool for everyday life. Revolution has come in the field of 
education, information and defense through computer networks. The Internet has significantly reshaped the way people 
communicate with each other in recent years. People are sending messages, such as emails, playing games and sharing 
news, ideas and entertainment with their friends on the Internet. It has made the life easier and world accessible with 
the touch of button. But everything is not well in cyber world, it is facing several challenges in the form of malicious 
objects. These malicious objects are worms, virus and Trojan horse. Malicious objects have tremendous influence on 
computer network. Currently, e-mail has become one of the main factors for the transmission of malicious objects. 
Transmission of malicious objects in computer network is epidemic in nature and is analogous to biological epidemic 
diseases. Controlling the malicious objects in computer network have been an increasingly complex issue in recent 
years. In order to curb the malicious object, we propose an SEIRS model with time delay in infectious class. In recent 
years, much attention has been given for the persistence and global stability of the epidemic model with time delays. 
Mishra and Saini [1] introduced SEIRS model with latent and temporary immune period which is helpful to study about 
the malicious objects propagation with time delay in computer network. Mishra et.al have introduced different 
mathematical models on the fixed period of temporary immunity after the use of anti-malicious software, effect of 
quarantine, using fuzzy mathematics [2-5]. In epidemiology, the concept of distributed time delay and pulse 
vaccination, given by the authors [1,13] has developed the interesting changes in mathematical models and revealed 
effective strategies for the eradication of malicious objects. The basic concept on classical epidemic models introduced 
by Kermack and Mckendrick [13, 15, 16], gives the temporal evolutions of worms depending on the parameters in 
computer network. Mena-Lorca and Hethcote [17] studied five SIRS epidemic models for populations of varying size. 
Thieme [9] studied an SIRS epidemic model with population size dependent on contact rate and exponential 
demographics. The epidemic models of SEIR or SEIRS type without delays are widely studied [6-8, 10, 14]. Cooke and 
Van den Driessche [12] introduced and studied the disease transmission model of SEIRS type with exponential 
demographic structure.   
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In the SEIRS model, once the malicious objects enter into the computer network, the nodes become susceptible and in 
the later phase they get exposed to the attack. Once the node is exposed to malicious object, then after a certain time 
delay the nodes become infected. After its get infected, anti malicious software is run which helps the node to recover 
from the attack and provide temporary immunity to the node in the network. There is no permanent immunity for the 
nodes which are in the cyber space.  
 
The SEIRS e-epidemic model with time delay: We assume a total number of nodes N is partitioned into four 
compartments such as Susceptible, Exposed, Infectious, and Recovered. S(t), E(t), I(t) and R(t) denote the number of 
susceptible, exposed, Infectious, recovered nodes in computer network. 
 
We have the system of differential equations 

𝑑𝑆
𝑑𝑡

= 𝜇�1 − 𝑆(𝑡)� − 𝛽𝑆(𝑡)𝐼(𝑡) + 𝛿𝑅(𝑡) 
dE
dt

= βS(t)I(t) − βe−μωS(t −ω)I(t − ω) − μE(t) 
𝑑𝐼
𝑑𝑡

= 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − (𝑟 + 𝜇 + 𝛼)𝐼(𝑡) 
𝑑𝑅
𝑑𝑡

= 𝑟𝐼(𝑡) − 𝜇𝑅(𝑡) − 𝛿𝑅(𝑡) 
𝑑𝑁
𝑑𝑡

= 𝜇 − 𝜇𝑁(𝑡) − 𝛼𝑁(𝑡)                                                                                                                                   (1) 
𝑆(𝑡+) = (1 − 𝜃)𝑆(𝑡) 
𝐸(𝑡+) = 𝐸(𝑡);     𝑡 = 𝐾𝜏 

 

 
Figure-1: Schematic diagram for flow of malicious objects in computer network with time delay. 

 
𝐼(𝑡+) = 𝐼(𝑡) 
𝑅(𝑡+) = 𝑅(𝑡) + 𝜃𝑆(𝑡)  

Where all coefficients are positive constants. The model derived as follows 
(a) The susceptible nodes become infectious at the rate βI, where β is the constant rate. 
(b) The birth rate is equal to the death rate and is denoted by µ. 
(c) The time delay ω is the latent period of the malicious objects. 
(d) We assume θ (0 < θ < 1) is fraction of susceptible to whom the anti malicious software is inoculated at t = k𝜏, 

k𝜖𝑁, where 𝜏 denotes period of run of anti malicious software. 
(e) The run of anti malicious does not provide permanent immunity, i.e. R(t) contains vaccinated as well as 

recovered individuals. 
 

