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ABSTRACT 
Zadeh [1965] introduced fuzzy set. Mukherjee and Bhattacharya [1986] studied on a fuzzy groups, and some group 
theoretic results. Wu [1981] obtained few properties on normal fuzzy subgroup. Das [1981] found some new results on 
fuzzy group and level subgroups. It is also motivated to find N-fuzzy group in hemi-ring. Mukherjee and Bhattacharya 
[1984] analyzed on fuzzy normal subgroups and fuzzy cosets, and investigates on properties on normality. Nagarajan 
and Manermaran [2013] gave few algebraic properties on M-fuzzy factor group, and obtained some its power fuzzy 
group, homomorphic image and preimage, union and intersection.   
 
In this paper, the notion of Q-fuzzification of left N-subgroups is introduced in a near ring and investigated some 
related properties. Characterization of Q-fuzzy left N subgroup with respect to a triangular norm is given. 
 
Keywords: Set action on a fuzzy set; group action on fuzzy left N-subgroup in a near-ring.  
 
 
SECTION-1: INTRODUCTION 
 
Ray [1992] initiated isomorphic fuzzy group. Makamba [1992] discussed direct product and isomorphism of fuzzy 
subgroups. Ajmal [1994] studied on homomorphism on factor fuzzy group. They gave an idea to introduce M-fuzzy 
group, & its normality in a ring. Fang [1994] studied on fuzzy homomorphism & fuzzy isomorphism, and it leads to    
N-fuzzy subgroup in near-ring. Kim [1997], Kim & Kim [1994], Mukherjee and Bhattacharya [1984, 1986], and 
analyzed on some characterizations of fuzzy subgroups, and it give an idea to verify also few characterizations on       
N-fuzzy group in a near-ring. Kumar et.al [1992] obtained some new structures on fuzzy normal subgroup and fuzzy 
quotient group which initiate to make an attempt on N-fuzzy normal subgroup in a near-ring. Kumbhoikar and Bapal 
[1991] found correspondence theorem for fuzzy ideals in near-ring. Liu et.al [2001] and Morsi & Yehia [1994] got few 
properties on quotient fuzzy group and quotient fuzzy ring induced from fuzzy ideals in near-ring, and same argument 
will argue quotient N-fuzzy subgroup in near-ring. Further in this paper, we introduce the notion of Q-fuzzification of 
left N-subgroups in a near ring and discuss usual algebraic properties like as union, intersection, and level cut-set of   
Q-fuzzification of left N-subgroups in a near ring a. Characterization of Q fuzzy left N-subgroups are given.  
 
SECTION-2: BASIC DEFINITIONS AND PRELIMINARIES 
 
Definition 2.1: A near ring is a non – empty set R with two binary operations + and . satisfying the following axioms: 
(1). (R, +) is a group; (2). (R, .) is a semigroup; (3). x. (y + z) = x. y + x. z for all x, y, z, \ in R. Then it is called a left 
near – ring by (3). In this paper, it will use the word near- ring. Here xy denotes x.y; (2). x.0 = 0, and x(-y) = -(xy) for   
x, y in R.  
 
Definition 2.2: A two sided 𝑅 – subgroup of a near – ring 𝑅 is a subset 𝐻 of 𝑅 such that (1). (H, +) is a subgroup of    
(R, +); (2). RH ⊂ H; (3). HR ⊂ H. If H satisfies (1) and (2), then it is a left R-subgroup of R, while if H satisfies (1) and 
(3), then it is a right R-subgroup of R.  
 
Definition 2.3: A fuzzy set µ in a set R is a function µ: R → [0, 1].  
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Definition 2.4: Let G be any group. A mapping μ: G → [0, 1] is a fuzzy group if (FG1). 𝜇(𝑥𝑦) ≥ min {𝜇(𝑥), 𝜇(𝑦)} 
and (FG2). 𝜇(𝑥−1) = 𝜇(𝑥), for all 𝑥,𝑦 ∈ 𝐺. 
 
