International Journal of Mathematical Archive-9(3), 2018, 44-49 MAAvailable online through www.ijma.info ISSN 2229 - 5046

(gsp)*-CLOSED SETS IN BITOPOLOGICAL SPACES

PAULINE MARY HELEN M Associate Professor, Nirmala College, Coimbatore, India.

KULANDHAI THERESE. A* M. Phil, Student, Nirmala College, Coimbatore, India.

(Received On: 17-09-17; Revised & Accepted On: 19-02-18)

ABSTRACT

In this paper we have introduced a new class of sets called $(i, j)(gsp)^*$ -closed sets in bitopological spaces which is properly placed in between the class of closed sets and gsp-closed sets. As an application, we introduce two new spaces namely, T^*_{gsp} -space, gT^*_{gsp} -space.

Keywords: $(i, j)(gsp)^*$ -closed set, T^*_{gsp} , gT^*_{gsp} -spaces.

1. INTRODUCTION

Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined αg -closed sets in 1994. Arya and Tour [3] defined gs -closed sets in 1990. Dontchev [8], Gnanambal [9] Palaniappan and Rao[17] introduced gsp-closed sets, gpr -closed sets and rg -closed sets respectively. Veerakumar [18] introduced g^* -closed sets in 1991. J.Dontchev [8] introduced gsp-closed sets in 1995. Levine [10] Devi. *et al.* [5,6] introduced $T_{1/2}$ - spaces, T_b spaces and $_{\alpha}T_b$ spaces respectively. Veerakumar [18] introduced $T_{1/2}$ *-spaces. The purpose of this paper is to introduce the concepts of (i,j) $(gsp)^*$ -closed sets, T^*_{gsp} -space, gT^*_{gsp} -space are introduced and investigated.

2. PRELIMINARIES

Throughout this paper (X,τ) , (Y,σ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ_1,τ_2) cl(A) and int(A) denote the closure and the interior of A respectively. The class of all closed subsets of a space (X,τ_1,τ_2) is denoted by (X,τ_1,τ_2) The smallest semi-closed (resp.pre-closed and α -closed) set containing a subset A of (X,τ_1,τ_2) is called the semi-closure (resp.pre-closure and α -closure) of A and is denoted by scl(A)(resp.pcl(A) and α cl(A))

Definition 2.1: A subset A of topological space (X, τ_1, τ_2) is called

- (1) a pre-open set[14] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$
- (2) a semi-open set [11] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$
- (3) a semi-preopen set[1] if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set[1] if $int(cl(int(A))) \subseteq A$
- (4) an α -open set [15] if $A \subset int(cl(int(A)))$ and an α -closed set [15] if $cl(int(cl(A))) \subset A$
- (5) a regular-open set[14] if intcl(A)=A and an regular-closed set [14] if A=intcl(A)

Definition 2.2: A subset A of topological space (X, τ_1, τ_2) is called

- (1) a generalized closed set (briefly g-closed) [10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ_1, τ_2)
- (2) generalized semi-closed set(briefly) gs-closed [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ_1, τ_2)
- (3) an α -generalized closed set (briefly α g-closed) [12] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ_1, τ_2)

Corresponding Author: Kulandhai Therese. A* M. Phil, Student, Nirmala College, Coimbatore, India.

- (4) a generalized semi pre-closed set (briefly gsp-closed) [8] if sp cl(A) ⊆ U whenever A ⊆ U and U is open in (X,τ₁,τ₂)
- (5) a regular generalized closed set (briefly rg-closed) [17] if sp $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ_1, τ_2)
- (6) a generalized pre-closed set (briefly gp-closed) [13] if $p cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ_1, τ_2)
- (7) a generalized pre regular-closed set (briefly gpr-closed) [9] if $p cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ_1, τ_2)
- (8) a wg-closed set [16] if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ_1, τ_2)
- (9) a gsp-closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gsp-open in (X, τ_1, τ_2)

Definition: 2.3: A topological space (X,τ) is said to be

- (1) a $T_{1/2}$ space [10] if every g-closed set in it is closed.
- (2) a T_b space [6] if every gs-closed set in it is closed.
- (3) a αT_b space [5] if every α g-closed set in it is closed.

3. BASIC PROPERTIES OF (i, j)(gsp)* - CLOSED SETS

We introduce the following definitions

Definition 3.1: A subset A of bitopological space (X, τ_1, τ_2) is called a (i,j) $(gsp)^*$ -closed set if τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -gsp open.

Remark 3.2: By setting $\tau_1 = \tau_2$ in definition (1.1) a (i,j) $(gsp)^*$ -closed set is a $(gsp)^*$ -closed set.

Proposition 3.3: Every τ_i -closed set A is (i, j) $(gsp)^*$ -closed.