Model (1) is subject to the restriction S(t) + E(t) + I(t) + R(t) = N(t). Note that the variable E does not appear in the 
first, third and fourth equations of system (1). We consider two reduced systems separately.  

𝑑𝑆
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼(𝑡) + 𝜇�1 − 𝑆(𝑡)� + 𝛿𝑅(𝑡) 
𝑑𝐼
𝑑𝑡

= 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − (𝑟 + 𝜇 + 𝛼)𝐼(𝑡) 
𝑑𝑅
𝑑𝑡

= 𝑟𝐼(𝑡) − 𝑏𝑅(𝑡) − 𝛿𝑅(𝑡)                                                                                                                             (2) 
𝑑𝐸
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − 𝜇𝐸(𝑡) 
𝐸(𝑡+) = 𝐸(𝑡) 
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The initial condition of system (2) is given as    

 S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ), N(θ) = φ4(θ);  -ω ≤ θ ≤ 0                                                                     (3) 
where      φ = (φ1, φ2,  φ3, φ4)T ε C+ = C ([-ω, 0], R+

4), φi(0)>0, i=1,2,3,4. 
G = {(S, E, I, R)∈R4/ S ≥ 0; E ≥ 0;I ≥ 0; R ≥ 0; S + E + I + R ≤ N}. It is easy to show that G is positively invariant with 
respect to system (2). 
 
To prove our main results we need the following lemma 
 
Lemma 1: Let us consider the following impulsive differential equations 

𝑑𝑢
𝑑𝑡

= 𝑎 − 𝑏𝑢(𝑡);    𝑡 ≠ 𝐾𝜏                                                                                                                                  (4) 
𝑢(𝑡+) = (1 − 𝜃)𝑢(𝑡);   𝑡 = 𝐾𝜏 

Where a > 0, b > 0, 0< 𝜃 < 1. Then, there exist a unique positive periodic solution of system (3). 

 𝑢�(𝑡) = 𝑎
𝑏

+ �𝑢∗ − 𝑎
𝑏
� 𝑒−𝑏(𝑡−𝐾𝜏), where 𝑢∗ = 𝑎(1−𝜃)(1−𝑒−𝑏𝜏)

𝑏(1−(1−𝜃)𝑒−𝑏𝜏)
,  which is globally asymptotically stable. 

 
Proof: Integrating and solving the first equation of system (4) between pulses, we get 

𝑢(𝑡) = 𝑎
𝑏

+ �𝑢(𝐾𝜏) − 𝑎
𝑏
� 𝑒−𝑏(𝑡−𝐾𝜏), 

𝐾𝜏 < 𝑡 ≤ (𝐾 + 1)𝜏 
where u(𝑘𝜏) be the initial value at time 𝑘𝜏. Using the second equation of system (3), we deduce the stroboscopic map 
such that 

 𝑢((𝑘 + 1)𝜏 = (1 − 𝜃) �𝑎
𝑏

+ �𝑢(𝑘𝜏) − 𝑎
𝑏
� 𝑒−𝑏𝜏� = f(u(𝑘𝜏))                                                                              (5) 

where    f(u) = (1 − 𝜃){𝑎
𝑏

+ �𝑢 − 𝑎
𝑏
� 𝑒−𝑏𝜏}.  

 
It is easy to know that system (4) has unique positive equilibrium. 
𝑢∗ = 𝑎(1 − 𝜃)(1 − 𝑒−𝑏𝜏)/𝑏(1 − (1 − 𝜃)𝑒−𝑏𝜏) which satisfies u < f(u) < u*; u*< f(u) < u if u > u*. It implies the 
corresponding periodic solution of (3) 

𝑢𝑒��� (𝑡) = 𝑎
𝑏

+ �𝑢∗ − 𝑎
𝑏
� 𝑒−𝑏(𝑡−𝐾𝜏),  𝐾𝜏 < 𝑡 ≤ (𝐾 + 1)𝜏 

is globally asymptotically stable.    
 
Lemma 2: Consider the following delay differential equation 𝑑𝑥

𝑑𝑡
= 𝑎1𝑥(𝑡 − 𝜔) − 𝑎2𝑥(𝑡), Where 0 < a1 < a2; ω > 0. 

Then limit t tends to Zero, x(t) = 0. 
 
