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ABSTRACT 
In this paper, a note on singular Multiparameter matrix eigenvalue problems is discussed. To find solutions of singular 
Multiparameter problem, the original problem has been reformulated into another system based on linear combination 
of certain operator determinants. The new system has been by applying Kronecker Product Method adopted by 
Atkinson for Right Definite problem and it is proved that only eigenvectors can be evaluated by this approach. 
MATLAB program is used for numerical calculations. 
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1. INTRODUCTION 
 
The abstract settings of Multiparameter Matrix Eigenvalue Problems (MMEP) to be studied is 

�𝐴𝑖 − ∑ 𝜆𝑗𝐵𝑖𝑗𝑘
𝑗=1 �𝑥𝑖 = 0,     𝑖 = 1, 2, … … , 𝑘                                                         (1.1) 

where the problem is to find k-tuple of values 𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4 … … … … 𝜆𝑘) 𝜖 𝐶𝑘 for non-zero vector  𝑥𝑖 . The 
operators   𝐴𝑖, 𝐵𝑖𝑗  are self-adjoint, bounded and linear that act on separable Hilbert Spaces 𝐻𝑖 , 𝑥𝑖 ∈ 𝐻𝑖 . The k-tuple 
𝜆 𝜖 𝐶𝑘  is called an eigenvalue and the decomposible tensor product 𝑥 = 𝑥1 ⊗ 𝑥2 ⊗ 𝑥3 … … … .⊗𝑥𝑘  is the 
corresponding (right) eigenvector. Similarly left eigenvector can also be defined. 
 
MMEPs arise in desperate scientific domains, particularly in mathematical physics when the method of separation of 
variables technique is used to solve boundary value problems. Here we present the fundamental notions regarding the 
theory of Multiparameter problem in Hilbert space adopted by Atkinson [4], [5] as follows: 
 
First we consider the linear transformation Bij

+ on H that are induced by Bij and are defined by  
 Bij
+(𝑥1 ⊗ 𝑥2 … … … .⊗𝑥𝑘) = 𝑥1 ⊗ 𝑥2 ⊗ … …⊗𝑥𝑖−1 ⊗ Bij𝑥𝑖 ⊗ 𝑥𝑖+1 ⊗ … .⊗ 𝑥𝑘 

 
On the decomposable tensor  𝑥1 ⊗ 𝑥2 … … … .⊗𝑥𝑘  where 𝑥𝑖 ∈ 𝐻𝑖 , extended to H by linearity. 
 
We may define the operator determinants, 

∆0= �
B11+ . . B1,k

+

⋮ ⋮ ⋮
Bk1
+ … Bk,k

+
   �                                                           (1.2) 

and 

∆i= �
B11+ … B1,i−1

+

⋮ ⋮ ⋮
Bk1
+ … Bk,i−1

+
    

A1
+ B1,i+1

+ …
⋮ ⋮ ⋮

Ak
+ Bk,i+1

+ …
     

B1k+
⋮

Bkk
+
�                                           (1.3) 
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Generally, the problem (1.1) is considered as nonsingular i.e when ∆0 is positive definite and such a problem is called 
Right Definite [5]. Atkinson proved [4] that a nonsingular system of the form (1.1) can be transformed into a system of 
Generalized Eigenvalue Problem of the form 

∆ix = 𝜆i∆0x                                                                          (1.4) 
 
In this case the matrices ∆0−1∆𝑖 (i = 1; 2; : : : ; k) commute and all the eigenvalues of (1.1) are coincide with the 
eigenvalues of (1.4). Several Numerical Methods are available to treat the Right Definite case, but they are particularly 
in two-parameter case, for reference [3], [6], [7], [8]. 
 
MMEP is called singular [2] if ∆0 is singular. MMEP obtained by a linearization of the Polynomial eigenvalue problem 
[9] is singular. If the operator determinant ∆0  is singular, then infinitely many 𝜆i satisfies the associated systems of 
generalized eigenvalue problems of the form (1.4) of the corresponding MMEPs, which makes it difficult to compute 
appropriate eigenvalues (𝜆1, 𝜆2, … … … … 𝜆𝑘). There are limited numerical tools to treat the singular case in the existing 
literature. In [10], Muhic etc. all., showed that finite regular eigenvalues of (1.1) are related to the finite regular 
eigenvalues of (1.4). If all eigenvalues of (1.1) are algebraically simple, they agree with the finite regular eigenvalues 
of the singular matrix pencils. In [10] numerical algorithm is presented which based on the staircase algorithm 
developed by Van Dooren, to compute the common regular part of (1.4) and extract the finite regular eigenvalues. The 
algorithm returns matrices Q and P with orthonormal columns such that the finite regular eigenvalues are the 
eigenvalues of the following generalized eigenvalue problems 