Proof: Let A be τ_j -closed. Let $A \subseteq U$ and U is τ_i -gsp open. τ_j - cl(A) = A $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -gsp open.

 \therefore A is (i, j) $(gsp)^*$ -closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.4: X= {a, b, c}, $\tau_1 = \{\varphi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\varphi, X, \{a\}\}$ Then A= {b} is (i, j) $(gsp)^*$ -closed but it is not τ_j -closed. \therefore Every (i, j) $(gsp)^*$ -closed set need not be τ_j -closed.

Proposition 3.5: Every (i, j) $(gsp)^*$ -closed set is (i, j) g-closed.

Proof: Let A be (i, j) $(gsp)^*$ -closed. Then τ_j -cl(A) \subseteq U whenever A \subseteq U and U is τ_i - gsp open. Let us prove that A is (i, j) g-closed. Let $A \subseteq U$ where U be τ_i -open. Then $A \subseteq U$ where U is τ_i gsp-open. Then τ_j -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. \therefore A is (i, j) g-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.6: X= {a, b, c}, τ_1 = { φ ,X,{c},{a, c}}, τ_2 = { φ ,X,{b},{a, b}} Then A= {a} is (i, j) g-closed but it is not (i, j) (gsp)*-closed. \therefore Every (i, j) g-closed set need not be (i, j) (gsp)*-closed.

Proposition 3.7: Every (i, j) $(gsp)^*$ -closed set is (i, j) gs-closed.

Proof: Let A be (i, j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i, j) gs-closed. Let $A \subseteq U$ and U is τ_i - open. Then $A \subseteq U$ and U is τ_i gsp-open. $\therefore \tau_j$ -cl(A) $\subseteq U$, since A is (i,j) $(gsp)^*$ -closed. τ_j -scl(A) $\subseteq cl(A) \subseteq U$, $\therefore \tau_j$ -cl(A) $\subseteq U$, whenever $A \subseteq U$ and U is τ_i -open. \therefore A is (i,j) gs-closed.

© 2018, IJMA. All Rights Reserved

Pauline Mary Helen M and Kulandhai Therese. A* / (gsp)*-Closed Sets in Bitopological Spaces / IJMA- 9(3), March-2018.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.8: X= {a, b, c}, $\tau_1 = \{\varphi, X, \{c\}, \{a,c\}\}, \tau_2 = \{\varphi, X, \{b\}, \{a,b\}\}$ Then A= {a} is (i, j) gs-closed but it is not (i, j) $(gsp)^*$ -closed. \therefore Every (i, j) gs-closed set need not be (i, j) $(gsp)^*$ -closed.

Proposition 3.9: Every (i,j) $(gsp)^*$ -closed set is (i,j) αg -closed.

Proof: Let A be (i, j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i, j) α g-closed. Let $A \subseteq U$ and U is τ_i - open. Then $A \subseteq U$ where U is τ_i gsp-open. τ_j -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. τ_j - α cl(A) $\subseteq cl(A) \subseteq U : \tau_j$ - α cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open. Hence A is (i, j) α g-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.10: X= {a, b, c}, τ_1 = { φ ,X,{c},{a,c}}, τ_2 = { φ ,X,{b},{a,b}} Then A= {a} is (i, j) α g-closed but it is not (i, j) (*gsp*)*-closed. \therefore Every (i, j) α g-closed set need not be (i, j) (*gsp*)*-closed.

Proposition 3.11: Every (i, j))(*gsp*)*-closed set is (i, j) *gsp*-closed.

Proof: Let A be (i,j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i, j) gsp-closed. Let $A \subseteq U$ where U is τ_i - open. Then $A \subseteq U$ where U is τ_i gsp-open. Then τ_j -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. τ_j -spcl(A) $\subseteq \tau_j$ -cl(A) $\subseteq U$ $\therefore \tau_j$ -spcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i -open. \therefore A is (i, j) gsp-closed.

Example 3.12: X= {a, b, c}, $\tau_1 = \{\varphi, X, \{c\}, \{a,c\}\}, \tau_2 = \{\varphi, X, \{a\}\}$ Then A= {c} is(i, j) gsp-closed but it is not (i, j) $(gsp)^*$ -closed. \therefore Every (i, j) gsp-closed set need not be (i, j) $(gsp)^*$ -closed.

Proposition 3.13: Every (i, j))(gsp)*-closed set is (i, j) rg-closed.

Proof: Let A be (i, j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i, j) rg-closed. Let $A \subseteq U$ where U be τ_i – gsp-open. Then $A \subseteq U$ where U is τ_i regular open. $\therefore \tau_j$ -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. \therefore A is (i, j) rg-closed.

The converse of the above proposition is not true which is proved in the following example.