We firstly demonstrate the existence of a malicious object free periodic solution in which infectious are entirely absent 
from the population permanently, i.e. I(t) = 0 for all t≥0.  Under this condition, the growth of susceptible individuals, 
recovered individuals and total population must satisfy the following impulsive system  

𝑑𝑆
𝑑𝑇

= 𝜇 − 𝜇𝑆(𝑡) + 𝛿𝑅(𝑡) 
𝑑𝑅
𝑑𝑡

= −(𝜇 + 𝛿)𝑅(𝑡); 𝑡 ≠ 𝐾𝜏,𝑘𝜖𝑁                                                                                                                      (6) 
𝑑𝑁
𝑑𝑡

= 𝜇 − 𝜇𝑁(𝑡) 
𝑆(𝑡+) = (1 − 𝜃)𝑆(𝑡) 
𝑅(𝑡+) = 𝑅(𝑡) + 𝜃𝑆(𝑡); 𝑡 = 𝐾𝜏     
N(𝑡+) = 𝑁(𝑡) 

 
From the third and sixth equation of (6) we obtain limit t tends to infinity, N(t) = 1. If I(t) = 0, it follows from the 
second and sixth equations of system (1) that 𝑙𝑖𝑚𝑖𝑡 𝑡 → ∞, E(t) = 0. Therefore, we have the following limit system of 
(5)  

R(t) = 1- S(t) 
𝑆′(t) = (𝜇 + 𝛿)�1 − 𝑆(𝑡)�;  𝑡 ≠ 𝑘𝜏                                                                                                                     (7) 
S(t) = (1-θ)S(t);     t = k𝜏 

 
According to Lemma 1, we know that periodic solution of system (7) is of the form  

𝑆𝑒� (𝑡) = 1 − 𝜃𝑒−(𝜇+𝛿)(𝑡−𝑘𝜏)

1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏, 𝐾𝜏 < 𝑡 ≤ (𝐾 + 1)𝜏                                                                                              (8) 
  
Theorem 1: If R*<1, then the infection free periodic solution of (2) is globally attractive, where 

𝑅∗ =
𝛽𝑒−𝜇𝜔(1 − 𝑒−(𝜇+𝛿)𝜏)

(𝑟 + 𝜇 + 𝛼)�1 − (1 − 𝜃)�𝑒−(𝜇+𝛿)𝜏
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Proof: Since R*<1, we can choose ε1> 0 sufficiently small such that  

𝛽𝑒−𝜇𝜔(1−𝑒−(𝜇+𝛿)𝜏)
(𝑟+𝜇+𝛼)�1−(1−𝜃)�𝑒−(𝜇+𝛿)𝜏 < (𝑟 + 𝜇 + 𝛼)                                                                                                             (9) 

 
From the first equation of system (2), we have 𝑑𝑆

𝑑𝑡
< (𝜇 + 𝛿)(1 − 𝑆(𝑡)) 

 
So, we consider the following comparison impulsive differential system 

𝑑𝑥
𝑑𝑡

= (𝜇 + 𝛿)(1 − 𝑥(𝑡));𝑡 ≠ 𝑘𝜏                                                                                                                       (10) 
𝑥(𝑡+) = (1 − 𝜃)𝑥(𝑡);    𝑡 = 𝑘𝜏 

 
By lemma (2), we can obtain the unique periodic solution of system (10). 

𝑆𝑒� (𝑡) = 𝑥𝑒���(𝑡) = 1 − 𝜃𝑒−(𝜇+𝛿)(𝑡+𝑘𝜏)

1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏;  k𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏 
 
Is globally asymptotically stable. Let (S(t), I(t)) be the solution of system (2) with initial values (3) and S(0+) = S0 > 0, 
x(t) be the solution of system (10) with initial value x(0+) = S0. By the comparison theorem in impulsive differential 
equation, there exists an integer k1> 0 such that  

 S(t) < ,)()( 1ε+< txtS
e

     𝜏 < k𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 > 𝑘1   

i.e.           𝑆(𝑡) < 𝑥𝑒���(𝑡) ≤
1−𝑒−(𝜇+𝛿)𝜏

1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏 + 𝜀1                                                                                                               (11) 
≜ 𝑆𝑀,      k𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏          k > k1 

where Se(t) is defined in (8). Further, from the second of system (2) we can write 
𝑑𝐼
𝑑𝑡
≤ 𝛽𝑒−𝜇𝜔𝑆𝑀𝐼(𝑡 − 𝜔) − (𝛼 + 𝑟 + 𝜇)𝐼(𝑡),   𝑡 > 𝑘1 + 𝜔                                                                              (12) 