∆ı�x = 𝜆i∆0�x                                                                          (1.4) 
where ∆ı�= 𝑃∗∆i Q  and then  ∆0 �  is non singular. But when order of the matrix is very large, this approach is not an 
efficient one, as that in nonsingular case, due to the computational complexity. This approach is still open for more than 
two parameter problems. In [1], Muhic etc. all., proved that a singular two-parameter eigenvalue problem can be solved 
by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue 
problems. Another algorithm may be found in [9], where the Jacobi-Davidson type methods presented in [6], [7] has 
been extended to the regular singular MMEP. 
 
In our present study we consider the singular case, where the original problem will be reformulated into another system 
based on linear combination of certain operator determinants. Kronecker product method will be applied on the new 
system to find the solutions. 
 
2. AN APPROACH FOR SINGULAR CASE 
 
Suppose the linear combination  

∆=  𝛼0∆0 + 𝛼1∆1 +  … … … … + 𝛼𝑘∆𝑘                                             (2.1) 
is non singular. Let   

𝜆 = 𝛼0𝜆0 + 𝛼1𝜆1 … +   … … … … + 𝛼𝑘𝜆𝑘 ≠ 0                                           (2.2) 
 
Theorem 1: Under the assumptions of (2.1) and (2.2), Multiparameter system (1.4) reduces to  

(∆𝑖 − 𝜆−1𝜆𝑖∆)𝑥 =0                                                           (2.3) 
 
Proof: Pre multiplying above equations of (1.4) respectively by 𝛼1 ,𝛼2, … … … ,𝛼𝑘 and then adding all we get 
𝛼1∆1𝑥 + 𝛼2∆2𝑥 +  … … … … + 𝛼𝑘∆𝑘𝑥 =  𝛼1𝜆1∆0𝑥 + 𝛼2𝜆2∆0𝑥  … … … … + 𝛼𝑘𝜆𝑘∆0𝑥 

⇒(𝛼0∆0 + 𝛼1∆1 + 𝛼2∆2 +  … … … + 𝛼𝑘∆𝑘)𝑥 = (𝛼0 + 𝛼1𝜆1 + 𝛼2𝜆2 + … … … + 𝛼𝑘𝜆𝑘)∆0𝑥 
⇒ ∆𝑥 = 𝜆∆0𝑥 
⇒ ∆0𝑥 = 𝜆−1 ∆𝑥 

 
Substituting in equation (1.4), we ge  (∆𝑖 − 𝜆−1𝜆𝑖∆)𝑥 = 0. Hence the theorem. 
 
Equation (2.3) can be rewritten as: 

(∆𝑖 − 𝑘𝑖∆)𝑥 = 0                                                                                       (2.4) 
 
Equations of (2.4) are of the similar form as that of the equations (1.4). Since ∆  is nonsingular by our assumption (2.1), 
and hence Kronecker Product Method can be applied to solve these. Here the eigenvectors 𝑥 = 𝑥1 ⊗ 𝑥2 ⊗
𝑥3 … … … .⊗ 𝑥𝑘 obtained from system of equations (2.4) will also be the eigenvector of the system (1.4) for any choice 
of 𝛼𝑖 , 𝑖 = 1,2, … … , 𝑘. Thus this approach provides us a technique to find the eigenvectors of Multiparameter problems 
for singular case. 

 
3. MODEL PROBLEM, RESULTS AND DISCUSSIONS 
 

For numerical illustration we consider following singular three-parameter problems 
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�
−1 0 0
0 1 0
0 0 1

� 𝑥1 = �𝜆1 �
1 2 3
1 0 1
3 4 7

� + 𝜆2 �
1 1 1
0 0 0
0 0 0

� + 𝜆3 �
0 0 0
0 0 0
2 2 2

��  𝑥1                          (3.1) 

 

�
6 0 0
0 7 0
0 0 8

� 𝑥2 =  �𝜆1 �
2 0 0
0 3 0
0 0 4

� + 𝜆2 �
0 0 0
0 0 0
0 0 0

� + 𝜆3 �
6 0 0
0 2 0
0 0 −2

�� 𝑥2                          (3.2) 

 

�
2 0 0
0 3 0
0 0 4

� 𝑥3 =  �𝜆1 �
5 0 0
0 3 0
0 0 4

� + 𝜆2 �
7 0 0
0 8 0
0 0 1

� + 𝜆3 �
2 0 0
0 3 0
0 0 1

�� 𝑥3             (3.3) 

