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ABSTRACT

In this paper, we introduce « —admissible function associated with four maps and obtain a unique common fixed
point theorem. We also give an example to illustrate our main theorem.
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1. INTRODUCTION AND PRELIMINARIES

In 1973, Geraghty [3] introduced an interesting class of auxiliary functions to refine the Banach contraction mapping
principle. Let F denote a set of all functions 3 : [O, oo) - [0,1) satisfying the condition

limpg(t,)=1 implies limt =0.
n—w n—oo
By using the function /8 €F, Geraghty [3] proved the following remarkable theorem.

Theorem 1.1 [3]: Let(X,d) be a complete metric space and T : X — X be an operation. If T satisfies
d(Tx, Ty) < B(d(x, y))d(x, y) for all X,y € X, where S e, then T has a unique fixed point in X.

Definition 1.2: Let ¥ denote the class of all functions i/ : [O, oo) - [0, oo) which satisfy the following conditions
(@) 1 isnon-decreasing and continuous,

b) w(t)=0<t=0,

Definition 1.3 [4]: Let f and g be self mappings on a metric space (X,d). The pair (f,g) is said to be
compatible if d( fgx,,gfx,) — O whenever there exists a sequence {X,} in X such that fx, —z and
gx, — z for some z € X.

Samet et.al [6] introduced the notion of o —admissible mappings as follows

Definition 1.4 [6]: Let X be anonemptyset, T : X — X and o : X x X —> [0,00)be mappings. Then T is called
o —admissible if for all X,y € X , we have a(X, y)>1 implies a(Tx,Ty)>1.
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Some interesting examples of such mappings are given in [6]. Actually, they proved the following

Theorem 1.5 [6]: Let (X , d) be a complete metric space. Suppose thatar : X x X — [O,oo) and ¢:[0,00) >[0,0),
where ¢ is non-decreasing and Z(,/ﬁ” (t)<oo for each t>0. Suppose that T :X — X satisfies
a(x, y)d(Tx, Ty) < ¢(d(x, y)) forall x,y € X.
Assume the following

(i) Tis o —admissible,

(ii) there exists X, € X such that a(X,, TX, ) > 1,

(iii) either T is continuous or if {Xn }is a sequence in X with Oc(Xn ) Xn+l) >1

for all N € v (the set of all natural numbers) and X, — X as n — oo, then a(Xn ) X) >1 forall neN.

Then T has a fixed point in X.

Further, if for any X, y € X, there exists Z € X such that a(X, Z)Zland a(y, Z)Z 1 then T has a unique fixed
pointin X.

Recently. Karapinar et.al [5] defined the notion of triangular ¢ —admissible mappings as follows

Definition 1.6 [5]: Let X be anonemptyset, T: X > Xand a¢: X x X — [O,oo) . Then T is called triangular a —
admissible if

0 xyeX,alxy)>1= a(lx,Ty)>1
i) xy.zeX,a(x,z)>land a(z,y)>1= a(x,y)>1.

Later Shahi et.al [7] and Abdeljawad [1] defined the following

Definition 1.7 [7]: Let X be a non empty set, f,g: X — Xand a: X x X — [O,oo) . Then f is said to be o —
admissible with respect to g if ar(gx, gy)>1implies a(fx, fy)>1 for all x,y € X.

Definition 1.8 [1]: Let X be a non empty set, f,g: X — Xand a: X x X — [O,oo) . Then the pair (f, Q) is said
to be & —admissible if (X, y)>1implies a( fx,gy)>1 and «(gx, fy)=1 for all x,y e X.

Using these definitions, we introduce the following

Definition 1.9: Let X be a non empty set and f,g,5,T: X > Xanda: X x X — [0,00) . The pair (f,q) is
said to be & — admissible w.r.to the pair (S,T)

if a(Sx,Ty)>1implies a(fx,gy)>1and «(Tx,Sy)>1implies a(gx, fy)>1.

Definition 1.10: (f, g) is called triangular & — admissible w.r.to (S,T) if
(i) (f,g)is o — admissible w.r.to (S,T) and
i) a(x,y)>land a(y,z)>1= a(x,z)>1 for all x,y,z € X.

