Pairwise \(s**gO \) - compact spaces in bitopological spaces

V. SUBHA*1, N. SEENIVASAGAN2 AND P. PADMA3

1Department of Mathematics, Govt Arts college, Kumbakonam, INDIA.
2Department of Mathematics, Govt. Arts college for women, Nilakottai INDIA.
3Department of Mathematics, PRIST University, Kumbakonam, INDIA.

(Received On: 01-02-18; Revised & Accepted On: 01-03-18)

ABSTRACT

Balachandran [1] introduced the notion of GO-compactness by involving g-open sets. Quite recently, Caldas et al. investigated this class of compactness and characterized several of its properties. In this paper we introduced a new type of compact spaces called pairwise \(s**gO \) - compact spaces and study its properties.

Keywords: pairwise \(s**gO \) - compact, pairwise pre \(s**g \) - closed.

2000 AMS Subject Classification: 54E55.

1. INTRODUCTION

The notions of compactness is useful and fundamental notions of not only general topology but also of other advanced branches of mathematics. Many researchers have investigated the basic properties of compactness. The productivity and fruitfulness of these notions of compactness motivated mathematicians to generalize these notions. In the course of these attempts many stronger and weaker forms of compactness have been introduced and investigated. Balachandran, Sundaram and Maki [1] introduced a class of compact space called GO-compact space and GO-connected space using g-open cover.

In 1995, sg - compact spaces were introduced by Caldas [3]. According to him, a topological space \((X, \tau)\) is called \(sg \) - compact if every cover of \(X \) by sg - open sets has a finite sub cover. Devi, Balachandran and Maki [11] defined the same concept and they used the term \(SGO \) - compactness. Recently, the notions of pairwise \(S^*GO \) - compact spaces were introduced by K.Kannan [8] in bitopological spaces in 2009. In this section we define and study the concept of pairwise \(s**gO \) - compact spaces in bitopological spaces.

The main focus of this paper is to introduce a new type of compact spaces called pairwise \(s**gO \) - compact spaces and study its properties.

2. PRELIMINARIES

Definition 2.1 [8]: A bitopological space \((X, \tau_1, \tau_2)\) is \textit{pairwise \(S^*GO \) - compact} if every pairwise \(s^*g \) - open cover of \(X \) has a finite sub cover.

Definition 2.2: A function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \textit{pairwise pre semi - closed} if \(f: (X, \tau_1) \rightarrow (Y, \sigma_1) \) and \(f: (X, \tau_2) \rightarrow (Y, \sigma_2) \) are pre semi closed.

Definition 2.3: \((X, \tau)\) is called an \(s \)- \textit{normal space} if given two disjoint closed sets \(A \) and \(B \) in \(X \), there exist disjoint semi open neighbourhoods \(U \) and \(V \) of \(A \) and \(B \) respectively.

Definition 2.4 [6]: A bitopological space \((X, \tau_1, \tau_2)\) is said to be pairwise compact in the sense of Fletcher, Hoyle and Patty [FHP] (to be abbreviated as \(FHP \) \(\text{compact} \)) if every pairwise open cover \(\mu \) of \(X \) has a finite subcover.

Corresponding Author: V. Subha*1,
1Department of Mathematics, Govt. Arts college, Kumbakonam, INDIA.
3. PAIRWISE $s**gO$ - COMPACT

In the year 2013, $s**g$ - closed sets were introduced by K.Kannan [9]. In this section we define and study the concept of pairwise $s**gO$ - compact spaces in bitopological spaces.

Definition 3.1: A nonempty collection $\zeta = \{A_i, \ i \in I \ ; \ an \ index \ set \}$ is called a pairwise $s**g$ - open cover of a bi space (X, τ_i, τ_j). If $X = \cup A_i$, and $\zeta \subseteq \tau_i - s**gO \ - (X, \tau_i, \tau_j) \cup \tau_j - s**gO(X, \tau_i, \tau_j)$ and ζ contains atleast one member of τ_i - $s**gO \ - (X, \tau_i, \tau_j)$ and one member of $\tau_j - s**gO \ - (X, \tau_i, \tau_j)$.

