Γ-SEMI NORMAL SUB NEAR-FIELD SPACES
OF A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD PART III

Dr. N. V. NAGENDRAM

Professor of Mathematics,
Kakinada Institute of Technology & Science (K.I.T.S.),
Department of Humanities & Science (Mathematics), Tirupathi (Vill.) Peddapuram (M),
Divili 533 433, East Godavari District. Andhra Pradesh. INDIA.

(Received On: 23-01-18; Revised & Accepted On: 26-02-18)

ABSTRACT

In this paper, I Dr N V Nagendram as an author in depth study it makes me to study and introduce the Gamma-semi normal sub near-field spaces in Γ-near-field space over a near-field PART III, and also Dr. N V Nagendram investigate the related properties, results of generalization of a Gamma-semi normal sub near-field spaces in Γ-near-field space over a near-field.

Keywords: Γ-near-field space; Γ-Semi normal sub near-field space of Γ-near-field space; Semi near-field space of Γ-near-field space.

SECTION-1: INTRODUCTION

In this paper, Part III consisting important two sections I introduce the Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field, and Dr. N V Nagendram being an author investigate the related properties of generalization of and derived results on a Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field.

As a generalization of a Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field, introduced the notion of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field, extended many classical notions of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. In this paper, I develop the algebraic theory of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field.

The notion of a Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field is introduced and some examples are given. Further the terms; commutative Γ-semi normal sub near-field spaces in Γ-near-field space, quasi commutative Γ-semi normal sub near-field spaces in Γ-near-field space, normal Γ-semi normal sub near-field spaces in Γ-near-field space, left pseudo commutative Γ-semi normal sub near-field spaces in Γ-near-field space, right pseudo commutative Γ-semi normal sub near-field spaces in Γ-near-field space are introduced. It is proved that (1) if S is a commutative Γ-semi normal sub near-field spaces in Γ-near-field space then S is a quasi commutative Γ-semi normal sub near-field spaces in Γ-near-field space, (2) if S is a quasi commutative Γ-semi normal sub near-field spaces in Γ-near-field space then S is a normal Gamma-semi normal sub near-field spaces in Γ-near-field space, (3) if S is a commutative Γ-semi normal sub near-field spaces in Γ-near-field space, then S is both a left pseudo commutative and a right pseudo commutative Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. Further the terms; left identity, right identity, identity, left zero, right zero, zero of a Gamma-semi normal sub near-field spaces in Γ-near-field space over a near-field are introduced. It is proved that if a is a left identity and b is a right identity of a Γ-semi normal sub near-field spaces in Γ-near-field space, then a = b. It is also proved that any Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field has at most one identity. It is proved that if a is a left zero and b is a right zero of a Γ-semi normal sub near-field spaces in Γ-near-field space, then a = b and also it is proved that any Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field has at most one zero element.
SECTION-2: RESULTS ON SEMI NORMAL SUB NEAR-FIELD SPACES IN Γ-NEAR-FIELD SPACE OVER A NEAR-FIELD

In this section, we now introduce α-idempotent element and Γ-idempotent element in a Γ- semi sub near-field space. The terms α-idempotent, Γ-idempotent, strongly idempotent, mid unit, r-element, regular element, left regular element, right regular element, completely regular element, (α, β)-inverse of an element, semi simple element and intra regular element in a Γ-semi sub near-field space are introduced. Further the terms, idempotent Γ-semi sub near-field space and generalized commutative Γ-semi normal sub near-field space are introduced. It is proved that every generalized commutative Γ-semi normal sub near-field space is a left duo Γ-semi normal sub near-field space. It is proved that every Γ- idempotent element of a Γ-semi normal sub near-field space is regular near-field space. It is proved that every Γ- sub near-field space of a regular near-field space Γ-semi normal sub near-field space T is a regular near-field space Γ-semi normal sub near-field space of T. It is proved that a Γ-semi normal sub near-field space T is regular near-field space Γ-semi normal sub near-field space if and only if every principal Γ- sub near-field space is generated by an idempotent. Further it is also proved that, in a Γ-semi normal sub near-field space, α is a regular element if and only if α has an (α, β)-inverse. It is proved that, (1) if α is a completely regular element of a Γ-semi normal sub near-field space then α is both left regular and right regular near field space, (2) if α is a completely regular element of a Γ-semi normal sub near-field space T, then α is regular and semi simple near-field space, (3) if α is a left regular element of a Γ-semi sub near-field space T, then α is semi simple, (4) if α is a right regular element of a Γ-semi normal sub near-field space T, then α is semi simple, (5) if α is a regular element of a Γ-semi normal sub near-field space T, then α is semi simple and (6) if α is an intra regular element of a Γ-semi normal sub near-field space T, then α is semi simple. It is also proved that if α is an element of a duo Γ-semi normal sub near-field space, then (1) α is regular (2) α is left regular, (3) α is right regular, (4) α is intra regular, (5) α is semi simple, are equivalent.