Recently Shahi et.al [7] and Cho et.al [2] proved the following

Theorem 1.11 (Theorem 3.1, [7]): Let (X,d) be a complete metric space and f,g:X — X be such that
f(X) < g(X). Assume the following

(1.12.1) f is o — admissible with respectto g,
(1.12.2) a(gx, gy )d( fx, fy) <w(M(gx, gy)), where
M (gx, gy) = max {d (ox, gy), 4(9% fX); d(gy. fy) dlgx, fy); d(gy, fX)} and

© 2018, IJIMA. All Rights Reserved 51




K.P.R. Rao*' and P. Rangaswamy’ /
Common Fixed Pointsfor Four Maps Using & — Admissible Functions in Metric Spaces / IIMA- 9(3), March-2018.

v [0,00) - [0,00) is continuous, nondecreasing and Zl//” (t) <o for all t >0,
n=1

(1.12.3) there exists X, € X such that a(gx,, X, )>1,
(1.12.4) if {gx,, }is a sequence in X such that a(gx,,9x,,,)>1, for all n and

gX, — 9z € g(X), then there exists a subsequence {gxnk }Of {gxn} such that oz(gxnk : gz) >1, for all k.

Also suppose that g(X) is closed.

Then f and g have a coincidence point.

Theorem 1.12 (Theorem 2.1, [2]): Let (X , d) be a complete metric space & : X x X — [O,oo)be a function and
T : X — X.suppose that the following conditions are satisfied
(1.13.) a(x, y)d(Tx, Ty) < A(M(x, y))M(x,y) for all x,y € X, where B eF and
M (x, y)=max{d(x, y),d(x,Tx),d(y,Ty)}
(1.13.2) T is triangular & — admissible,

(1.13.3) there exists X, € X such that a(X,,Tx,)>1,

(1.13.4) T is continuous.
Then T has a fixed point.

Now we prove our main result to generalize Theorems 1.11 and 1.12.

2. MAIN RESULT

Theorem 2.1: Let (X,d)be a complete metric space and ¢ : X x X — [O,oo) be a function. Let f,g,SandT beself

mappings on X satisfying

(2.11) £(X) =T(X), 9(X) = S(X),

(212) a(Sx,Ty)w (d(fx gy))< ,B(w(M (x, y)))://(M (x,y)) for all x,y e X
where S €F, we ¥ and

M(x,y)= max{d (Sx,Ty),d(Sx, fx),d(Ty, gy),%[d (Sx, gy)+d(Ty, fx)]},

(2.1.3) the pairs ( f, S) and (g,T) are compatible and S and T are continuous on X,
(2.1.4) ( f ,g) is triangular & — admissible w.r.to (S,T),
2.15) a(Sx;, ;) 21l and a(fx;,Sx;) =1 forsome X, € X,

(2.1.6) Assume that & (SY,n,Yon ) 21 & (Yons TYons ) 2L (2, Y, ) 21and a(z,2)>1
whenever there exists a sequence
{y,}in X such that a(y,,y,,,) =1 for n=1,2,3,.....and y, — z for some z e X.

Then f,g,S and T have acommon fixed point.
(2.1.7) Further if a(u,v) > 1whenever U and V are common fixed points of f,g,S and T
then f,g,S and T have unique common fixed point in X.

Proof: From (2.1.5), we have ¢ (Sx,, fx, ) >1 for some x, € X.

From (2.1.1), define the sequences {Xn} and {yn} as follows:
Yo = T =TX,, ¥, = 0%, =5, Y3 = X =TX,, Y, = 9%, = SX;,....
Yona = fX2n+1 :TX2n+2’ Yoniz = Oonir = SX2n+3’ n=012,..
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Now
a(Sx, i )>1 = a(Sx,Tx,)>1
1

(

= a( fx,9x,) =1, from (2.14),ie a(y,y,)=1
= a(Tx,,S%;)>1

= a(gX,, fx;) =1, from (2.1.4), ie a(y, y;)>1
= a(Sx;, Tx, ) >1

= a( fx;,9%,)>1 from (2.1.4),ie a(y,.y,)>

Continuing in this way, we have

(Y, Yon)21 for n=123,...