Definition 2.5: Let (S, +) be a group, and G be a non-empty set. Then G acts on S if there exists a function                      
∗ : 𝐺 × 𝑆 → 𝑆 (denoted * (g, s) = gs for all g ∈ G, and s ∈ S) such that es = s and (g + h) ∗ s = g ∗ (h ∗ s) for all s in S, 
and for all g, h in G. 
 
Definition 2.6: A map 𝑓 ∶  𝑅 →  𝑆 is called homomorphism if 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥,𝑦 in 𝑆. 
 
Definition 2.7: (T-norm) A triangular norm is a function T: [ 0,1] × [0,1] → [ 0,1] that satisfies the following 
conditions for all x, y, z in [0, 1]. 
(T1):  T(x, 1) = x;   
(T2). T(x, y) = T(y, x);  
(T3): T(x, T(y, z)) = T(T(x, y), z);   
(T4). T(x, y) ≤ T(x, z) if y ≤ z. 
 
Definition 2.8: Let .there exist a map (namely multiplication) from N × R → R. A group (G, ∆) with identity 0 acts on 
a N-fuzzy group A of a near-ring  (R, +, .) if (GAFS1) the group G acts on R [there exists a function  ∗ : G × R → R 
with the conditions g ∗ ( h∗ s ) = (g + h) ∗ s and e ∗ s = s or all s in S, and for all g, h in G];  

(GAFG2) A(x ∗ n(s −  t) ≥ T { A(x ∗ s), A(x ∗ t)};  
(GAFG3) A(x ∗ (ns)) ≥ T (A(x ∗ s)); for all n in N; and for all x, y ∈ G  and s, t ∈ S.  

 
Definition 2.9: Let θ be a mapping from X to Y. (i)  Let (G′, ∆′) a group acting on R′-fuzzy group B under a near-ring 
(R′,  +′,  .′). Then the inverse image of B under θ denoted by θ-1(B) is fuzzy set in (G, ∆) defined by θ-1 (B) = μθ

-1 (B) 
where μθ

-1 
(B)  (x) = μB (𝜃(𝑥)); (ii) Let (G, ∆) be a group acting on R-fuzzy group A under a near-ring (R, +, .).   

 
Definition 2.10: Then the image of A under θ denoted by θ(A), where μθ(A)  (y) = {Sup  μA (x) : x ∈ θ-1(y) if θ-1(y) ≠ 0;  0, 
otherwise.  Then μθ

-1
(B) (x ∗ s) = μB (θ(x) ∗ s) for all s in S. Also μθ(A)  (y ∗ s) = {Sup  μA(x ∗ s) : (x ∗ s) ∈ (θ-1(y) ∗1 s) for 

all s in S  if θ-1(y) ≠ 0;  = 0, otherwise. 
 
SECTION-3:  GROUP ACTION ON FUZZY N-GROUP OF A NEAR-RING 
 
Theorem 3.1: Let ‘T’ be a t-norm. Then every imaginable fuzzy left N-subgroup µ of a near ring R acted by a group 
(G, ∆)  is a fuzzy left N-subgroup of R acted by G.  
 
Proof: Assume µ is an imaginable fuzzy left N-subgroup of R. Then it gets that  

µ (x ∗ n(s-t)) ≥ T{µ (x ∗ s), µ (x ∗ t)} and µ (x ∗ (ns)) ≥ µ (x ∗ s). for all s, t in R and x in G.  
 
Since µ is imaginable, it follows that  

min {µ (x ∗ s), µ (x ∗ t)} = T{ min {µ (x ∗ s), µ (x ∗ t), min {µ (x ∗ s), µ (x ∗ t)}      
≤ T{ min {µ (x ∗ s), µ (x ∗ t)} 
≤ min {µ (x ∗ s), µ (x ∗ t)} 

and so  
T{min {µ (x ∗ s), µ (x ∗ t)} ≤ min {µ (x ∗ s), µ (x ∗ t)} . 