Definition 2.1: An element a of Γ-semi sub near-field space S is said to be a α-idempotent provided \(a \alpha a = a \).

Note 2.2: The set of all α-idempotent elements in a Γ-semi sub near-field space S is denoted by \(E_\alpha \).

Definition 2.3: An element a of Γ-semi sub near-field space S is said to be an idempotent or Γ-idempotent if \(a \alpha a = a \) for all \(a \in \Gamma \).

Note 2.4: In a Γ-semi sub near-field space S, a is an idempotent iff a is an α-idempotent for all \(a \in \Gamma \).

Note 2.5: If an element a of Γ-semi sub near-field space S is an idempotent, then \(\alpha \Gamma a = a \).

We now introduce an idempotent Γ-semi sub near-field space and a strongly idempotent Γ-semi sub near-field space.

Definition 2.6: A Γ-semi sub near-field space S is said to be an idempotent Γ-semi sub near-field space provided every element of S is α–idempotent for some \(a \in \Gamma \).

Definition 2.7: A Γ-semi sub near-field space S is said to be a strongly idempotent Γ-semi sub near-field space provided every element in S is an idempotent.

We now introduce a special element which is known as mid unit in a Γ-semi sub near-field space.

Definition 2.8: An element a of Γ-semi sub near-field space S is said to be a mid unit provided \(x \Gamma a \Gamma y = x \Gamma y \) for all \(x, y \in S \).

Note 2.9: Identity of a Γ-semi sub near-field space S is a mid unit.

We now introduce an r-element in a Γ-semi sub near-field space and also a generalized commutative Γ-semi sub near-field space.

Definition 2.10: An element ‘a’ of Γ-semi sub near-field space S is said to be an r-element provided \(a \Gamma x = \delta \Gamma a \) for all \(s \in S \) and if \(x, y \in S \), then \(a \Gamma x \Gamma y = b \Gamma y \Gamma x \) for some \(b \in S \).

Definition 2.11: A Γ-semi sub near-field space S with identity 1 is said to be a generalized commutative Γ-semi sub near-field space provided 1 is an r-element in S.

Theorem 2.12: Every generalized commutative Γ-semi sub near-field space is a left duo Γ-semi sub near-field space.

Proof: Let S be a generalized commutative Γ-semi sub near-field space. Therefore 1 is an r-element.
Let A be a left Γ-sub near-field space of S. Let $x \in A$ and $s \in S$.

Now $x\Gamma_s = I\Gamma x \Gamma s = b\Gamma x (b\Gamma s) \Gamma x \subseteq A$. Therefore A is a Γ-sub near-field space of S.

Therefore S is a left duo Γ-semi sub near-field space.

As an author, I Dr N V Nagendram now introduces a regular element in a Γ-semi sub near-field space and regular Γ-semi sub near-field space.

Definition 2.13: An element a of a Γ-semi sub near-field space S is said to be regular Γ-semi sub near-field space provided $a = a\alpha \beta a$, for some $x \in S$ and $\alpha, \beta \in \Gamma$. i.e., $a \in a\Gamma S \Gamma a$.

Definition 2.14: A Γ-semi sub near-field space S is said to be a regular Γ-semi sub near-field space provided every element is regular.