Similarly using & ( fX;, Sx;) =21, we have a(Y,,;,Y,) =1for n=1,2,.......

By (2.1.4), using triangular property, we have
(Y Y, )21 for m<n.

Case-(a): Suppose Y, = Yom,1-

Then & (SXpmas T Xomi2 ) = @ (Yams Yomen) 21 from (2).

Now
W (d (Vamaa Yamez ) =9 (0 ( By 0oz )
< & (Kymers T X )W (A ( Fygs Pz )
ﬂ( ( Xam1+ Xom:2 ) ) ( Xoms11 Xoms2 ))’
where

( ) d (Yams Yomer )+ 4 (Yoms Yomea )+ A (Yamas Yomez )
M (X111 Xomep ) = MAX 1
s Elid (yZm 1 Yome2 ) +d (y2m+1’ Yomu )]

=d (Y2m+1’ y2m+2)

ThUS lr// (d (y2m+1’ y2m+2 )) < IB(W(d (y2m+l' y2m+2 )))W(d (y2m+l' y2m+2 ))

Heance

[1_ ﬂ(‘//(d (y2m+1’ Yoms2 )))]W(d (y2m+17 Yoms2 )) <0 which in turn yields that
V/(d(yzmw Yoms2 )) =0 sothat Y, = Yomso-

Continuing in this way we get Y, =VY,0.1 = Yomz =

Hence {yn } is Cauchy.

Case-(b): Suppose Y, #Y,,, for all n.

As in Case (a), we have

‘//(d (y2n+1’ y2n+2)) < ,B(l//(M (X2n+l’ Xon+2 ))) V/(M (X2”+1’ X2”+2))

© 2018, IJIMA. All Rights Reserved

@

'

2

(3)

53



K.P.R. Rao*' and P. Rangaswamy’ /
Common Fixed Pointsfor Four Maps Using & — Admissible Functions in Metric Spaces / IIMA- 9(3), March-2018.

where

M (X2n+l’ Xons2 ) = max{d (yZn Yona )’ d (Y2n+1’ Yoni2 )}
If M (X2n+l’ X2n+2 ) = d (y2n+l’ y2n+2 ) then we get

v (d (Vaness Yanez)) < B(¥ (A (Vanas Yone2 )W (A (Vanas Yonz))
< ‘//(d (Vaners Yonez ))

It is a contradiction. Hence

v (A (VanarYaria)) < B0 (3 (Vanr Vara)) (@ (Vo Yanis)
< l//(d (y2n , Y2n+1))

which in turn yields that d (Y,n,1, Y2012 ) < A (Yans Yonet )-
Similarly using (2.1.2) and (1)", we can show that d (Y, Yone1 ) < A (Yan_1s Yon )-
Thus {d (yn » Yo )} is a decreasing sequence of non-negative real numbers.

Hence it converges to some real number I > 0 such that

limd (Y, Yp)=r.
Suppose I > 0.

'//(d (y2n+1'y2n+2 ))
v ( M (X2n+1 ! X2n+2 ))

From (3), < ﬁ(t//(M (Xons1s Xonso ))) <1

Letting N — oo and using the continuity of 1/, we get
<l <
1— !'_[Qﬂ('// ( M (X2n+1 ! X2n+2 ))) - 1

so that limy (M (X,,.,, X,,., )) = O which in turn yields that y(r) = 0 and hence r = 0.

n—oo
It is a contradiction. Thus

limd(y,,Y,,,)=0 @)

nN—oo

Now we prove that { yn} is a Cauchy sequence. In view of (4), it is sufficient to show that {yzH} is Cauchy.