It also finds that µ(x ∗ n(s-t)) ≥ T{min {µ (x ∗ s), µ (x ∗ t)} 
                                                = min {min {µ (x ∗ s), µ (x ∗ t)} for all s, t in R, and x in G.  
Hence G acts on µ  ‘μ’ is a fuzzy left N-subgroup of R acted by G.  
 
Theorem 3.2: If µ is fuzzy left N-subgroup of a near ring (R, +, .) acted by a group (G, ∆), and Q is a endomorphism of 
R, then µ(Q) is a fuzzy left N-subgroup of R acted by G.. 
 
Proof: µ is fuzzy left N-subgroup of a near ring (R, +, .) acted by a group (G, ∆).  
 
Define µ(Q): R → R by µ(Q) (x ∗ s) = µ (Q(x ∗s)) for all x in G, and s in R. Clearly G acts also on fuzzy subgroup µ(Q) of 
R.  
 
For any s, t in R, and x in G, it gets that  
(i). µ(Q) (x ∗ n(s-t)) = µ (Q ( x ∗ ((n(s-t))))  

  =  µ (Q(x ∗ s), Q(x ∗ t)) 
  ≥ T {µ( Q(x ∗ s), Q(x ∗ t)) 
  = T {µ(Q) (x ∗ s), µ(Q) (x ∗ t)} 
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(ii). µ(Q) (x ∗ (ns))  = µ(Q(x ∗ (ns)) 

 ≥ µ(Q(x ∗ s) 
 ≥  µ(Q)((x ∗ s) 

Hence G acts on fuzzy N-subgroup µ(Q) of R. 
  
Theorem 3.3: Onto homomorphism pre-image of a fuzzy left N-subgroup of near ring R′ acted by a group (G, ∆), is 
fuzzy left N-subgroup of a near-ring R acted by G. 
 
Proof: Let f: R → R′ be an onto homomorphism of near rings and A be a fuzzy left N-subgroup of  R′  acted by G. Let 
B be the pre-image of A under f.  
Then (i).B (( x ∗ (s-t)) = A (f (x ∗ (s-t))) 
                                    = A (f (x ∗ s), f(x ∗ t) ) 
                                    ≥ T {B (x ∗ s), B(x ∗ t)} 
                                    = T (f (x ∗ s), f(x ∗ t) ) 

(ii). B (( x ∗ (ns))) = A (f(x ∗ (ns)) 
                                     = A (f(x ∗ s) 
                                     = B (x ∗ s). 
Thus B is a fuzzy left N-subgroup of R acted by G.  
 
Theorem 3.3: Onto homomorphism pre-image under supreme property of a fuzzy left N-subgroup of near ring R′ 
acted by a group (G, ∆), is fuzzy left N-subgroup of a near-ring R′ acted by G. 
 
Proof: Let f: R → R′ be an onto homomorphism on near-rings. Let µ be fuzzy N-subgroup of R′. 
 
By superme property, let 𝑥1,𝑦1 ∈ 𝑅′ and 𝑥0 ∈ 𝑓−1(𝑥1), 𝑦0 ∈ 𝑓−1(𝑦1), be such that  

𝜇(𝑥 ∗ 𝑥0) =  
𝑠𝑢𝑝

(𝑥 ∗ ℎ) ∈ 𝑓−1(𝑥1) 𝜇 (𝑥 ∗ ℎ) 

𝜇(𝑥 ∗ 𝑦0) =  
𝑠𝑢𝑝

(𝑥 ∗  ℎ) ∈ 𝑓−1(𝑦1) 𝜇 (𝑥 ∗ ℎ) respectively. 