 
The Multiparameter systems represented by the equations (3.1), (3.2) and (3.3) are singular because for this system the 
operator determinant, |∆0| vanishes. Two different choices for 𝛼𝑖 , 𝑖 = 0, 1,2, 3  are considered for computational works 
and the results are presented in Table 1 and Table 2.  𝛼𝑖   are selected in such a way that the corresponding ∆ becomes 
nonsingular. Table 1 contains the results, when  𝛼0   = 3,  𝛼1   = 4,  𝛼3   = 5,  𝛼4   = 3. Similarly, Table 2 contains the 
results when  𝛼0   = -1,  𝛼1   = 7,  𝛼3   = -3,  𝛼4   = 4.  Kronecker Product Method has been applied and accordingly      
k1, k2 and k3 are evaluated similar to that of Right definite case. From the tables we see that eigenvectors for both the 
cases are same, but (k1, k2, k3) are different and hence eigen 3-tuples are also different. Thus this approach allows us 
only to find the eigenvectors of singular case. 
 

Table-1: Case I, when  𝜶𝟏 = 𝟑, 𝜶𝟐 = 𝟒, 𝜶𝟑 = 𝟓, 𝒂𝒏𝒅 𝜶𝟒 = 𝟑. 
(𝑘1, 𝑘2, 𝑘3) Eigenvectors 

(0.1414,−0.0875,0.1218) (−0.7826 0 0 0 0 0  0  0 0 − 0.1492 0 0 0 0 0 0 0 0 0.6044 0 0 0 0 0 0 0 0)𝑇 
(−0.0335,0.0208,0.1773) (−0.3843 0 0 0 0 0 0 0 0 0.2566 0  0  0  0 0 0 0 0 − 0.8868 0 0 0 0 0 0 0 0)𝑇 
(−0.7973,0.4936,0.4198) (0.3371 0 0 0 0 0 0 0 0 0.8026 0 0 0 0 0 0 0 0 -0.4921  0  0  0  0  0  0  0  0)T 

(0.4382,−0.1095,−0.1072) (0  -0.6024 0 0 0 0 0 0 0 0 -0.5774 0 0 0 0 0 0 0 0 0 0.5511 0 0 0 0 0 0)T 

(0.9020,−0.4548,−0.3872) (0 0 0 0 -0.6810 0 0 0 0 0 0 0 -0.5107 0 0 0 0 0 0 0 0 0.5248 0 0 0 0 0)T 

(0.5854,−0.2908,−0.2043) (0 0 0 0 0 0 0.7176 0 0 0 0 0 0 0 0 0.4491 0 0 0 0 0 0 0 0 -0.5323 0 0)T 

(0.1408,−0.0649,0.1035) (0 0 -0.7822 0 0 0 0 0 0 0 0 -0.1714 0 0 0 0 0 0 0 0 0.5990 0 0 0 0 0 0)T 
(0.1481,−0.0370,0.0741) (0 -0.7761 0 0 0 0 0 0 0 0 -0.2238 0 0 0 0 0 0 0 0 0.5895 0 0 0 0 0 0 0)T 

(0.2394,−0.0503,−0.0036) (0 0 0 0 -0.7290 0 0 0 0 0 0 0 0 -0.3863 0 0 0 0 0 0 0 0 0.5651 0 0 0 0)T 
(0.2103,−0.0443,0.0173) (0 0 0 0 0 0 0 0 0.7475 0 0 0 0 0 0 0 0.3412 0 0 0 0 0 0 0 0 -0.5699 0)T 
(0.0068, 0.1328, 0.0503) (0 0 0.6318 0 0 0 0 0 0 0 0 -0.0185 0 0 0 0 0 0 0 0 -0.7749 0 0 0 0 0 0)T 
(−0.0395,0.0099,0.1914) (0 0.4739 0 0 0 0 0 0 0 0 -0.2897 0 0 0 0 0 0 0 0 0.8316 0 0 0 0 0 0 0)T 

(−0.0310,−0.1285,0.5554) (0 0 0 0 -0.4817 0 0 0 0 0 0 0 0 0.7492 0 0 0 0 0 0 0 0 -0.4547 0 0 0 0)T 
(−0.0945,0.1886,0.0353) (0 0 0.4845 0 0 0 0 0 0 0 0 -0.8512 0 0 0 0 0 0 0 0 0.2018 0 0 0 0 0 0)T 