Example 3.14: X= {a, b, c}, τ_1 = { φ , X, {c}, {a, c}}, τ_2 = { φ , X, {a}} A= {c} is (i,j) rg-closed butit is not (i, j) (*gsp*)*-closed. \therefore Every (i, j) rg-closed set need not be (i, j) (*gsp*)*-closed.

Proposition 3.15: Every (i, j) $(gsp)^*$ -closed set is (i,j) gp-closed but not conversely.

Proof: Let A be (i,j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i, j) gp-closed. Let $A \subseteq U$ and U is τ_i - open. Then $A \subseteq U$ and U is τ_i gsp-open. Therefore τ_j -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. τ_j -pcl(A) $\subseteq \mathcal{T}_j$ $cl(A) \subseteq U$.

 $\therefore \tau_i$ -pcl(A) $\subseteq U$. Therefore A is (i, j) gp-closed.

The converse of the above proposition need not be true in general as seen in the following example

Example 3.16: $X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{c\}, \{a, c\}\}, \tau_2 = \{\varphi, X, \{a\}\}$

Then A= {c} is (i, j) gp-closed but it is not (i, j) $(gsp)^*$ -closed. \therefore Every (i, j) gp-closed set need not be (i,j) $(gsp)^*$ -closed.

Proposition 3.17: Every (i, j))(*gsp*)*-closed set is (i, j) *g*pr-closed.

Proof: Let A be (i, j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i,j) gpr-closed. Let $A \subseteq U$ where U is τ_i -regular open.

Then $A \subseteq U$ where U is τ_i gsp-open.

 $\Rightarrow \tau_i$ -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed.

 $\therefore \tau_i \operatorname{-pcl}(A) \subseteq \tau_i \operatorname{cl}(A) \subseteq U.$

 \therefore τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is τ_i regular open.

 \therefore A is (i, j) gpr-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.18: X= {a, b, c}, τ_1 = { φ ,X,{c},{a,c}}, τ_2 = { φ ,X,{a}} Every subset A is gpr-closed. Then A= {a} is (i, j) gpr-closed but it is not (i, j) (*gsp*)*-closed

Every (i, j) gpr-closed set need not be $(i, j)(gsp)^*$ -closed.

Proposition 3.19: Every (i, j))(*gsp*)*-closed set is (i,j) *wg*-closed but not conversely

Proof: Let A be (i,j) $(gsp)^*$ -closed. Then τ_j -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_i gsp-open. Let us prove that A is (i,j) wg-closed. Let $A \subseteq U$ where U is τ_i - open. Then $A \subseteq U$ where U is τ_i gsp-open. $\Rightarrow \tau_j$ -cl(A) $\subseteq U$, since A is (i, j) $(gsp)^*$ -closed. τ_2 -cl(int(A)) $\subseteq \mathcal{T}_2 cl(A) \subseteq U$ $\therefore \tau_2$ -cl(int(A $\subseteq U$) whenever τ_i - open. \therefore A is (i, j) wg-closed.

The converse of the above proposition need not be true in general as seen in the following example.

Example 3.20: X= {a, b, c}, $\tau_1 = \{\varphi, X, \{b\}, \{a,b\}\}, \tau_2 = \{\varphi, X, \{a\}\}$ Then A= {b} is (i, j) wg -closed but not (i, j) $(gsp)^*$ -closed. \therefore Every (i, j) wg-closed set need not be (i, j) $(gsp)^*$ -closed.

4. APPLICATION OF (i, j) (gsp)*-CLOSED SET

Definition 4.1: A space (X,τ) is called a T_{asp}^* - space if every $(i, j)(gsp)^*$ -closed set is τ_i closed.

Definition 4.2: A space (X,τ) is called a gT^*_{asp} - space if every g-closed set is $(i, j)(gsp)^*$ closed.

Definition 4.3: A space (X,τ) is called a gT^*_{gsp} - space if every g-closed set is $(gsp)^*$ closed.

Theorem 4.4: Every $T_{1/2}$ -space is T^*_{gsp} - space

Proof: Let (X, τ) be a $T_{1/2}$ -space Let us prove that (X, τ) is a T_{gsp}^* -spaceLet A be a $(i, j)(gsp)^*$ -closed set. Since every $(i, j)(gsp)^*$ -closed set is g-closed, A is τ_j g-closed.

Since (X,τ) is a $T_{1/2}$ -space, A is τ_j closed. \therefore (X,τ) is a T^*_{gsp} -space

The converse of the above theorem need not be true in general as seen in the following example.

Example 4.5: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$

Then in example 3.5 we have proved that the g-closed sets are φ , X, {b}, {a,b}, {b,c} and the $(i,j)(gsp)^*$ -closed sets are φ , X, {b}, {a,b}, {b,c} Since all the $(i,j)(gsp)^*$ -closed sets are closed, (X, τ) is a T^*_{gsp} -space.

