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ABSTRACT 

In this paper we discuss homomorphism of CI-algebras, its examples and investigate some new properties. We 
consider some particular type of mappings defined on Cartesian product of CI–algebras. 
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1. INTRODUCTION 
 
In 1966, Y. Imai and K. Iseki ([2, 3]) introduced the notion of BCK/BCI-algebras. There exist several generalizations 
of BCK/BCI-algebras, such as BCH-algebras ([1]), BH-algebras ([4]), d-algebras ([8]), etc. As a dualization of a 
generalization of BCK-algebra ([5]), H.S. Kim and Y. H. Kim introduced the notion of BE-algebra ([6]). In 2010, B. L. 
Meng ([7]) introduced the notion of CI-algebras as a generalization of BE-algebras. The concept of Homomorphisms in 
CI-algebras was introduced by P.M.Sithar Selvam, T.Priya and T.Ramchandran ([10]). In this paper we discuss some 
special type of homomorphisms on CI-algebras and investigate some of its properties in details. 
 
 2. PRELIMINARIES                                                                                                            
 
Definition 2.1 ([6]): A system (X; ∗, 1)  of type (2, 0) consisting of a non-empty set X, a binary operation ∗ and a fixed 
element 1 is called a BE–algebra if the following conditions are satisfied:  

1. (BE  1)  x ∗ x = 1 
2. (BE  2)  x ∗ 1 = 1                                                                                         
3. (BE  3)  1 ∗ x = 1                                                                                              
4. (BE  4)  x ∗ (y ∗ z)  = y ∗ (x ∗ z) for all x, y, z ∈ X. 

 
Definition 2.2 ([7]): A system (X; ∗, 1) consisting of a non–empty set X, a binary operation ∗ and a  fixed element 1, is 
called a CI–algebra if the following conditions are satisfied: 

1. (CI 1)  x ∗ x = 1 
2. (CI 2)  1 ∗ x = x 
3. (CI 3)  x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X  

 
In X, we can define a binary relation ≤ by x ≤ y iff x ∗ y = 1. 
 
Example 2.3: Let X = R+ = {x ∈ R: x > o} 
                        For x, y ∈ X, we define 
                        x ∗ y = y . 1

𝑥
 

Then (X; ∗, 1) is a CI–algebra  
 
Example 2.4: The simplest example of a BE–algebra and a CI –algebra are the following. 
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Let X = {0, 1}. We consider binary operations ∗ and o given by the Cayley tables  

 
                                                                  Table-(2.4(a))    Table-(2.4(b)) 
 Then (i) (X; ∗, 1) is a BE–algebra, 
          (ii) (X; o, 1) is a CI–algebra but not a BE–algebra. 
 
In X, we can define a binary relation ≤ by x ≤ y iff x ∗ y = 1. 
 
Lemma 2.5 ([7]): In a CI–algebra (X; ∗, 1) following results are true:  

(1)   x ∗ ((x ∗ y) ∗ y) = 1 
(2)  (x ∗ y) ∗ 1 = (x ∗ 1) ∗ (y ∗ 1)  for all x, y ∈ X                                                                                         

 
Definition 2.6 ([7]): Let (X; ∗, 1) be a CI–algebra. 

(a)  A non-empty subset I of X is said to be an ideal of X if it satisfies the following  conditions: 
(i) x ∈ X and a ∈ I imply x ∗ a ∈ I, i.e., X ∗ I ⊆ I 
(ii) x ∈ X and a ∈ I, b ∈ I imply (a ∗ (b ∗ x)) ∗ x ∈ I 

(b)  A non-empty subset A of X is called a sub–algebra of X if x ∈ A and y ∈ A imply x ∗ y ∈ A.  
It is easy to see that X is a trivial ideal (resp. sub–algebra) of X.   
 
Note 2.7: Taking x = a in (i) we see that if I is an ideal in X then 1 ∈ I. 
 