(−0.0881,−0.1517,0.5982) (0 0 0 0 0 0 0 0.4608 0 0 0 0 0 0 0 0 -0.7633 0 0 0 0 0 0 0 0 0.4528 0)T 
(−0.0683,−0.0430,0.4085) (0 0 0 -0.4558 0 0 0 0 0 0 0 0 0.7410 0 0 0 0 0 0 0 0 -0.4931 0 0 0 0 0)T 
(−0.0590,−0.0572,0.4359) (0 0 0 0 0 0 -0.4361 0 0 0 0 0 0 0 0 0.7570 0 0 0 0 0 0 0 0 -0.4866 0 0)T 

(−0.0634,0.1547,0.1395) (0 0 0 0 0 -0.3032 0 0 0 0 0 0 0 0 0.9505 0 0 0 0 0 0 0 0 0.0679 0 0 0)T 
(−0.0260,0.0856,0.1839) (0 0 0 0 0 -0.1340 0 0 0 0 0 0 0 0 0.5853 0 0 0 0 0 0 0 0 -0.7996 0 0 0)T 
(−0.0311,0.0622,0.2293) (0 0 0 0 0 0 0 0 0.2808 0 0 0 0 0 0 0 0 -0.6988 0 0 0 0 0 0 0 0 0.6579)T 
(0.0574,−0.1007,0.3167) (0 0 0 0 0 0 0.7384 0 0 0 0 0 0 0 0 0.0345 0 0 0 0 0 0 0 0 -0.6735 0 0)T 
(0.0573,−0.0994,0.3152) (0 0 0 0 0 0 0 -0.7384 0 0 0 0 0 0 0 0 -0.0346 0 0 0 0 0 0 0 0 0.6734 0)T 
(0.0609,−0.0978,0.3025) (0 0 0 0.7410 0 0 0 0 0 0 0 0 0.0382 0 0 0 0 0 0 0 0 -0.6704 0 0 0 0 0)T 
(0.0607,−0.0958,0.3003) (0 0 0 0 0 0.7411 0 0 0 0 0 0 0 0 0.0384 0 0 0 0 0 0 0 0 -0.6703 0 0 0)T 
(0.0602,−0.0923,0.2964) (0 0 0 0 -0.7413 0 0 0 0 0 0 0 0 -0.0388 0 0 0 0 0 0 0 0 0.6701 0 0 0 0)T 
(0.0598,−0.1196,0.3384) (0 0 0 0 0 0 0 0 -0.7375 0 0 0 0 0 0 0 0 -0.0329 0 0 0 0 0 0 0 0 0.6745)T 
(−0.0833, 0.1667, 0.1667) (0    0   0   0   0  0  0  0  0  0   0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0)𝑇 

 
Table-2: Case II, when  𝜶𝟏 = −𝟏, 𝜶𝟐 = 𝟕, 𝜶𝟑 = −𝟑, 𝒂𝒏𝒅 𝜶𝟒 = 𝟒. 

(𝑘1, 𝑘2, 𝑘3) Eigenvectors 
(0.0900,−0.0557,0.0775) (−0.7826 0 0 0 0 0  0  0 0 − 0.1492 0 0 0 0 0 0 0 0 0.6044 0 0 0 0 0 0 0 0)𝑇 
(−0.1363,0.0844,0.7206) (−0.3843 0 0 0 0 0 0 0 0 0.2566 0  0  0  0 0 0 0 0 − 0.8868 0 0 0 0 0 0 0 0)𝑇 

(0.1440,−0.0891,−0.0758) (0.3371 0 0 0 0 0 0 0 0 0.8026 0 0 0 0 0 0 0 0 -0.4921 0  0  0  0  0  0 0 0)T 

(0.1496,−0.0374,−0.0366) (0  -0.6024 0 0 0 0 0 0 0 0 -0.5774 0 0 0 0 0 0 0 0 0 0.5511 0 0 0 0 0 0)T 

(0.1541,−0.0777,−0.0662) (0 0 0 0 -0.6810 0 0 0 0 0 0 0 -0.5107 0 0 0 0 0 0 0 0 0.5248 0 0 0 0 0)T 

(0.1497,−0.0743,−0.0522) (0 0 0 0 0 0 0.7176 0 0 0 0 0 0 0 0 0.4491 0 0 0 0 0 0 0 0 -0.5323 0 0)T 

(0.0975,−0.0450,0.0717) (0 0 -0.7822 0 0 0 0 0 0 0 0 -0.1714 0 0 0 0 0 0 0 0 0.5990 0 0 0 0 0 0)T 
(0.1121,−0.0280,0.0561) (0 -0.7761 0 0 0 0 0 0 0 0 -0.2238 0 0 0 0 0 0 0 0 0.5895 0 0 0 0 0 0 0)T 