Example 2.15: Let S be the set of 3×2 matrices and Γ be a set of some 2×3 matrices over of field. Then S is a regular Γ-semi sub near-field space.

Verification: Let $A \in S$, where $A = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$

Then we chose $B \in \Gamma$ according to the following cases such that $ABA = A$.

Case-1: When the sub matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non-singular, then $ad - bc \neq 0$.

e, f may both be 0 or one of them is 0 or both of them are non-zero.

then $B = \begin{bmatrix} d & -b \\ ad - bc & ad - bc \\ ad - bc & ad - bc \end{bmatrix}$ and we find $ABA = A$.

Case-2: $af - be \neq 0$. Then $B = \begin{bmatrix} f & 0 & -b \\ af - be & af - be & 0 \\ af - be & 0 & a \end{bmatrix}$ and $ABA = A$.

Case-3: $cf - de \neq 0$. Then $B = \begin{bmatrix} f & 0 & -d \\ cf - de & cf - de & 0 \\ cf - de & 0 & cf - de \end{bmatrix}$ and $ABA = A$.

Case-4: When the sub matrices are singular, then either \[
\begin{cases}
ad - bc = 0 \\
cf - be = 0
\end{cases}
\]
or \[
\begin{cases}
ad - bc = 0 \\
af - de = 0
\end{cases}
\]

If all the elements of A are 0, then the case is trivial. Next we consider at least one of the elements of A is non-zero, say $a_{ij} \neq 0$, $i = 1, 2, 3$ and $j = 1, 2$. Then we take the b_{ij}th element of B as $(a_{ij})^{-1}$ and the other elements of B are zero and we find that $ABA = A$. Thus A is regular. Hence S is a regular Γ-semi sub near-field space.

Theorem 2.16: Every α-idempotent element in a Γ-semi sub near-field space is regular Γ-semi sub near-field space.

Proof: Let a be an α-idempotent element in a Γ-semi sub near-field space S. Then $a = a\alpha a$ for some $\alpha \in \Gamma$.

Hence $a = a\alpha a\alpha a$. Therefore a is a regular element.
Example 2.17: Let $S = \{0, a, b\}$ and Γ be any nonempty set. If we define a binary operation on S as the following Cayley’s table, then S is a Γ- semi sub near-field space.

\[
\begin{array}{ccc}
. & 0 & a & b \\
0 & 0 & 0 & 0 \\
a & 0 & a & a \\
b & 0 & b & b \\
\end{array}
\]

Define a mapping from $S \times \Gamma \times S$ to S as $a\alpha b = ab$ for all $a, b \in S$ and $\alpha \in \Gamma$. Then S is regular Γ- semi sub near-field space.

We now introduce a regular Γ-ideal of a Γ-semigroup.

Definition 2.18: A Γ-sub near-field space A of a Γ- semi sub near-field space S is said to be regular Γ- semi sub near-field space if every element of A is regular in A.

Theorem 2.19: Every Γ-sub near-field space of a regular Γ- semi sub near-field space S is a regular Γ-sub near-field space of S.

Proof: Let A be a Γ-sub near-field space of S and $a \in A$. Then $a \in S$ and hence a is regular Γ- semi sub near-field space in S.

Therefore $a = a\alpha b\beta a$ where $b \in S$ and $\alpha, \beta \in \Gamma$.

Hence $a = a\alpha b\beta a = (a\alpha b\beta a)(a\alpha b\beta a) = a\alpha((b\beta a)ab)b\beta a$.

Let $b_1 = (b\beta a)ab \in S\Gamma A\Gamma S \subseteq A$.

Now $a\alpha b\beta a = a\alpha((b\beta a)ab)b\beta a = a$.

Therefore a is regular Γ- semi sub near-field space in A and hence A is a regular Γ-sub near-field space.

This completes the proof of the theorem.

Theorem 2.20: If a Γ- semi sub near-field space S is a regular Γ- semi sub near-field space then every principal Γ-sub near-field space is generated by a β-idempotent for some $\beta \in \Gamma$.