Assume on the contrary that{yZn} is not a Cauchy sequence. Then there exists €> 0 for which we can find two

subsequences {yka} and {yZHK} of {y,,} sothat n,isthe smallest positive integer such that 2n, >2m, >k,
d(Van,  Von, ) 2€ ©)
d(Yan, » Yan, 2 ) <€ ©)

Now from (5) and (6), we have

e<d (yka + Yon, )S d(yka »Yon 2 )+ d(yznk‘z’ yz“k‘l)+ d (yznk_l’ Yan )
<e+d (y2nk_2 ) y2nk —1)+ d (yan -1 y2nk )
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Letting K — coand using (4), we get eSl!im d (yka  Yon, )Se so that
—®

M d (Y, Var, )=¢

)
We have [0 (Yan 11 Yan ) =@ (Vary Voo ) <8 (Vary 10 Yar, )
Letting k —> coand using (4) and (7), we get
M d (Y, 00 Yo, ) =€ ®)
We have [ (Yan, Yar 1) =@ (Van, Vo )| <0 (Var 11 Yan )
Letting k —> coand using (4) and (7), we get
md(yzmk,ym_l)ze )

We have ‘d (yan—l’ y2mk+1) —d (yzmk + Yan, ) <d (yan—ll Yan, )"’ d (yZmk ’ y2mk+1)

Letting K — ooand using (4) and (7), we get
M d (Y, 41 Yon,1) =€ (10)
a (SXmel,TXan ) =a ( Yom, » yan—l) >1 from (2)
W (d (Yo 10 Yan, )) = (0 ( oy 10 9%, )
< oc(SXZ,nk+l,Tx2nk )z//(d ( Xom, 110 OXan, ))

(1 (M (st o (M (55 )

IA

where

A (Yam, Yo 1 )0 (Yo + Yo s1 )+ (Yan 10 Yan, )»
)I max 1
LA (Yo Yan, )+ (Van 1 Yo 1)

—e as k » oo, from (9), (4), (7), (10).

M (X2mk+l’ Xan

From (11), we get

W(d (ykaH' Yon, »
V/(M (Xka+l’ X2nk »

< Bly(M (X, 0%, )< L.

Letting K — coand using (8) and the continuity of v, we get
1< I!m IB(‘//(M (szku’ Xon, »)S 1

so that II(im y/(M (XkaH, Xan, »: 0 and hence w(€) =0. Thus €=0.

It is a contradiction.

Hence {y2n }is a Cauchy sequence. From (4), {yZM} is also Cauchy.
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Since X is complete, there exists Z € X such that y, — z and hence
!T;‘O fXon1 = !mezmz = !Lnjo OXani2 = !]TO]O SXon = Z.
Since S is Continuous, we have
- 2 -
limS°x,,,, =Sz and limSfx,,,, = Sz.

nN—o0 n—oo

Since the pair (f,S) is compatible, we have limd ( fSx,,.,, Sfx,,,,) =0.

n—oo

Hence lim fSx,,,, = Sz.
n—oo

Now
a (SSX2n+1’TX2n) = (Syzn’ y2n—1) 2 from (2.1.6)
‘//(d ( 18%n.10 OXa )) < 0 (SSXy0,0, T, )'/’(d ( 18%0.10 9% ))
< ﬂ(W ( M (Sx2n+1' X2n ))) (M (Sx2n+1’ ))’
where

d (SSX2n+1’T ) d (Ssx2n+l' fSX2n+1) ! d (TXZn' gXZn )’

M ( Sx y» X5 ) = Max
( 2n+11 772 ) E[d (Ssxzm.lv gXZn)+ d (TXZn’ fSX2n+1):|

—d(Sz,z) as n— .

From (12), we get

w(d( Sy, 9%, ) g Y
y M 1)) = P M St ) <1

Letting N — oo and using the continuity of y/, we get
1 < Ilm ﬁ(l//(M (Sx2n+l7 XZn ))) < 1
n—oo
which in turn yields that limy (M (SX,,,,, X5, )) = 0 so that y(d(Sz,z)) = 0. Hence Sz = z.
nN—oo

Since T is continuous, we have
limT?x,,., =Tz and I|ngx2n+2 Tz.

n—oo

Since the pair (g,T) is compatible, we have limd (Tgx,,,,, 9TX,,,,) =0.