Then we can deduce that  

(1). 𝜇𝑓(𝑥 ∗ (𝑛(𝑥1 − 𝑦1))) =
𝑠𝑢𝑝

(𝑥 ∗ 𝑧) ∈ 𝑓−1(𝑥 ∗ �𝑛(𝑥1 − 𝑦1)�)  𝜇(𝑥 ∗ 𝑧) 

                      ≥  𝑇{𝜇(𝑥 ∗ 𝑥0), 𝜇(𝑥 ∗ 𝑦0)} 

                      ≥  𝑇 �
𝑆𝑢𝑝

(𝑥 ∗ ℎ) ∈ 𝑓(𝑥) (𝑥 ∗ 𝑥0),
𝑆𝑢𝑝

(𝑥 ∗ ℎ) ∈ 𝑓(𝑦) (𝑥 ∗  𝑦0)� 

                      =  𝑇 {𝜇𝑡  (𝑥 ∗  𝑥1) ,   𝜇𝑡  (𝑥 ∗  𝑦1)} 
 

(2). 𝜇𝑓(𝑥 ∗ 𝑛𝑥1)  =
𝑆𝑢𝑝

(𝑥 ∗ 𝑧) ∈ 𝑓−1�𝑥 ∗ (𝑛𝑥1)� 𝜇 ( 𝑥 ∗ 𝑧) 

                             ≥ 𝜇 (𝑥 ∗ 𝑥0) 

                             =  
𝑆𝑢𝑝

(𝑥 ∗ 𝑥0 ) ∈ 𝑓−1(𝑥 ∗  𝑥1) 𝜇 ( 𝑥 ∗ 𝑥0  ) 

                             =  𝜇𝑡  (𝑥 ∗  𝑥1). 
Hence 𝜇𝑓  is a fuzzy left N-subset of R acted by G. 
 
Theorem 3.5: Let T be a continuous t-norm and f be a homomorphism on a near ring R. If μ is fuzzy left N-subgroup 
of S acted by a group (G, ∆), then µf is a fuzzy left N-subgroup of f(R) acted by G. 
 
Proof: It follows that µf is a fuzzy left N-subset f f(R) acted by G  
 
Let A1 = f-1(x ∗ y1); A2 = f-1(x ∗ y2);  
 
Let A12 = f-1(x ∗ n(y1- y2)) where y1, y1 in f(R), n in N, and x in G.  
 
Consider the set A1 – A2 = {s ∈R: (x ∗ s) = (x ∗ a1) – (x ∗ a2)} for some (x ∗ a1) ∈ A1, and (x ∗ a2) ∈ A2.  
 
If f((x ∗ s) ∈ A1 – A2, then (x ∗ s) = (x ∗ a1) – (x ∗ a2) for some (x ∗ a1) ∈ A1, and (x ∗ a2) ∈ A2. 
 
It gets that f(x ∗ s) = f(x ∗ a1) – f (x ∗ a2) = y1 – y2  
 
Thus (x ∗ s) ∈ f-1(x ∗ y1) – (x ∗ y2)) = f-1(x ∗ n(y1 – y2)) = A12. 
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Implies that A1 – A2 ⊂ A12.  
 
It follows that 

𝜇𝑡[𝑥 ∗ 𝑛(𝑦1 –𝑦2)) = 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑠) ∶  (𝑥 ∗ 𝑠) ∈ 𝑓−1((𝑥 ∗ 𝑛(𝑦1 − 𝑦2)) 
  = 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑠) ∶   (𝑥 ∗ 𝑠)  ∈  𝐴12} 
  ≥ 𝑆𝑢𝑝{ 𝜇(𝑥 ∗ 𝑠) / (𝑥 ∗ 𝑠) ∈ 𝐴1 − 𝐴2} 
  ≥ 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑥1) − (𝑥 ∗ 𝑥2): 𝑥 ∗ 𝑥1 ∈ 𝐴1 and 𝑥 ∗ 𝑥2 ∈ 𝐴2. 