Proof: Suppose that S is a regular Γ- semi sub near-field space. Let $< a >$ be a principal Γ-sub near-field space of S.

Since S is a regular Γ- semi sub near-field space, there exists $x \in S$, $\alpha, \beta \in \Gamma$ such that $a = a\alpha x\beta a$.

Let $a\alpha x = e$. Then $e\beta e = (a\alpha x)\beta (a\alpha x) = (a\alpha x\beta a)\alpha x = a\alpha x = e$.

Thus e is a β-idempotent element of S.

Now $a = a\alpha x\beta a = e\beta a \in < e > \Rightarrow < a > \subseteq < e >$.

Also $e = a\alpha x \in < a > \Rightarrow < e > \subseteq < a >$.

Therefore $< a > = < e >$ and hence every principal Γ-sub near-field space is generated by an idempotent.

We now introduce left regular element, right regular element, completely regular element in a Γ-semi sub near-field space and completely regular Γ- semi sub near-field space.

Definition 2.21: An element a of a Γ- semi sub near-field space S is said to be left regular Γ-semi sub near-field space provided $a = a\alpha x\beta x$, for some $x \in S$ and $\alpha, \beta \in \Gamma$: i.e, $a \in a\Gamma a\Gamma S$.

Definition 2.22: An element a of a Γ- semi sub near-field space S is said to be right regular Γ-semi sub near-field space provided $a = x\alpha a\beta a$, for some $x \in S$ and $\alpha, \beta \in \Gamma$. i.e, $a \in \Gamma a\Gamma S$.
Define 2.23: An element \(a \) of a \(\Gamma \)-semi sub near-field space \(S \) is said to be completely regular \(\Gamma \)-semi sub near-field space provided, there exists an element \(x \in S \) such that \(a = a\alpha\beta\gamma \) for some \(\alpha, \beta \in \Gamma \) and \(a\alpha\gamma = x\beta\gamma \) i.e., \(a \in \alpha \Gamma \times \Gamma \alpha \) and \(a\Gamma x = x\Gamma a \).

Definition 2.24: A \(\Gamma \)-semi sub near-field space \(S \) is said to be completely regular \(\Gamma \)-semi sub near-field space provided every element of \(S \) is completely regular.

We now introduce \((\alpha, \beta)\)-inverse of an element in a \(\Gamma \)-semi sub near-field space.

Definition 2.25: Let \(S \) be a \(\Gamma \)-semi sub near-field space, \(a \in S \) and \(\alpha, \beta \in \Gamma \). An element \(b \in S \) is said to be an \((\alpha, \beta)\)-inverse of \(a \) if \(a = a\alpha\beta\gamma \) and \(b = b\alpha\beta\gamma \).

Theorem 2.26: Let \(S \) be a \(\Gamma \)-semi sub near-field space and \(a \in S \). Then \(a \) is a regular element if and only if \(a \) has an \((\alpha, \beta)\)-inverse.

Proof: Suppose that \(a \) is a regular element. Then \(a = a\alpha\beta\gamma \) for some \(\beta \in S \) and \(\alpha, \beta \in \Gamma \).

Let \(x = b\beta\alpha\beta \in S \).

Now \(a\alpha\beta\gamma = a\alpha\beta\gamma = (a\alpha\beta\gamma)\alpha\beta\gamma = a\alpha\beta\gamma = a \) and \(x\beta\alpha\gamma = (b\beta\alpha\beta)\alpha\beta\gamma = b\beta\alpha\beta\gamma \alpha \beta\gamma \alpha\beta\gamma = b\beta\alpha\beta\gamma \alpha\beta\gamma = b\beta\alpha\beta\gamma = x\beta\alpha\beta \).

Therefore \(x = b\beta\alpha\beta \) is the \((\alpha, \beta)\)-inverse of \(a \).

Conversely suppose that \(b \) is an \((\alpha, \beta)\)-inverse of \(a \).

Then \(a = a\alpha\beta\gamma \) and \(b = b\beta\alpha\beta \). Therefore \(a = a\alpha\beta\gamma \) and hence \(a \) is regular.