 
From inequality (8), we have     

𝛽𝑒−𝜇𝜔(1 − 𝑒−(𝜇+𝛿)𝜏)
�1 − (1 − 𝜃)�𝑒−(𝜇+𝛿)𝜏

< (𝑟 + 𝜇 + 𝛼) 

 

By lemma (2), we have 𝑡
𝑙𝑖𝑚
�� ∞ 𝑦(𝑡) = 0. By comparison theorem and non negativity of I(t), we obtain 

𝑡
𝑙𝑖𝑚
�� ∞ 𝐼(𝑡) = 0                                                                                                                                                (13)                               

There, for any sufficiently small 𝜀1𝜖(0,1), there exists an integer𝑘2 > 𝑘1 + 𝜔
𝜏
 satisfying I(t)< 𝜀1 for all t > k2𝜏. From the 

fifth equation of system (1), we have  
N’(t) ≥ 𝜇 − 𝜇𝑁(𝑡) − 𝛼𝜀1;t > k2𝜏.                                                                                                                      (14) 

 
Consider the following comparison system 

𝑑𝑧
𝑑𝑡

= (𝜇 − 𝛼𝜀1) − 𝜇𝑧(𝑡);     𝑡 > 𝑘2𝜏. 
 

Since      𝑡
𝑙𝑖𝑚
�� ∞ 𝑑𝑧

𝑑𝑡
= 0 

∴ 𝑧(𝑡) =
𝜇 − 𝛼𝜀1

𝜇
 

 
By comparison theorem, there is an integer 𝑘3 > 𝑘2 such that  

𝑁(𝑡) ≥ 𝜇−𝛼𝜀1
𝜇

− 𝜀1, for all 𝑡 > 𝑘3𝜏.                                                                                                                  (15) 

Because 𝜀1 can be arbitrary small and sup 𝑡
𝑙𝑖𝑚
��∞ 𝑁(𝑡) ≤ 1.  

 
Hence, 𝑡

𝑙𝑖𝑚
��∞ = 1.                                                                                                                                                         (16) 

 
From equation (13) and (16), there exists an integer 𝑘4 > 𝑘3 such that  

I(t)< 𝜀1, and N(t) > 1-𝜀1                                                                                                                                    (17)    
 
For all t > 𝑘4𝜏. 
 
When t > 𝑘4𝜏, the second and sixth equations of 𝑑𝐸

𝑑𝑡
≤ 𝛽𝜀1 − 𝜇𝐸(𝑡). This implies that there exists an integer 𝑘5 > 𝑘4 

such that  
E(t)≤ 𝛽𝜀1

𝜇
+ 𝜀1, for all 𝑡 > 𝑘4𝜏.                                                                                                                         (18)                                                                                                    
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Therefore, from inequalities (17) and (18), the first equation of system (1) 

𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽𝑆(𝑡)𝐼(𝑡) + 𝜇�1 − 𝑆(𝑡)� + 𝛿𝑅(𝑡) 
𝑑𝑆(𝑡)
𝑑𝑡

= −𝛽𝑆(𝑡)𝐼(𝑡) + 𝜇�1 − 𝑠(𝑡)� + 𝛿(𝑁(𝑡) − 𝑆(𝑡) − 𝐸(𝑡) − 𝐼(𝑡)) 

         ≥ �𝜇 + 𝛿 �1 − 3𝜀1 −
𝛽𝜀1
𝜇
�� − (𝜇 + 𝛿 + 𝛽𝜀1)𝑆(𝑡),    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 𝑘5𝜏                       

 
Consider the following comparison impulsive differential equation for 𝑡 > 𝑘𝜏 and k > k5, 

𝑢(𝑡) = �𝜇 + 𝛿 �1 − 3𝜀1 − 𝜀1𝛽
1
𝜇
�� − (𝜇 + 𝛿 + 𝛽𝜀1)𝑢(𝑡),    𝑡 ≠ 𝑘𝜏                                                               (19)   

u(t+) = (1 − 𝜃)𝑢(𝑡), 𝑡 = 𝑘𝜏  
 
By lemma1, we have the unique periodic solution of the system (19) 

𝑢�(𝑡) =
𝜇+𝛿�1−3𝜀1−

𝛽𝜀1
𝜇 �

𝜇+𝛿+𝛽𝜀1
+ �𝜇∗ −

𝜇+𝛿�1−3𝜀1−
𝛽𝜀1
𝜇 �

𝜇+𝛿+𝛽𝜀1
�  

where    𝑢∗ = �
𝜇+𝛿�1−3𝜀1−

𝛽𝜀1
𝜇 �

𝜇+𝛿+𝛽𝜀1
� {(1−𝜃)�1−𝑒−(𝜇+𝛿+𝛽𝜀1)𝜏�

1−(1−𝜃)𝑒−(𝜇+𝛿+𝛽𝜀1)𝜏
 

 
Which is globally asymptotically stable. 
 