Hence lim gTx,,,, =Tz.
n—oo

Now
a(SXan 2n+2) ( 2n’Ty2n+1)2 from (2.1.6)
(d ( fx2n+1’ gTX2n+2 )) S (24 (Sx2n+l’TTX2n+2 )l// (d ( fX2n+1’ gTX2n+2 ))
< ( ( ( 2n+1’TX2n+2)))W(M (X2n+1’TX2n+2))
where

d (Sx2n+l’TTX2n+2 ) 1 d (SX2n+l’ fX2n+l) ! d (TTX2n+2’ gTX2n+2 ) 1

M (X, ., TX ni2 ) = Max
( o 2 2) %I:d (Sx2n+l’ gTX2n+2 ) + d (TTX2”+2’ fX2n+1):|

—d(z,Tz) a sn —> .
© 2018, IJIMA. All Rights Reserved
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From (13), we get
l//(d ( fX2n+1’ gTX2n+2 )) <

‘//(M (X2n+11TX2n+2 ))

Letting N — oo and using the continuity of y/, we get
1 < !1!)[]0 ﬁ(l//(M (X2n+l’TX2n+2 ))) < 1
which in turn yields that 1imy (M (X,,,1,TX,,,,,)) = 0 so that y(d(z,Tz))= 0. Hence Tz = z.
n—oo

B (M (X0, TXs,.,))) < L.

Now
a(Sz, Ty ) =t (Z, Y54 ) 21 from (.16)
w(d(fz,0%,))<a(Sz2,Tx, )y (d( fz,9,,))
<B(w(M(2.%0)))w (M (2,%,)). (14)
where

d(Sz,Tx,,),d(Sz, fz),d (TX,,, 9%, ),

M (z,X,,)=max
(2.%1) %[d(Sz,gx%)er(TXZn, fz) ]

—d(z, fz) as n—> .

w(d(fz, g, )) < Z,X%,,))) <
m_ﬂ(lﬂ('\/‘( X)) <1

Letting N — oo and using the continuity of y/, we get
1< 1im By (M(z, %,,))) <1
which in turn yields that limy (M (z, X, )) = 0 so that y(d(z, fz))= 0. Hence fz =1z.

Now
a(S2,Tz)=a(z,2)21 from (.16)
w(d(z,92))=w(d(fz,92))
<a(Sz,Tz)y(d( fz,92)) -
<Aly(M(z.2)))w(M(z.2)),
where

d(Sz,Tz),d(Sz, fz),d (Tz,9z2),
M (22) = max %[d(Sz,gz)+d(Tz, fz) ]
—d(z,0z) as n—o .

From (15), we have

[1- Aly(d(z. 02))(d(z 92)) <
which in turn yields that (d(z,9z))=0.

Thus gz = z.
Hence z is a common fixed point of f,g,S and T
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Suppose u and v are two common fixed points of f, g, S and T
Thena (Su,Tv) = e (u,v) 21 from (2.1.7)

v(d(uv))=y(d(fugv))
(Su Tv) (d(fu,gv))
uv)))y (M (u.v)),

l//
where

max{d u,v) ,d(v,v), [d u,v)+d (v, u)]}

From (16), we have

[1- Ay (d(u.v)l(d(uv)<0

which in turn yields that so that l//(d (u,v)) =0.Hence U=V.

Thus f,g,S and T have a unique common fixed point.

Now, we give an example to illustrate Theorem 2.1.

Example 2.2: Let X = [0 oo)be endowed with the metric d X y |X y | for all x,y e X.

2 2
Define f,9,5,T :X — X by fx_— Sx = ,gx—X—and Tx—X— for all x,y € X.
18 2 27 3
1,if x,ye[0]]
Defi X x X —10,0)by al(x,y)= .
e & A 0.00)by a(x.¥) {O, otherwise

Define  :[0,00) — [0,0) by t//('[)z% for all t €[0,00) and B :[0,20) — [0,1) by

ﬁ(t)— for all t €[0, ).

Clearly the conditions (2.1.1),(2.1.3),(2.1.4)and condition (2.1.5) with X, = 0 are satisfied.

2
If SX = g efoi]and Ty = y? e[01] then a(Sx,Ty) =

a(Sx,Ty)w (d(x gy))=

2

If SX = g z[01]or Ty = )g ¢[01] then a(Sx,Ty)=0.
Thus (2.1.2)is satisfied.
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1
Clearly (2.1.6)is satisfied if we take y, =— for all n. Clearly ‘0’ is a common fixed point of f,g,S and T .
n

The condition (2.1.7)is clear and ‘0’ is unique common fixed point of f,g,S and T .
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