This completes the proof of the theorem.

We now introduce a semi simple element of a \(\Gamma \)-semi sub near-field space and a semi simple \(\Gamma \)-semi sub near-field space.

Definition 2.27: An element \(a \) of \(\Gamma \)-semi sub near-field space \(S \) is said to be semi simple provided \(a \in \langle a \rangle \), that is, \(\langle a \rangle \) is a semigroup.

Definition 2.28: A \(\Gamma \)-semi sub near-field space \(S \) is said to be semi simple \(\Gamma \)-semi sub near-field space provided every element of \(S \) is a semi simple element.

We now introduce an intra regular element of a \(\Gamma \)-semi sub near-field space.

Definition 2.29: An element \(a \) of a \(\Gamma \)-semi sub near-field space \(S \) is said to be intra regular provided \(a = xa\beta\gamma y \) for some \(x, y \in S \) and \(\alpha, \beta, \gamma \in \Gamma \).

Example 2.30: The \(\Gamma \)-semi sub near-field space \(S = \{0, a, b\} \) and \(\Gamma \) be any nonempty set. If we define a binary operation on \(S \) as the following Cayley’s table, then \(S \) is a \(\Gamma \)-semi sub near-field space.

\[
\begin{array}{ccc}
 & 0 & a & b \\
 0 & 0 & 0 & 0 \\
a & 0 & a & a \\
b & 0 & b & b \\
\end{array}
\]

Define a mapping from \(\Gamma \times \times S \) to \(S \) as \(a\beta b = ab \) for all \(a, b \in S \) and \(\alpha \in \Gamma \). Then \(S \) is regular \(\Gamma \)-semi sub near-field space is an intra regular \(\Gamma \)-semigroup.

Theorem 2.31: If ‘a’ is a completely regular element of a \(\Gamma \)-semi sub near-field space \(S \), then \(a \) is regular and semi simple.

Proof: Since \(a \) is a completely regular element in the \(\Gamma \)-semi sub near-field space \(S \), \(a = a\alpha\beta\gamma \) for some \(\alpha, \beta \in \Gamma \) and \(x \in S \). Therefore \(a \) is regular.

Now \(a = a\alpha\beta\gamma \in \alpha \Gamma \times \Gamma \alpha \subseteq \langle a \rangle \Gamma \subseteq \langle a \rangle \). Therefore \(a \) is semi simple. This completes the proof of the theorem.
Theorem 2.32: If ‘a’ is a completely regular element of a Γ-semi sub near-field space S, then a is both a left regular element and a right regular element.

Proof: Suppose that a is completely regular. Then $a \in a\Gamma S\Gamma a$ and $a\Gamma S = S\Gamma a$.

Now $a \in a\Gamma S\Gamma a = a\Gamma aS$. Therefore a is left regular. Also $a \in a\Gamma S\Gamma a = S\Gamma a\Gamma a$. Therefore a is right regular. This completes the proof of the theorem.

Theorem 2.33: If ‘a’ is a left regular element of a Γ-semi sub near-field space S, then a is semi simple.

Proof: Suppose that a is left regular. Then $a \in a\Gamma a\Gamma x$ and hence $a \in < a > \Gamma < a >$. Therefore a is semi simple. This completes the proof of the theorem.

Theorem 2.34: If ‘a’ is a right regular element of a Γ-semi sub near-field space S, then a is semi simple.

Proof: Suppose that a is right regular. Then $a \in a\Gamma a\Gamma x$ and hence $a \in < a > \Gamma < a >$. Therefore a is semi simple. This completes the proof of the theorem.

Theorem 2.35: If ‘a’ is a regular element of a Γ-semigroup S, then a is semi simple.

Proof: Suppose that a is regular element of Γ-semigroup S. Then $a = a\alpha\beta\alpha a\beta$, for some $x \in S$, $\alpha, \beta \in \Gamma$ and hence $a \in < a > \Gamma < a >$. Therefore a is semi simple. This completes the proof of the theorem.

Theorem 2.36: If ‘a’ is a intra regular element of a Γ-semi sub near-field space S, then a is semi simple.

