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ABSTRACT: 
During the motion of a cable connected satellites system, at least one equilibrium point exists when perturbative forces 
like Air-resistance, shadow of the earth due to solar radiation radiation pressure, magnetic force and oblateness of the 
earth act simultaneously. We have obtained two equilibrium points out of which only one is found to be stable in case 
of perturbative forces like shadow of the earth due to solar radiation pressure, magnetic force  and oblateness of the 
earth act simultaneously on the motion of two extensible cable-connected satellites. Lyapunov’s theorem has been used 
to examine the stability of the equilibrium points. 
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1. INTRODUCTION 
 
The present paper is devoted to examine the stability of the equilibrium points of the centre of mass of a system of two 
satellites connected by a light, flexible and extensible string under the influence of shadow of the earth due to solar 
radiation pressure, magnetic force and oblateness of the earth acting simultaneously in elliptic orbit. Beletsky; V.V[1] is 
the pioneer worker in this field. It is the generalisation of the works done by Beletsky[1], Singh[2], Sinha[3], Singh[4] 
and Das et. al [7]. 
 
2. EQUATION OF MOTION 

 
The equation of motion of one of the two satellites moving along a keplerian elliptic orbit in Nechvill’s coordinates can 
be obtained by exploiting Lagrange’s equation of motion of first kind in the form: 
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Where µ  denotes the product of gravitational constant and mass of the earth. Here B1 and B2 are the absolute values of 
forces due to the direct solar pressure exerted on the masses m1 and m2 and α be the angular separation of solar 
position vector projected on the orbital plane from the orbit perigee. Here ∈  is the inclination of the osculating plane of 
the orbit of the centre of mass of the system with the plane of ecliptic and p and e are focal parameter and eccentricity 
of the earth.                                                                                                                                   
 
Here, dashes denote the differentiation with respect to the true anomaly v of the elliptic orbit of the centre of mass .

 The condition of constraint is given by 
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To find the Jacobian integral of the problem, the averaged values of the secular terms due to periodic terms presents in 

the equations of motion (1) can be deduced as given follow : 
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where θ  is taken to be constant. 
 
Using (3) in (1), we get 
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The condition of constraint given by (2) takes the form 
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From equations of motion (4) it follows that the true anomaly v does not appear explicitly in the equations of motion, 
so there must exist Jacobian integral for the problem. 
 
Multiplying first and second equations of (4) by 2x’ and 2y’ respectively and adding and integrating, we get the 
Jacobian integral in the form. 
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where, h is the constant of integration. 
 
The curve of zero velocity is obtained by putting oyx =′+′ 22  in (6) as 
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Hence we conclude that the satellite by mass m1 will move inside the boundaries of different curves of zero velocity 
represented by (7) of (6) for different values of Jacobian constant h. 
 
3. EQUILIBRIUM POSITION OF THE SYSTEM 
 
We have obtained the system of equations (4) of the particle of mass m1 of the system in rotating frame of reference. It 
has been assumed that the system is moving with effective constants and hence the string connecting the two satellites 
of masses m1 and m2 will remain always tight 
 
The equilibrium positions of the system are given by the constant values of the coordinates in the rotating frame of 
reference Now, let x = x0 and y = y0 give the equilibrium position where x0 and y0 are constants. 

yyandxx ′′==′′′==′∴ 00  
 
Thus, equations given by (4) take the following form: 
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Actually, it is impossible to find the solution of the algebraic equations (8) in its present form. 
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Therefore, for our further investigation, it has been assumed that α=0  
 
This means that the sun rays is in the line of the perigee of the elliptical orbit of the centre of mass of the system. 
Putting α =0,

 
 the equations of motion given by (8) take the form: 
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From (9), we get the equilibrium points as 
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Now, Now, it can be easily seen that the equilibrium point given by (10) only gives a meaningful value of   the Hook’s 

modulus of elasticity.   
 
4. STABILITY OF THE SYSTEM 
 
We shall study the stability of the equilibrium position given by (10) of the system in the sense of Liapunov. For this, 
let us assume that there are small variation in the coordinate at the given equilibrium point [a1, 0]. let 1η and 2η be 

small variation in x and y-coordinates respectively for the given position of equilibrium. 
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To obtain Jacobian integral of the equations of motion (13), we multiply first equation of (13) by 2(a1+n1)’ and second 

equation of (13) by '
2η  and add them together, we get after integrating 
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where h1 is the constant of integration. 
 
To test the stability in the sense of Liapunov, we take Jacobian integral (14) as Liapunov’s function ( )2121 ,,, ηηηη ′′V  
and is obtained by expanding the terms of (14) as: 
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where 0 (3) stand for the third and higher order terms in the small quantities 21 ηη and . 
 
Now, by Lyapunov theorem on stability it follows that the only criterion for the given equilibrium position (a1, 0) to be 
stable is that v defined by (15) must be positive definite and for this the following conditions must be satisfied: 
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Condition (i): First of all it is to be noted that 

( )( ) ( )

( ) ( ) ( )

5
2 2 2

1

1 1
32 2 2 2

2 sin 2 1 cos

2 3 2 1 3 4 1

oe A e D i
a

e e B e

α

α

λ θ

λ

+ + − −

=

+ − − + −

 
 
 
  

  
  



 is positive. 

 

 



Vijay Kumar / Stability of the Equilibrium Position of the Centre of Mass of an Extensible Cable Connected Satellites System in 
the Elliptic Orbit Under the Influence of Perturbative Forces / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                      162  

Putting the values a1 on the L.H.S of (i) weget 
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Since the denomirator of a1 is positive. 
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1 0Thus the third condition is identically satisfied if .a > 

 
 
CONCLUSION 
 
we conclude that the equilibrium position [a1, 0] of the system is stable in the sense of Liapunov if  a1 > l0. 
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