Definition 3.2: A bitopological space (X, τ_i, τ_j) is pairwise $s**gO$ - compact if every pairwise $s**g$ - open cover of X has a finite subcover.

Definition 3.3: A set A of a bitopological space (X, τ_i, τ_j) is pairwise $s**gO$ - compact relative to X if every pairwise $s**g$ - open cover of B by has a finite subcover as a subspace.

Example 3.1: Let $C = \{G_{\alpha} : \alpha \in A \}$ be a pairwise $s**g$ - open covering for X so that each G_{α} is a pairwise $s**g$ - open set and $X = \cup \{G_{\alpha} : \alpha \in A\}$. G_{α}^c is the complement of G_{α} is a finite set by definition of cofinite topology. Therefore, $G_{\alpha}^c = \{x_1, x_2, \ldots, x_n\}$ i.e. a finite set. Now each element of G_{α}^c is also an element of X whose cover is C and hence each member of G_{α}^c is contained in one or other of G_{α}. At the most for each $x_i \in G_{\alpha}^c$, $\exists \ a$ set $G_{\alpha}x_i \in C$ such that $x_i \in G_{\alpha}x_i$. Hence $G_{\alpha}^c \subset G_{\alpha_1} \cup G_{\alpha_2} \cup \ldots \cup G_{\alpha_n}$. Above relation shows that the finite collection $C^* = \{G_{\alpha_1}, G_{\alpha_2}, \ldots, G_{\alpha_n}\}$ is a finite pairwise $s**gO$ - open covering for X & hence $(X, \tau_i, \tau_j) \ is \ pairwise \ s**gO \ - compact.$

Theorem 3.1: If (X, τ_j) and (X, τ_i, τ_j) are Hausdorff and (X, τ_i, τ_j) is pairwise $s**gO$ - compact then $\tau_i = \tau_j$.

Proof: Let (X, τ_j) and (X, τ_i, τ_j) be Hausdorff and (X, τ_i, τ_j) is pairwise $s**gO$ - compact. Since every $s**gO$ - compact space is pairwise compact we have (X, τ_i) and (X, τ_j) are Hausdorff and (X, τ_i, τ_j) is pairwise compact. Let F be τ_j - closed in X. Then F^c is τ_j - open in X. Let $\zeta = \{A_i, i \in I \ ; \ an \ index \ set \}$ be the τ_j - open cover for X. Therefore, $\zeta \subset F^c$ is the pairwise open cover for X. Since X is pairwise compact, $X = F \cup A_1 \cup \ldots \cup A_i$. Hence $F = A_1 \cup \ldots \cup A_i$. Hence F is τ_j - compact. Since (X, τ_j) is Hausdorff we have F is τ_j - closed. Similarly, every τ_j - closed set is τ_i - closed. Therefore, $\tau_i = \tau_j$.

Theorem 3.2: If Y is τ_j - $s**g$ closed subset of a pairwise $s**gO$ - compact space (X, τ_i, τ_j) then Y is τ_j - $s**gO$ - compact.

Proof: Let X be a pairwise $s**gO$ - compact space. Let $\zeta = \{A_i, i \in I \ ; \ an \ index \ set \}$ be the τ_j - $s**gO$ open cover of Y. Since Y is τ_j - $s**g$ closed subset, Y is τ_j - $s**g$ open. Also $\zeta \cup \tau_i = Y \cup \{A_i, i \in I \ ; \ an \ index \ set \}$ be a pairwise $s**g$ - open cover of X. Since X is pairwise $s**gO$ - compact, $X = Y \cup A_1 \cup \ldots \cup A_i$. Hence $Y = A_1 \cup \ldots \cup A_i$. Therefore, Y is τ_j - $s**gO$ - compact.