According to the comparison theorem of impulsive differential equations, there exists an integer k6 > k5 such that  

𝑆(𝑡) > 𝑢𝑒(𝑡) − 𝜀1, 𝜏 < k𝑡 ≤ (𝑘 + 1)𝜏, 𝑘 > 𝑘6                                                                                               (20) 
 

Since 𝜀1𝑎𝑛𝑑 𝜀0 are arbitrarily small, it follows from (10), (18) and (20) that 𝑡
𝑙𝑖𝑚
�� ∞ 𝑆(𝑡) = 𝑆𝑒(𝑡), 𝑡

𝑙𝑖𝑚
�� ∞ 𝐸(𝑡) = 0.   

 
This implies  

𝑆𝑒� (𝑡) = 𝑥𝑒���(𝑡) = 1 − 𝜃𝑒−(𝜇+𝛿)(𝑡+𝑘𝜏)

1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏;  k𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏
          

 
 
Is globally attractive. Therefore, infection free solution )0),(( tS e is globally attractive. The proof of above theorem 
(1) is complete. 
 

Denote    𝜃∗ = (𝛽𝑒−𝜇𝜔−𝑟−𝜇−𝛼)�𝑒−(𝜇+𝛿)𝜏−1�
(𝜇+𝛼+𝑟)

 

𝜏∗ =
1
𝜇

log�1 +
𝜃(𝑟 + 𝜇 + 𝛼)

(𝛽𝑒−𝜇𝜔 − 𝑟 − 𝜇 − 𝛼)� 

𝜔∗ = −
1
𝜇

log �
(𝑟 + 𝜇 + 𝛼)�1 − (1 − 𝜃)�

𝛽(1 − 𝑒−(𝜇+𝛿)𝜏)
𝜀−(𝜇+𝛿)𝜏� 

 
Corollary 1: (a) If 𝛽𝑒−𝜇𝜔 ≤ 𝑟 + 𝜇 + 𝛼, then the infection free periodic solution ( )0),(tSe is globally attractive. (b) If 

𝛽𝑒−𝜇𝜔 > 𝑟 + 𝜇 + 𝛼, then the infection free periodic solution ( )0),(tSe is globally attractive provided that 𝜃 > 𝜃∗ or 
𝜏 > 𝜏∗. 
 
Corollary 2: (a) If 𝛽𝑒−(𝜇+𝛿)𝜏 ≤ (𝑟 + 𝜇 + 𝛼)(1 − (1 − 𝜃)𝑒−(𝜇+𝛿)𝜏, then the periodic solution ( )0),(tSe is globally 

attractive. (b) If 𝛽𝑒−(𝜇+𝛿)𝜏 > (𝑟 + 𝜇 + 𝛼)(1 − (1 − 𝜃)𝑒−(𝜇+𝛿)𝜏, then the infection free periodic solution )0),(tSe is 
globally attractive provided that 𝜔 > 𝜔∗. 
 
Remark: theorem 1 determines the global attractively of system (1) in G for the case R*<1. Its epidemiological 
implication is that the infectious population vanishes. Corollaries 1and 2 imply that the infectious population will 
disappear if the length of latent period of the infectious nodes large enough. 
 
PERMANENCE 
 
In this section we say the infectious population is endemic if the infectious population persists a certain level for 
sufficiently large time. The endemicity of the infectious population can be well captured and studied through the notion 
of uniform persistence and permanence. 



Kaveri kanchan Kumari*1, Aditya Kumar Singh2 and Sahdeo Mahto3 /  
Time Delay SEIRS e-Epidemic Model For Computer Network / IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                   270  

 
Definition 1: System (1) is said to be uniformly persistent if there is 𝜂 > 0 (independent of the initial data) such that 
every solution (S(t), I(t)) with initial conditions (3) of system (2) satisfies 

  𝑡
𝑙𝑖𝑚
�� ∞ inf 𝑆(𝑡) ≥  𝜂;   𝑡

𝑙𝑖𝑚
�� ∞ inf 𝐼(𝑡) ≥  𝜂 

 
Definition 2: System (1) is said to be permanent if there exists a compact region G0𝜖 inf G such that every solution of 
(2) with initial conditions (3) will eventually enter and remain in region G0. 
 