Proof: Suppose that a is intra regular. Then $a \in x\Gamma a\Gamma a\Gamma y$ for $x, y \in S$ and hence $a \in < a > \Gamma < a >$ Therefore a is semi simple. This completes the proof of the theorem.

Theorem 2.37: If S is a duo Γ-semi sub near-field space, then the following are equivalent for any element $a \in S$.

1) a is regular.
2) a is left regular.
3) a is right regular.
4) a is intra regular.
5) a is semisimple.

Proof: This can proved by cyclic method of proof. Since S is duo Γ-semi sub near-field space, $a\Gamma S_1 = S_1\Gamma a$.

We have $a\Gamma S_1\Gamma a = a\Gamma a\Gamma S_1 = S_1\Gamma a\Gamma a = < a > \Gamma < a >$.

(1) \Rightarrow (2): Suppose that a is regular. Then $a = a\alpha\beta\alpha a\beta$ for some $x \in S$ and $\alpha, \beta \in \Gamma$.

Therefore $a \in a\Gamma S_1\Gamma a = a\Gamma a\Gamma S_1 \Rightarrow a = a\alpha a\beta x\beta$ for some $y \in S_1, \gamma, \delta \in \Gamma$.

Therefore a is left regular.

(2) \Rightarrow (3): Suppose that a is left regular. Then $a = a\alpha\beta\alpha a\beta b$ for some $x \in S$ and $\alpha, \beta \in \Gamma$.

Therefore $a \in a\Gamma a\Gamma S_1 = S_1\Gamma a\Gamma a \Rightarrow a = x\alpha a\beta\alpha a\gamma$ for some $y \in S_1, \gamma, \delta \in \Gamma$.

Therefore a is right regular.

(3) \Rightarrow (4): Suppose that a is right regular. Then for some $x \in S, \alpha, \beta \in \Gamma; a = x\alpha a\beta b$. Therefore $a \in S_1\Gamma a\Gamma a = < a > \Gamma a \Rightarrow a = x\alpha a\beta\alpha\gamma y$ for some $x, y \in S_1$ and $\alpha, \beta, \gamma \in \Gamma$. Therefore a is intra regular.

(4) \Rightarrow (5): Suppose that a is intra regular. Then $a = x\alpha a\beta\alpha\gamma y \forall x, y \in S_1$ and $\alpha, \beta, \gamma \in \Gamma$. Therefore, $a \in < a > \Gamma < a >$.

Therefore a is semi simple.

(5) \Rightarrow (1): Suppose that a is semi simple. Then $a \in < a > \Gamma < a > = a\Gamma S_1\Gamma a$

$\Rightarrow a \in a\alpha\beta\alpha a\beta b$ for some $x \in S$ and $\alpha, \beta \in \Gamma$.

Therefore a is a regular element.

This completes the proof of the theorem.

ACKNOWLEDGEMENT

Dr N V Nagendram being a Professor is indebted to the referee for his various valuable comments leading to the improvement of the advanced research article. This work under project was supported by the chairman Sri B Srinivasa Rao, Kakulada Institute of Technology & Science (K.I.T.S.), R&D education Department S&H (Mathematics), Divilli 533 433. Andhra Pradesh INDIA.
REFERENCES

17. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On IFP Ideals on Noetherian Regular-δ-Near Rings(IFPINR-delta-NR)”, Int. J. of Contemporary Mathematics, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, Vol. 2, No. 1, pp.53-58, June 2011.
19. N V Nagendram research paper on "Near Left Almost Near-Fields (N-LA-NF)" communicated to for 2nd international conference by International Journal of Mathematical Sciences and Applications, IJMSA@mindreader publications, New Delhi on 23-04-2012 also for publication.
20. N V Nagendram, T Radha Rani, Dr T V Pradeep Kumar and Dr Y V Reddy "A Generalized Near Fields and (m, n) Bi-Ideals over Noetherian regular Delta-near rings (GNF-(m, n) BI-NR-delta-NR)", published in an International Journal of Theoretical Mathematics and Applications (TMA), Greece, Athens, dated 08-04-2012.
24. N V Nagendram, Ch Padma, Dr T V Pradeep Kumar and Dr Y V Reddy "Ideal Comparability over Noetherian Regular Delta Near Rings(IC-NR-Delta-NR)" Published in International Journal of Advances in Algebra (IJAA, Jordan), ISSN 0973-6964 Vol:5,NO:1(2012), pp.43-53@Research India publications, Rohini, New Delhi.
29. N V Nagendram, Dr T V Pradeep Kumar and Dr Y V Reddy “On Bounded Matrix over a Noetherian Regular Delta Near Rings(BMNR-delta-NR)”, Int. J. of Contemporary Mathematics, Vol. 2, No. 1-2, Jan-Dec 2011, Copyright @ Mind Reader Publications, ISSN No: 0973-6298, pp.11-16
37. N V Nagendraml, N Chandra Sekhara Rao "Optical Near field Mapping of Plasmonic Nano Prisms over Noetherian Regular Delta Near Fields (ONFMPN-DR-Delta-NR)" accepted for 2nd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 15 – 16 th December 2012 also for publication.
40. N V Nagendram “Amenability for dual concrete complete near-field spaces over a regular delta near-rings (ADC-NFS-R-δ-NR)” accepted for 3rd international Conference by International Journal of Mathematical Sciences and Applications, IJMSA @ mind reader publications, New Delhi going to conduct on 19 – 20 th December 2015 at Asian Institute of Technology AIT, Klaung Lange 12120, Bangkok, Thailand.
57. N V Nagendram "Tensor product of a near-field space and sub near-field space over a near-field” published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.8, No.6, Pg. 8 – 14, 2017.
61. Dr. N V Nagendram "A Note on B1.-Near-fields over R-delta-NR (B1.-NFS-R-δ-NR)", Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.6, No.8, Pg. 144 – 151, 2015.
64. Dr. N V Nagendram "Certain Near-field spaces are Near-fields(C-NFS-NF)", Published by International Journal of Mathematical Archive, IJMA, ISSN. 2229-5046, Vol.7, No.4, Pg. 1 – 7, 2016.
Dr. N. V. Nagendram /
\(\Gamma \)-semi normal sub near-field spaces of a \(\Gamma \)-near-field space over near-field Part III / IJMA- 9(3), March-2018.

68. Dr N V Nagendram, “Closed (or open) sub near-field spaces of commutative near-field space over a near-field”, 2016, Vol.7, No. 9, ISSN NO.2229 – 5046, Pg No.57 – 72.
70. Dr N V Nagendram, “\(\Sigma \) – toe derivations of near-field spaces over a near-field “IJMA Jan 2017, Vol.8, No. 4, ISSN NO.2229 – 5046, Pg No. 1 – 8.
73. Dr N V Nagendram, “Project on near-field spaces with sub near-field space over a near-field“, IJMA Oct, 2017, Vol.8, No, 11, ISSN NO.2229 – 5046, Pg No. 7 – 15.
75. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Commutative Prime \(\Gamma \)-near-field spaces with permuting Tri-derivations over near-field “,IJMA Dec, 2017, Vol.8, No,12, ISSN NO.2229 – 5046, Pg No. 1 – 9.
76. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “Fuzzy sub near-field spaces in \(\Gamma \)-near-field space over a near-field“, IJMA Nov, 2017, Vol.8, No, 12, ISSN NO.2229 – 5046, Pg No.188 – 196.
77. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “\(\Gamma \)amma Semi Sub near-field spaces in gamma near-field space over a near-field PART I “, IJMA Dec, 2017, Vol. xx, No, xx, ISSN NO.2229–5046, Pg No.xxx – xxx.
78. Smt. T Madhavi Latha, Dr T V Pradeep Kumar and Dr N V Nagendram, “\(\Gamma \)amma Semi Sub near-field spaces in gamma near-field space over a near-field PART II”, IJMA Dec, 2017, Vol. xx, No, xx, ISSN NO. 2229 – 5046, Pg No.xxx – xxx.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]