 
Since 𝑇 is continuous, and every ∈ > 0,  there exists δ > 0 such that  

𝑆𝑢𝑝 {𝜇(𝑥 ∗ 𝑥1) ∶ (𝑥 ∗ 𝑥1)  ∈  𝐴1 }  −  (𝑥 ∗ 𝑥2) ∈ 𝐴2} ≤ 𝛿 and 
𝑆𝑢𝑝{ 𝜇(𝑥 ∗ 𝑥2)): 𝑥 ∗ 𝑥1 ∈  𝐴2} −  (𝑥 ∗ 𝑥2)  ∈ 𝐴2} ≤ 𝛿,, then we get  
𝑇 {𝑆𝑢𝑝{ 𝜇(𝑥 ∗ 𝑥1): (𝑥 ∗ 𝑥1) ∈ 𝐴1 }, 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑥2): 𝑥 ∗ 𝑥2) ∈ 𝐴2 } −  𝑇 {(𝑥 ∗ 𝑥1), (𝑥 ∗ 𝑥2)} ≤ ∈. 

 
Choose (x ∗ a1) ∈ A1, and (x ∗ a2) ∈ A2 with 𝑆𝑢𝑝 {𝜇(𝑥 ∗ 𝑥1) ∶ (𝑥 ∗ 𝑥1)  ∈ 𝐴1} − 𝜇(𝑥 ∗ 𝑎1) ≤ 𝛿} then it finds that  

𝑇 { 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑥1): (𝑥 ∗ 𝑥1) ∈ 𝐴1 }, 𝑆𝑢𝑝 { 𝜇(𝑥 ∗ 𝑥2): (𝑥 ∗ 𝑥2)  ∈  𝐴2} − 𝑇{𝜇(𝑥∗ 𝑎1) − 𝜇(𝑥∗ 𝑎2 )} ≤ ∈. 
 
It becomes now that  

𝜇𝑓(𝑥∗ 𝑛(𝑦1 − 𝑦2)) ≥ sup{𝑇(𝜇(𝑥∗ 𝑥1) ∈ 𝐴1𝑎𝑛𝑑 𝜇(𝑥∗ 𝑥2) ∈ 𝐴2): (𝑥∗𝑥1) ∈ 𝐴1 ;  (𝑥∗ 𝑥2) ∈ 𝐴2} 
≥ 𝑇{𝑠𝑢𝑝{𝜇(𝑥 ∗ 𝑥1): (𝑥 ∗ 𝑥1) ∈ 𝐴1}.  sup {𝜇(𝑥 ∗ 𝑥2): (𝑥 ∗ 𝑥2) ∈ 𝐴2)}} 
≥ 𝑇{𝜇𝑓(𝑥 ∗𝑦1), 𝜇𝑓(𝑥 ∗ 𝑦2)} 

 
Similarly, it can show 𝜇𝑓(𝑛𝑥, 𝑞) ≥ 𝜇𝑓[𝑥, 𝑞). Hence G acts fuzzy left N-subgroup 𝜇𝑓of f(R).  
 
Theorem 3.6: Let μ is fuzzy left N-subgroup of a near-ring R acted by a group (G, ∆). Then the fuzzy set < µ >: is a 
fuzzy left N-subgroup of R generated by µ. Also G acts on <µ> as the smallest fuzzy left N-subgroup containing it. 
 
Proof:  Let u, v ∈ R; µ(x ∗ u) = t1; µ(x ∗ v) = t2; µ(x ∗ n(u-v)) = t. 
 
Let it possible t = < µ > (x ∗ n(u-v))  

≤ T {< µ > (x ∗ (nu)), < µ > ((x ∗ (nv)) 
≤ T {< µ > (x ∗ u), < µ > ((x ∗ v)) 
= T {t1, t2} = t1 (say). 

Then t1 = < µ > (x ∗ u) = sup {k:  (x ∗ u) ∈ < µk >} ≥ t.  
 
Therefore there exists k with (x ∗ u) ∈ < µk >.  
 