We denote 𝑅∗ = 𝛽𝑒−𝜇𝜔(1−𝜃)�1−𝑒−(𝜇+𝛿)𝜏�
�1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏�(𝑟+𝛼+𝜇)

;      I*= 𝜇𝑒
−𝜇𝜔(1−𝜃)�1−𝑒−(𝜇+𝛿)𝜏�

�1−(1−𝜃)𝑒−(𝜇+𝛿)𝜏�(𝑟+𝛼+𝜇)
− 𝜇

𝛽
                                                              (21) 

 
Theorem: suppose R*>1, then there is a positive constant q such that each positive solution (S(t), I(t)) of system (2) 
satisfies I(t) ≥ 𝑞 if t is large.  
 
Proof: The second equation of (2) can be written as  

𝑑𝐼
𝑑𝑡

= 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − (𝑟 + 𝜇 + 𝛼)𝐼(𝑡) + 𝛽𝑒−𝜇𝜔𝑆(𝑡)𝐼(𝑡) − 𝛽𝑒−𝜇𝜔𝑆(𝑡)𝐼(𝑡) 

     = {𝛽𝑒−𝜇𝜔𝑆(𝑡) − (𝑟 + 𝜇 + 𝛼)}𝐼(𝑡) − 𝛽𝑒−𝜇𝜔 𝑑
𝑑𝑡 ∫ 𝑆(𝜃)𝐼(𝜃)𝑑𝜃𝑡

𝑡−𝜔  
 
Let us consider any positive solution (S(t), I(t)) of system (2). According to this solution, we define 

V(t)=I(t)+𝛽𝑒−𝜇𝜔 ∫ 𝑆(𝜃)𝑡
𝑡−𝜔 𝐼(𝜃)𝑑𝜃                                                                                                                 (22) 

 
The derivative of V(t) along the solution (2) is 

𝑑𝑉
𝑑𝑡

= (𝛼 + 𝑟 + 𝜇)𝐼(𝑡) � 𝛽𝑒−𝜇𝜔

(𝑟+𝜇+𝛼)
𝑆(𝑡) − 1�                                                                                                        (23) 

 
Since R*>1, we see that I* > 0 and there exists sufficiently small 𝜖 > 0 such that  

( 𝛽𝑒−𝜇𝜔

(𝜇+𝑟+𝛼)
( 𝜇
𝜇+𝛿+𝛽𝐼∗

× (1−𝜃)(1−𝑒−(𝜇+𝛿+𝛽𝐼∗)𝜏

1−(1−𝜃)𝑒−(𝜇+𝛿+𝛽𝐼∗)𝜏 − 𝜖) > 1                                                                                            (24) 
 
We claim that it is impossible that I(t)≤I* for all t ≥ t0 (t0 is non negative constant). Suppose the contrary, then as t ≥ t0. 

𝑑𝑁
𝑑𝑡

= 𝜇 − 𝜇𝑁(𝑡) − 𝛼𝐼 ≥ (𝜇 − 𝛼𝐼∗) − 𝜇𝑁(𝑡)                                                                                                   (25) 
𝑑𝐸
𝑑𝑡

= 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − 𝜇𝐸(𝑡) 
 
This implies 𝑑𝐸

𝑑𝑡
≤ 𝛽𝐼∗ − 𝜇𝐸(𝑡)                                                                                                                                       (26)                                                                 

 
By (25) and (26), there exists T1≥ 𝜔 such that  

𝑁(𝑡) ≥ 1 − 𝛼
𝜇
𝐼∗ − 𝜖

2
;           E(t)≥ 𝛽𝐼∗

𝜇
+ 𝜖

2
  for all t ≥ t0+ T1. Hence, when t ≥ t0+ T1 and t≠ 𝑘𝜏 (𝑘𝜖𝑁) 

𝑑𝑆(𝑡)
𝑑𝑡

= 𝜇 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) + 𝛿(𝑁(𝑡) − 𝑆(𝑡) − 𝐸(𝑡) − 𝐼(𝑡)) 

          ≥ �𝜇 + 𝛿 �1 − 𝛼
𝜇
𝐼∗ − 𝛽𝐼∗

𝜇
− 𝐼∗ − 𝜖�� − (𝜇 + 𝛽𝐼∗ + 𝛿)𝑆(𝑡)  

 
Consider the following comparison system   

𝑑𝑉
𝑑𝑡

= �𝜇 + 𝛿 �1 − 𝛼
𝜇
𝐼∗ − 𝛽 𝐼∗

𝜇
− 𝐼∗ − 𝜖�� − (𝜇 + 𝛽𝐼∗ + 𝛿)𝑉(𝑡);         𝑡 ≠ 𝑘𝜏                                                    (27) 