Theorem 2.8 ([9]): Let (X; ∗, 1) be a system consisting of a non-empty set X, a binary  operation ∗ and a fixed element   
Let Y = X  x  X. For 𝓊 = (x1, x2), 𝓋 = (y1, y2)  a binary  operation ⊗ is defined in Y as  

𝓊 ⊗ 𝓋 = (x1 ∗ y1, x2 ∗ y2) 
Then (Y; ⊗, (1, 1))  is  a  CI- algebra iff (X; ∗, 1) is a CI-algebra . 
 
Corollary 2.9 ([9]): If (X; ∗, 1) and (Y; o, e) are two CI–algebras, then Z = X x Y is also a CI–algebra under the binary 
operation defined as follows:                                                                                                          
 
For u = (x1, y1) and v = (x2, y2) in Z,                                                                                                                  

u ⊗ v = (x1 ∗ x2, y1 o y2) 
Here the distinct element of Z is (1, e). 
 
Note 2.10: The above result can be extended for finite numbers of CI-algebras. 
 
Theorem 2.11 ([7]): Let (X; ∗, 1) be a BE-algebra and let a∉X. A binary operation o is defined on X ∪ {a} as follows: 
For any x, y ∈ X ∪ {a}, 

x o y =     x ∗ y    if  x, y ∈ X 
          a          if  x = a, y ≠ a 
                a          if  x ≠ a, y = a 
.           1          if  x = y = a 

Then (X ∪ {a}; o, 1) is a CI–algebra 
 
3.1 HOMOMORPHISMS IN CI-ALGEBRAS 
 
Definition 3.1 ([37]): Let (X; ∗, 1) and (Y; o, e) be CI-algebras and let f: X → Y be a mapping. Then f is said to be a 
homomorphism if  

f (x ∗ y) = f (x) o f (y) for all x, y ∈ X. 
 
Proposition 3.2: Let f: (X; ∗, 1) → (Y; o, e) be a homomorphism. Then 

(a) f(1) = e,  and (b) x ≤ y ⇒ f(x) ≤ f(y). 
 
Proof: (a) Since 1 ∗ 1 = 1, we see that 
                  f(1 ∗ 1) = f(1) ⇒ f(1) o f(1) = f(1)  
                           ⇒ e = f(1). 
            (b) let x ≤ y. Then x ∗ y = 1. So  
                     f(x ∗ y) = f(1) = e 
                ⇒ f(x) o f(y) = e ⇒ f(x) ≤ f(y). 
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Example 3.3: Let (X; ∗, 1) be a BE-algebra and let (Y; o, e) be CI-algebra defined in theorem (2.11) where Y=XU{t},  
t ∉ X. Let f be a homomorphism defined on X. Let f1: Y → Y be defined as  

f1(x) = f (x) if x ∈ X and f1(t) = t. 
 
Now for x, y ∈ X, f1(x o y) = f(x ∗ y) = f(x) ∗ f(y) = f1(x) ∗ f1(y) 
                                             = f1(x) o f1(y). 
 
For x ∈ X, we have f1(x o t) = f1(t) = t,  
and   f1(x) o f1(t) = f1(x) o t = t.  
 
Also   f1(t o x) = f1(t) = t, 
and     f1(t) o f1(x) = t o f1(x) = t.        
 
So f1 is a homomorphism. 
 
Definition 3.4 ([37]): Let f: (X; ∗, 1) → (Y; o, e) be a homomorphism. Then the kernel of f, denoted as ker f, is defined 
as Ker f = {x ∈ X: f(x) = e}.                  
 
Proposition 3.5: Let f: (X; ∗, 1) → (Y; o, e) be a homomorphism. If f(X) ⊆ B(Y) then ker f is an ideal of X.  
 
Proof: Let x ∈ X and a ∈ ker f. Then  
            f (x ∗ a) = f(x) o f(a) = f(x) o e = e, 
 
Since    f(x) ∈ B(Y). So  x ∗ a ∈ ker f. 
 
Again let a, b ∈ ker f and x ∈ X. 
Then     f((a ∗ (b ∗ x)) ∗ x) = (f(a) o (f(b) o f(x))) o f(x) 

= (e o (e o f(x))) o f(x) 
= (e o f(x)) o f(x) 
= f(x) o f(x) = e. 

This implies that (a ∗ (b ∗ x)) ∗ x ∈ ker f. 
 