Since every τ_i - $s**g$ - closed set is τ_j - closed. We have the following

Theorem 3.3: If Y is τ_j - closed subset of a pairwise $s**gO$ - compact space (X, τ_i, τ_j) then Y is τ_j - $s**gO$ - compact.

Theorem 3.4: Pairwise $s**g$ - continuous image of a pairwise $s**gO$ - compact space is pairwise $s**gO$ - compact.

Proof: Let (X, τ_i, τ_j) be a pairwise $s**gO$ - compact. Let $f : (X, \tau_i, \tau_j) \longrightarrow (X^*, \tau^*_1, \tau^*_2)$ be a pairwise $s**g$ - continuous. Let $\{G_i\}$ be a pairwise $s**g$ - open cover of X. $\Rightarrow \{f^{-1}(G_i)\}$ is pairwise $s**g$ - open cover of X. $\Rightarrow \exists \ a$ finite sub cover of X [because X is pairwise $s**gO$ - compact] $\{f^{-1}(G_1), f^{-1}(G_2), \ldots, f^{-1}(G_n)\}$. $\Rightarrow G_1, \ldots, G_n$ is a subcover of G_i. $\Rightarrow X^*$ is pairwise $s**gO$ - compact.

Definition 3.4: A bitopological space (X, τ_i, τ_j) is said to be pairwise $s**g$ - Hausdorff if for each pair of distinct points x and y of X, there exist $U \in \tau_i - s**gO$ and $V \in \tau_j - s**gO$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 3.5: A map $f : X \rightarrow Y$ is called τ_j - $s**gO$ continuous if the inverse image of each σ_1, σ_2 - $s**g$ closed in Y is τ_j - closed in X.

Remark 3.1: Pairwise $s**gO$ - compact space & pairwise $s**g$ - T_2 - space which is not pairwise $s**g$ - connected. The following example supports our claim.
Example 3.2: Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\} \text{ and } \{a, b, c\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Since (X, τ_1, τ_2) is pairwise s^*gO- compact we have X is finite. Since X is pairwise s^*gO - T_2, \exists a $\tau_1 - s^*g$ open set $U = \{a\}$ & $\tau_2 - s^*g$ open set $V = \{b, c\}$ such that $a \in U, b \in V \& U \cap V = \emptyset \Rightarrow X = U \cup V$ with $U \cap V = \emptyset$. Hence X is pairwise s^*g - disconnected.

Remark 3.2: A pairwise s^*gO - compact subset of a bitopological space X is need not be $\tau_2 - s^*g$ closed. The following example supports or claim.

Example 3.3: Let $X = \{a, b, c\}$, $\tau_1 = \{\emptyset, X, \{a\} \text{ and } \{a, b, c\}\}$ and $\tau_2 = \{\emptyset, X, \{a, b\}\}$. Let $\zeta = \{\{a\}, \{a, c\}, \{a, b, c\}\}$. Let $A = \{a, c\}$. Now $A \subset \{a\} \cup \{b, c\}$. Hence by definition A is pairwise s^*gO - compact set. But A is not $\tau_2 - s^*g$ closed its complement $\{b\}$ is not $\tau_2 - s^*g$ open.

Remark 3.3: A pairwise s^*gO - compact space which is not pairwise s^*g - Hausdorff.

Definition 3.6: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pre s^*gO - closed if $f(U)$ is s^*g - closed in Y for every s^*g - closed set in Y.

Definition 3.7: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise pre s^*g - closed if $f: (X, \tau_i) \rightarrow (Y, \sigma_i)$ and $f: (X, \tau_j) \rightarrow (Y, \sigma_j)$ are pre s^*g - closed .

Definition 3.8: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is pairwise s^*g - continuous if the inverse image of each σ_i - closed set in Y is $\tau_1\tau_2$ - s^*g - closed set in X.

Theorem 3.5: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise s^*g - continuous, bijective and pairwise pre s^*g - closed. Then the image of a pairwise s^*gO - compact space under f is pairwise s^*gO - compact.