V(t)= (1 − 𝜃)𝑉(𝑡);     𝑡 = 𝑘𝜏 
 
By Lemma 1, we obtain 

𝑉𝑒(𝑡) =
�𝜇+𝛿�1−𝛼𝜇𝐼

∗−𝛽𝐼
∗
𝜇−𝐼

∗−𝜖��

(𝜇+𝛽𝐼∗+𝛿)
+ �𝑉∗ −

�𝜇+𝛿�1−𝛼𝜇𝐼
∗−𝛽𝐼

∗
𝜇−𝐼

∗−𝜖��

(𝜇+𝛽𝐼∗+𝛿)
�𝑒−(𝜇+𝛽𝐼∗+𝛿)(𝑡−𝑘𝜏);  

k𝜏 < 𝑡 ≤ (𝑘 + 1)𝜏 

where     𝑉∗ =
�𝜇+𝛿�1−𝛼𝜇𝐼

∗−𝛽𝐼
∗
𝜇−𝐼

∗−𝜖��(1−𝜃)

(𝜇+𝛽𝐼∗+𝛿)�1−(1−𝜃)�(𝑒−(𝜇+𝛽𝐼∗+𝛿)𝜏))
(1 − 𝑒−(𝜇 + 𝛽𝐼∗ + 𝛿)𝜏) 

is the unique globally asymptotically stable periodic solution of system (27). There exists a T* greater than T1 satisfying  
S(t)> 𝑉𝑒(𝑡) − 𝜀 ≥ 𝑉∗ − 𝜀 = 𝜂   
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0 + 𝑇∗ ≜ 𝑡1                                                                                                                                 (28) 
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By (22) and (28), we have  

𝑑𝑉
𝑑𝑡

≥ (𝑟 + 𝜇 + 𝛼) �
𝛽𝑒−𝜇𝜔

𝑟 + 𝜇 + 𝛼
𝜂 − 1� 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡1 ;      𝑡 ≠ 𝑘𝜏, 𝑡 − 𝜔 ≠ 𝑘𝜏                                                                                                            (29) 
 
Set         Il = 𝐼(𝑡)whe𝑟𝑒 min 𝑜𝑓 𝑡𝜖[𝑡1 , 𝑡1 + 𝜔]  
 
We have to show that I(t) ≥ Il for all t≥t 1. If it is not true, then there exists a T0 ≥ 0 such that I(t) ≥ Il for all t1≤ t ≤ 
t1+𝜔 + 𝑇0, I(t1+𝜔 + 𝑇0) = 𝐼𝑙 and 𝑑𝐼(t1+𝜔+𝑇0)

𝑑𝑡
≤ 0.  However, the second equation of system (2) and (28) imply that   

I(t1+𝜔 + 𝑇0) > (𝑟 + 𝜇 + 𝛼) �𝛽𝑒
−𝜇𝜔

𝑟+𝜇+𝛼
𝜂 − 1�Il> 0. 

 
This is a contradiction. Thus, I(t)≥ 𝐼𝑙 for all t > t1, consequently t>t1, we have that 

𝑑𝑉
𝑑𝑡
≥ (𝑟 + 𝜇 + 𝛼) �𝛽𝑒

−𝜇𝜔

𝑟+𝜇+𝛼
𝜂 − 1�Il > 0,   (𝑡 ≠ 𝑘𝜏,𝜔 ≠ 𝑘𝜏) 

 
Since V(t) is continuous on [0, +∞] and these points at which V(t) is not derivable are at most countable, this implies 
V(t)→ ∞ as t→ ∞. This is contrary to the boundedness of V(t). Hence, the claim is proved. From the claim, we will 
discuss the following two possibilities 

(1) I(t) ≥ I* for large t. 
(2) I(t) oscillates about I* for large t. 

 
Finally, we will show that 𝐼(𝑡) ≥ 𝐼∗𝑒−(𝑟+𝛼+𝜇)(𝑇∗+𝜔) ≜ 𝑞 as t is large sufficiently. Evidently, we consider the case (2). 
Let t1 and t2 be large sufficiently times satisfying: 

I(t1) = (I2) = I*;   I(t) < I* as t𝜖(t1, t2). 
 