Hence ker f is an ideal. 
 
Definition 3.6: Let f, g ∈ F(X). Then composite of f and g, denoted as f  • g, is defined as 

(f • g)(x) = f(g(x)) 
 
Proposition 3.7: Composition of two homomorphisms is a homomorphism. 
 
Proof: Let f and g be homomorphisms in F(X). Then we have 

(f • g)(x ∗ y) = f(g(x ∗ y)) 
  = f(g(x) ∗ g(y)) 
  = f(g(x)) ∗ f(g(y)) 
  = (f • g)(x) ∗ (f • g)(y). for all x, y ∈ X. 

Hence f • g is a homomorphism. 
 
Notation 3.8: Let f: X → X be a homomorphism and let  

Bf = {x ∈ X: f(x) = x}. 
 
Proposition 3.9: Bf is a subalgebra of X. 
 
Proof: Since f (1) = 1, 1 ∈ Bf and Bf is non-empty. Let a, b ∈ Bf.  
Then f(a) = a and f(b) = b. 
 
So f (a ∗ b) = f(a) ∗ f(b) = a ∗ b  
                  ⇒ a ∗ b ∈ Bf. 
Hence the result.  
 
Now we discuss some special type of homomorphisms on CI– algebras. 
 
Let (X; ∗, 1) be a CI–algebra and let Y = Xn be the Cartesian product of X with itself n times. Then theorem (2.8) 
implies that Y is a CI-algebra under the binary operation ⊗ and fixed element 1n = (1, 1,......,1). 
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Definition 3.10: The mappings Pk and Pij defined on Xn into itself as  
  Pk(x1,......, ,xk,.........,xn) = (1, 1,.......,xk,.....,1)    
  Pij(x1, .......,,xi,......,xj,.......,xn) = (1, 1,....., xi, 1,....,xj, .....,1) are called dual projection maps. 
 
Theorem 3.11: Pk and Pij are homomorphism on Xn. 
 
Proof: Let x = (x1,...........,xn) and y = (y1,..........,yn) be elements of Xn . Then   

Pk(x ⊗ y) = Pk (x1 ∗ y1,........,xk ∗ yk,..........,xn ∗ yn) 
 = (1, ......,xk ∗ yk,........,1) 
 = (1,.....,xk,........,1) ⊗ (1,......,yk,.......,1) 
 = Pk(x) ⊗ Pk(y). 

This implies that Pk is a homomorphism. 
 
Similarly it can be proved that Pij is a homomorphism. 
 
Definition 3.12: Let (X; ∗, 1) be a CI–algebra and let Y = Xn. Then forward shift with replacement 1 and backward 
shift with replacement 1, denoted as (F S 1) and (B S 1) respectively, are defined as  

(F S 1)(x) = (1, x1, x2,........,xn - 1) 
(B S 1)(x) = (x2, x3,...........,xn, 1) for all x = (x1, x2,..........,xn) ∈ Y. 

 
Theorem 3.13: (F S 1) and (B S 1) are homomorphisms on Y. 
 
Proof: Let 𝓊, 𝓋∈ Y. Then 𝓊 = (x1,................,xn) and  𝓋 = (y1,................,yn).  
We have  

(F S 1)(𝓊 ⊗ 𝓋) = (1, x1 ∗ y1,..........,xn - 1 ∗ yn - 1 ) 
= (1, x1,...............,xn - 1) ⊗ (1, y1,..............,yn - 1) 
= ((F S 1)(𝓊)) ⊗ ((F S 1)(𝓋)). 

 
Also                     (B S 1) (𝓊 ⊗ 𝓋) = ( x2 ∗ y2,........, xn ∗ yn, 1 ) 

 = (x2,..............,xn, 1) ⊗ (y2,..............,yn, 1) 
 = ((B S 1)(𝓊)) ⊗ ((B S 1) (𝓋)). 

 
Hence (F S 1) and (B S 1) are homomorphisms. 
 
Note 3.14: If X contains 0 then (F S 0) and (B S 0) on Y are not homomorphisms on Y, since 0 ∗ 0 = 1 ≠ 0.  
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