Proof: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be pairwise s^*g - continuous, bijective and pairwise pre s^*g - closed. Let X be a pairwise s^*gO - compact. Let $\zeta = \{A_i, i \in I \text{ : an index set}\}$ be the $\tau_2 - s^*g$ open cover of Y. Then $Y = \cup A_i$ and $\zeta \subseteq \sigma_1 - s^*gO - (X, \tau_1, \tau_2) \cup \sigma_2 - s^*gO - (X, \tau_1, \tau_2)$ and ζ contains at least one member of $\sigma_1 - s^*gO(X, \tau_1, \tau_2)$ and one member of $\sigma_2 - s^*gO(X, \tau_1, \tau_2)$. Therefore, $X = f^{-1}(\cup A_i) = \cup f^{-1}(A_i)$ and $f^{-1}(\emptyset) \subseteq \tau_1 - s^*gO - (X, \tau_1, \tau_2) \cup \tau_2 - s^*gO - (X, \tau_1, \tau_2)$ and $f^{-1}(\emptyset)$ contains at least one member of $\tau_1 - s^*gO - (X, \tau_1, \tau_2)$ and one member of $\tau_2 - s^*gO - (X, \tau_1, \tau_2)$. Therefore, $f^{-1}(\emptyset)$ is the pairwise s^*g - open cover of X. Since X is pairwise s^*gO - compact, we have $X = f^{-1}(\cup A_i), i = 1 \text{ to } n \Rightarrow Y = f(\emptyset) = \cup A_i, i = 1 \text{ to } n$. Hence ζ has the finite subcover. Therefore, Y is the pairwise compact.

Theorem 3.6: If X, (τ_1, τ_2) is pairwise s^*gO - compact space then prove for any s^*g - open cover of X has a finite sub cover. Let $\{U_i, i \in A\}$ is a s^*g - open cover of X implies $f^{-1}(U_i), i \in A$ is a s^*g - open cover of X, so (X, τ_1, τ_2) is s^*gO - compact. And by the same way we prove (X, τ_2) is s^*gO - compact.

Theorem 3.7: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a pairwise s^*g - continuous and X is pairwise s^*g - connected , then Y is pairwise s^*g - connected.

Proof: Suppose that Y is not pairwise s^*g - connected. Let $Y = A \cup B$ where A and B are disjoint non-empty $\sigma_1 - s^*g$ open & $\sigma_2 - s^*g$ open sets in Y. Since X is pairwise s^*g - continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty τ_1 - open and τ_2 - open sets in X. This contradicts the fact that X is s^*g - connected. Hence Y is connected.

Proposition 3.8: If A and B are two pairwise s^*gO - compact subsets of a bitopological space (X, τ_1, τ_2) then $A \cup B$ is pairwise s^*gO - compact subset of X.

Proof: Given A and B are two pairwise s^*gO - compact subsets of a bitopological space (X, τ_1, τ_2). We shall prove that $A \cup B$ is pairwise s^*gO - compact subset of X. We have to prove that for any pairwise s^*g - open cover of $A \cup B$ has a finite sub cover.

Let $\{U_i \mid i \in A\}$ be any pairwise s^*g - open cover of $A \cup B$. Then $A \cup B \subseteq \bigcup_{i \in A} U_i$ and therefore $A \subseteq \bigcup_{i \in A} U_i$ and $B \subseteq \bigcup_{i \in A} U_i$, which implies that $\bigcup_{i \in A} U_i$ is an pairwise s^*g - open cover of A and B, where $i, j = 1, 2 \text{ and } i \neq j$. But A and B are pairwise s^*gO - compact subsets. Therefore there exist $i_1, i_2, \ldots, i_n \in A$ and
Theorem 3.9: Every pairwise $s**gO$ - compact subset of a pairwise $s**g$ - Hausdorff space is pairwise $s**g$ - closed.