If t2-t1≤T*+𝜔, 𝑠𝑖𝑛𝑐𝑒 𝑑𝐼

𝑑𝑡
≥ −(𝜇 + 𝛼 + 𝑟)𝐼(𝑡)𝛼 and I(t1) = I*which implies I(t)≥q for all t𝜖[t1,t1+T*+𝜔]. Thus, proceeding 

exactly as the proof for above claim, we see that I(t) ≥ q for all t𝜖[t1,t1+T*+𝜔] and S(t) > η for all t𝜖[t1+T*, t2]. Next, we 
will prove that I(t) ≥ 𝑞 is not true, then there is a T1≥ 0 such that I(t)≥ 𝑞for all t 𝜖 [t1,t1+T*+𝜔 +T1], I(t1+T*+𝜔 +T1) = 
q and I’(t1+T*+𝜔 +T1) ≤ 0. Using the second equation of system (2) as t = t1+T*+𝜔 +T1, we further obtain 

𝑑𝐼
𝑑𝑡

= 𝛽𝑒−𝜇𝜔𝑆(𝑡 − 𝜔)𝐼(𝑡 − 𝜔) − (𝑟 + 𝜇 + 𝛼) ≥ (𝛽𝑒−𝜇𝜔𝜂 − (𝜇 + 𝛼 + 𝑟)𝑞 > 0. 
 
This is a contradiction. So, (I) ≥ q is valid for all t𝜖[t1, t2]. 
 
Theorem 3: Suppose R* > 1. Then system (2) is permanent. 
 
Proof: Let (S(t), I(t), R(t), N(t)) be any solution of system (2). From the first equation of system (2), we have    

S’(t)≥ 𝜇 − (𝜇 + 𝛽)S(t). 
 
We consider the following auxiliary comparison system 

𝑑𝑥
𝑑𝑡

= 𝜇 − (𝜇 + 𝛽)𝑥(𝑡), 𝑡 ≠ 𝑘𝜏; 𝑘𝜖𝑁                                                                                                                 (30) 
x(t+) = (1-θ)x(t);  t = k𝜏.    

 
By Lemma 1, we get that     

𝑡
𝑙𝑖𝑚
��∞ inf 𝑆(𝑡) ≥ 𝑝;                                                                                                                                          (31)  

where    𝑝 = 𝜇
𝜇+𝛽

× (1−𝜃)�1−𝑒−(𝜇+𝛽)𝜏�
1−(1−𝜃)𝑒−(𝜇+𝛽)𝜏  

 
From the theorem (2) and the third equation of system(2), we have 

R’(t) = r×q−(𝜇 + 𝛿)𝑅(𝑡). 
 

It is easy to see that   𝑡
𝑙𝑖𝑚
��∞ inf𝑅(𝑡) ≥ 𝜔;   𝜔 = 𝑟𝑞

𝜇+𝛿
 

Set G0= �(𝑆, 𝐼, 𝑅,𝑁):𝑆 ≥ 𝑝; 𝐼 ≥ 𝑞;𝑅 ≥ 𝜔; 𝑆 + 𝐼 + 𝑅 ≤ 1; 𝜇
𝜇+𝛼

≤ 𝑁 ≤ 1� 
 
By the theorem (2) and (3), we know that the set G0 is globally attractive, i.e., every solution of (2) with initial 
condition (3) will eventually enter and remain in the region G0. Therefore, the system (2) is permanent. 
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CONCLUSION 
 
In this paper, we have studied the dynamical behavior of a delay SEIRS e- epidemic model with anti-malicious 
software and saturation incidence rate. We introduced two threshold values R* and R*, one for the global stability of the 
infection-free solution and another for the permanence of the endemic solution. We obtain if R*<1then the malicious 
objects will be permanent which means that after some period of time the malicious objects will become endemic. Our 
results indicate that a long latent period of the malicious objects or a large number of malicious software will lead to 
eradication of the malicious objects. Numerical methods are employed to solve and simulate the system of equations 
developed with different parameters and behavior of susceptible, infected and recovered nodes with respect to time are 
observed, which is depicted in figure 2.The analysis of the graph says that susceptible and exposed nodes are 
decreasing initially with the increase of time, infectious nodes and recovered nodes are first increasing and then 
decreasing with the increase of time. Ultimately, They all are asymptotically stable. 

 
Figure-2:  Dynamical behavior of susceptible, exposed, infected and recovered nodes with respect to time Dynamical 

behavior of system (1) with r β = 0.05; α = 0.001; δ = 0.01; µ = 0.03; r = 0.1; ω = 0.3; E(0) = 1000; I(0) = 2000;  
S(0) = 10000 and N(0) =15000. 

 

 
Figure-3: Dynamical behavior of infected nodes and recovered nodes with time 
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