(0.1399,−0.0294,−0.0021) (0 0 0 0 -0.7290 0 0 0 0 0 0 0 0 -0.3863 0 0 0 0 0 0 0 0 0.5651 0 0 0 0)T 
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(0.1344,−0.0283,0.0111) (0 0 0 0 0 0 0 0 0.7475 0 0 0 0 0 0 0 0.3412 0 0 0 0 0 0 0 0 -0.5699 0)T 
(−0.0336,−0.6568,−0.248) (0 0 0.6318 0 0 0 0 0 0 0 0 -0.0185 0 0 0 0 0 0 0 0 -0.7749 0 0 0 0 0 0)T 

(−0.1408, 0.0352, 0.6815) (0 0.4739 0 0 0 0 0 0 0 0 -0.2897 0 0 0 0 0 0 0 0 0.8316 0 0 0 0 0 0 0)T 
(−0.0517,−0.0703,0.3040) (0 0 0 0 -0.4817 0 0 0 0 0 0 0 0 0.7492 0 0 0 0 0 0 0 0 -0.4547 0 0 0 0)T 
(0.0465,−0.2830,−0.0530) (0 0 0.4845 0 0 0 0 0 0 0 0 -0.8512 0 0 0 0 0 0 0 0 0.2018 0 0 0 0 0 0)T 
(−0.0415,−0.0714,0.2814) (0 0 0 0 0 0 0 0.4608 0 0 0 0 0 0 0 0 -0.7633 0 0 0 0 0 0 0 0 0.4528 0)T 
(−0.0570,−0.0359,0.3412) (0 0 0 -0.4558 0 0 0 0 0 0 0 0 0.7410 0 0 0 0 0 0 0 0 -0.4931 0 0 0 0 0)T 
(−0.0455,−0.0410,0.3127) (0 0 0 0 0 0 -0.4361 0 0 0 0 0 0 0 0 0.7570 0 0 0 0 0 0 0 0 -0.4866 0 0)T 
(0.1769,−0.4640,−0.4185) (0 0 0 0 0 -0.3032 0 0 0 0 0 0 0 0 0.9505 0 0 0 0 0 0 0 0 0.0679 0 0 0)T 

(−0.1016,0.3350,0.7196) (0 0 0 0 0 -0.1340 0 0 0 0 0 0 0 0 0.5853 0 0 0 0 0 0 0 0 -0.7996 0 0 0)T 
(−0.0660,0.1320,0.4867) (0 0 0 0 0 0 0 0 0.2808 0 0 0 0 0 0 0 0 -0.6988 0 0 0 0 0 0 0 0 0.6579)T 
(0.0309,−0.0540,0.1700) (0 0 0 0 0 0 0.7384 0 0 0 0 0 0 0 0 0.0345 0 0 0 0 0 0 0 0 -0.6735 0 0)T 
(0.0308,−0.0537,0.1702) (0 0 0 0 0 0 0 -0.7384 0 0 0 0 0 0 0 0 -0.0346 0 0 0 0 0 0 0 0 0.6734 0)T 
(0.0335,−0.0538,0.1664) (0 0 0 0.7410 0 0 0 0 0 0 0 0 0.0382 0 0 0 0 0 0 0 0 -0.6704 0 0 0 0 0)T 
(0.0337,−0.0532,0.1667) (0 0 0 0 0 0.7411 0 0 0 0 0 0 0 0 0.0384 0 0 0 0 0 0 0 0 -0.6703 0 0 0)T 
(0.0340,−0.0520,0.1671) (0 0 0 0 -0.7413 0 0 0 0 0 0 0 0 -0.0388 0 0 0 0 0 0 0 0 0.6701 0 0 0 0)T 
(0.0297,−0.0593,0.1678) (0 0 0 0 0 0 0 0 -0.7375 0 0 0 0 0 0 0 0 -0.0329 0 0 0 0 0 0 0 0 0.6745)T 

(0.2000,−0.4000,−0.4000) (0    0   0   0   0  0  0  0  0  0   0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0)𝑇 
 
4. CONCLUSIONS 
 
The approach discussed above can be applied only to find the eigenvectors of singular problems. Again this approach is 
suitable for the matrices of small order as if the matrices Ai and Bij are of dimension n × n, then dimension of the 
corresponding Kronecker system increases to n2 ×  n2. This increase in complexity of dimension demands the 
development of other numerical techniques for solving Multiparameter problems without Kronecker Product of 
matrices and such numerical techniques are available for Right Definite problems. Thus it is necessary to develop 
iterative schemes of singular problem for k>2. Hence this may be considered for future prospects of Multiparameter 
singular problems, and it will conduit new avenues for future research in this area. 
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