Proof: Suppose that A be a pairwise $s**gO$ - compact subset of a pairwise $s**g$ - Hausdorff space X. Since X is pairwise $s**g$ - Hausdorff, the subspace A is pairwise $s**g$ - Hausdorff. By hypothesis, A is a pairwise $s**gO$ - compact. Hence A is pairwise compact. Let $x \in X - A$. For every $a \in A$ we have $a \neq x$. But X is pairwise $s**g$ - Hausdorff. Hence there exist $\tau_i - s**g$ open ndbs U_0 of a and a $\tau_j - s**g$ open ndbs V_0 of x such that $U_0 \cap V_0 = \phi$... (1), where $i, j = 1, 2$ and $i \neq j$. But then the collection $\zeta = \{U_0; a \in A\}$ is an pairwise $s**g$ - open cover of A. But A is pairwise compact. Hence ζ has a finite sub collection $\{U_{a_1}, U_{a_2}, ... , U_{a_n}\}$ covering A. Put $U = U_{a_1} \cup U_{a_2} \cup ... \cup U_{a_n}$. Then U is an $\tau_i - s**g$ open set with $A \subset U$. Consider the corresponding $\tau_i - s**g$ open sets $V_{a_1}, V_{a_2}, ... , V_{a_n}$. Write $V = V_{a_1} \cap V_{a_2} \cap ... \cap V_{a_n}$. Then V is an $\tau_i - s**g$ open set with $x \in V$. By virtue of (1), $U \cap V = \phi$. $\Rightarrow x \in U \subset X - A \Rightarrow X - A = \tau_j - s**g$ open $\Rightarrow A$ is $\tau_j - s**g$ closed. Similarly, A is $\tau_i - s**g$ closed. Hence A is pairwise $s**g$ - closed.

Theorem 3.10: A pairwise $s**g$ - closed subset of pairwise $s**gO$ - compact space is pairwise $s**gO$ - compact relative to X.

Proof: Let A be a pairwise $s**gO$ - closed subset of a pairwise $s**gO$ - compact space X. Then A^c is pairwise $s**g$ - open in X. Let S be a cover of A by pairwise $s**g$ - open sets in X. Then, $\{S, A^c\}$ is a pairwise $s**gO$ - open cover of X. Since X is pairwise $s**gO$ - compact, it has a finite subcover, say $\{G_1, G_2, ... ,G_n\}$. If this subcover contains A^c, we discard it. Otherwise leave the subcover as it is. Thus, we have obtained a finite pairwise $s**gO$ - open subcover of A and so A is pairwise $s**gO$ - compact relative to X.

Theorem 3.11: Suppose that A is a pairwise $s**gO$ - compact subset of a pairwise $s**g$ - Hausdorff space X. Let $x \in X - A$. Then there exist disjoint $\tau_i - s**g$ open neighborhood U of a and $\tau_j - s**g$ open neighborhood V of x respectively.

Proof: By hypothesis, X is pairwise $s**g$ - Hausdorff. Let $a \in A$ arbitrarily. Then there exist disjoint $\tau_i - s**g$ open neighborhoods U_0 of a and $\tau_j - s**g$ open neighborhoods V_0 of x respectively. The collection $\zeta = \{U_0; a \in A\}$ is a pairwise $s**gO$ - open cover of A. But A is pairwise $s**gO$ - compact. Accordingly, this collection ζ has a finite sub cover $\{U_{a_1}, U_{a_2}, ... , U_{a_n}\}$. Let $U = U_{a_1} \cup U_{a_2} \cup ... \cup U_{a_n}$. Put $V = V_{a_1} \cap V_{a_2} \cap ... \cap V_{a_n}$. Then $A \subset U$ and $x \in V$. Also U is $\tau_i - s**g$ open and V is $\tau_j - s**g$ open. Since $U_{a_i} \cap V_{a_i} = \phi$ for $1 \leq i \leq n$. We obtain that $U \cap V = \phi$. We have proved the result.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared.

Copyright © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.