Also t2 = < µ > (x ∗ v) = sup {k:  (x ∗ v) ∈ < µk >} ≥ t.  
 
Therefore there exists m > t with (x ∗ v) ∈ < µl >.  
 
Without loss of generality, assume that k, m with < µk > ⊂ < µm >.  
hen u, v ∈ < µk >, which is a contradiction since m > t. Therefore t ≥ t1.  
 
Consequently, 𝜇�𝑥 ∗ 𝑛(𝑢 − 𝑣)� ≥ 𝑇 {< 𝜇 > (𝑥 ∗ 𝑢), 𝜇 > (𝑥 ∗ 𝑣)}                                                                                 (1) 
 
Now let, if possible t3 = {< µ > (x ∗ (nu)) ≤ <µ> (x ∗ u) = t1.  
Then t1 = < µk > (x ∗ u) = Sup {k: (x ∗ u) ∈ < µk >} > t3.  
 
So there exists k with x ∗ u ∈ < µk >, and t1 > k > t3 so that n(x∗ u) ∈ < µk > ⊂ < µt >, which is a contradiction. Hence     
t3 = {< µ >(x ∗ (nu)) ≥ < µ >(x ∗ u) = t2                                                                                                                           (2)  
 
The equations (1) and (2) yield that G acts on fuzzy left N-subgroup < µ > of R.  
 
Finally to show that < 𝜇 > is the smallest fuzzy left N-subgroup containing µ acted by G.           
 
For this, assume that G acts on fuzzy left N-subgroup Q of R such that µ ⊂ Q, and show that < µ >  ⊂ Q. Let it 
possible, t = < µ > (x ∗ u) ≥ Q(x ∗ u) for some x in G, and u in R.  
 
Let ∈ > 0 be given. Then t = µt = Sup {k: (x ∗ u) ∈ < µk > and t - ∈ ≤ k < t} implies that (x ∗ u) ∈ < µ >  ⊂   < µk t - ∈ > 
for all ∈ > 0. 
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Now a = a1 (x ∗ x1) + a2 (x ∗ x2) + a3 (x ∗ x3) +…+ an (x ∗ xn) where ai ∈ N, and (x ∗ xi) belongs to (t-∈). (x ∗  xi) ∈ µt-∈ 
implies that µ( x ∗ xi) ≥ t - ∈.  Thus Q (x ∗ u) ≥ t – ∈ for all ∈ . 0  
 
So that Q (x ∗ u) ≥ T { Q (x ∗ u1), Q (x ∗ u2), …, Q (x ∗ un} ≥ t - ∈ for all ∈ > 0.  
 
Hence Q (x ∗ u) = t which is a contradiction to our supposition 
 
Theorem 3.7: Let a group (G, ∆) acts a fuzzy left N-subgroup µ of a near ring R and µ+ be a fuzzy set in R defined by 
µ+ (x ∗ u) = µ(x ∗ u) + 1-µ(x ∗ 0) for all u in R, and x in G. Then G acts on a normal fuzzy N-subgroup µ+ of R 
containing ′𝜇′. 
 
Proof: Let u, v ∈ R, and x ∈ G.  We have 
(i).  µ+ (x ∗ n(u-v)) = µ(x ∗ n(u-v)) + 1 - µ(x ∗ 0) ) 

≥ {µ(x ∗ u) + 1 - µ( x ∗ nv)} + 1 - µ (x ∗ 0) 
≥ T{µ( x ∗ u) +1 - µ (x ∗ 0, µ(x ∗ v)} + 1 - µ(x ∗ 0)) 
≥ T{µ+(x ∗u), µ+(x ∗v)} 

(ii).      µ+ (x ∗ nu) = µ(x ∗ nu) + 1 - µ(x ∗ 0)   
                              ≥ µ(x ∗ u) + 1 - µ(x ∗ 0) 
                              = µ+(x ∗ u) 
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