 \therefore A= {b, c} is τ_j g-closed but it is not closed, and hence it is not a $T_{1/2}$ - space. Hence a T_{gsp}^* - space need not be a $T_{1/2}$ -space.

Pauline Mary Helen M and Kulandhai Therese. A* / (gsp)*-Closed Sets in Bitopological Spaces / IJMA- 9(3), March-2018.

Theorem 4.6: Every αT_b -space is T_{gsp}^* - space but not conversely.

Proof: Let (X, τ) be a αT_b - space Let us prove that (X, τ) is a T^*_{gsp} - space. Let A be a (i, j), $(gsp)^*$ -closed set. Every $(i, j)(gsp)^*$ -closed set is $\tau_i \alpha g$ -closed and hence A is $\tau_i \alpha g$ -closed.

Since (X,τ) is a αT_b -space, A is τ_j closed. \therefore (X,τ) is a T^*_{gsp} -space

The converse of the above theorem need not be true in general as seen in the following example.

Example 4.7: Let X = {a, b, c} and $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$ Then in example 3.10 we have proved that the α g-closed sets are φ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and the $(i, j)(gsp)^*$ -closed sets are φ , X, {b}, {a, b}, {b, c}.

Since the $(i, j)(gsp)^*$ -closed sets are closed, (X, τ) is a T^*_{gsp} -space. \therefore A= {b} is $\tau_j \alpha g$ -closed, but it is not closed and hence it is not a αT_b -space. Hence a T^*_{gsp} -space need not be a αT_b -space.

Theorem 4.8: Every T_b -space is T^*_{gsp} - space but not conversely.

Proof: Let (X, τ) be a T_b - space. Let us prove that (X, τ) is a T^*_{gsp} - space. Let A be a $(i, j)(gsp)^*$ -closed set. Every $(i, j)(gsp)^*$ -closed set is τ_i gs-closed and hence A is τ_i gs-closed.

Since (X,τ) is a T_b -space, A is τ_j closed. \therefore (X,τ) is a T^*_{gsp} -space.

The converse of the above theorem need not be true in general as seen in the following example.

Example 4.9: Let $X = \{a, b, c\}$ and $\tau = \{\varphi, X, \{a\}, \{a, b\}\}$ Then in example 3.8 we have proved that the gs-closed sets are φ , X, $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$ and the $(i, j)(gsp)^*$ -closed sets are φ , X, $\{b\}, \{a, b\}, \{b, c\}$.

Since the $(gsp)^*$ -closed sets are closed, (X,τ) is a T^*_{gsp} -space. \therefore A= {b} is gs-closed, but it is not closed, and hence it is not a aT_b -space. Hence a T^*_{gsp} -space need not be a T_b -space.

REFERENCES

- 1. D. Andrijevic, semi- preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- I. Arokiarani, K. Balachandran and J. Dontchev, some characterizations of gp-irresolute and gp-continuous maps between topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 20 (1999), 93-104.
- 3. S.P. Arya and T. Nour, Characterization of s-normal spaces, Indian J.Pure.Appl.Math., 21 (1990), 717-719.
- K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Kochi. Univ. Ser.A.Math., 12 (1991), 5-13.
- 5. R. Devi, K. Balachandran and H. Maki, generalized α-closed maps and α-generalized closed maps, Indian J.Pure.Appl.Math., 29(1)(1998),37-49.
- R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized closed maps, Mem. Fac. Sci.Kochi.Univ.Ser.A.Math., 14(1993), 41-54.
- 7. R. Devi, H. Maki and K. Balachandran, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J.Pure.Appl.Math., 26(3) (1995), 271-284.
- 8. J. Dontchev, on generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Ser. A, Math., 16 (1995), 35-48.
- 9. Y. Gnanambal, on generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3) (1997), 351-360.
- 10. N. Levine, generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2) (1970), 89-96.
- 11. N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A, Math., 15 (1994), 51-63.
- 13. H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre- $T_{1/2}$, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math., 17 (1996), 33-42.
- 14. A.S. Mashhour, M.E. Abd EI-Monsef and S.N.EI-Deeb, on pre-continuous and weak pre-continuous mappings proc.Math. and Phys.Soc.Egypt, 53(1982),47-53.

Pauline Mary Helen M and Kulandhai Therese. $A^*/(gsp)^*$ -Closed Sets in Bitopological Spaces / IJMA- 9(3), March-2018.

- 15. O. Njastad, on some classes of nearly open sets, pacific J.Math., 15(1965),961-970.
- 16. N. Nagaveni, studies on generalizations of homeomorphisms in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore, 1999.
- 17. N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math.J., 33(2)(1993), 211-219.
- 18. M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]