International Journal of Mathematical Archive-9(3), 2018, 163-167
@73] M A Available online Through www.ijma.info ISSN 2229 - 5046
CYCLIC PATH COVERS IN ZERO DIVISOR GRAPH
V. RAJAKUMARAN*1 AND N. SELVI?
1Part - Time Research Scholar, Bharathidasan University, Trichy, India.

Achariya College of Education, Puducherry-605 110, India.

2Department of Mathematics, ADM College for womern, Nagappattinam - 611 001, India.

(Received On: 05-01-18, Revised & Accepted On: 14-02-18)

ABSTRACT
Let R be a commutative ring and let I'(z,, ) be the zero divisor graph of a commutative ring R, whose vertices are non-
zero zero divisors of z, , and such that the two vertices u,v are adjacent if n divides uv. In this paper, we have analyzed
the maximum number of zero divisor graph I'( z,,), where n is a positive integer, by studying its properties and
structure and thereby decomposing it into a finite number of paths and cycles, whose sum of the vertices in the cycle
are equal where decomposition is a set of subgraphs Hy,...Hy that partition of the edges of G. That is for all i and j is
1<i<k Hi = G and E Hi N E H] = @
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1. INTRODUCTION

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We associate a graph I'( R). to R with vertices
Z(R)" = Z(R) — {03}, the set of non-zero zero divisors of R and for distinct x,y € Z(R)*, the vertices x and y are
adjacent if and only if xy = 0 [1, 2, 5, 6]. Throughout this paper, Consider the commutative ring R as z,. and zero
divisor graph ' (R) as I'( z,). In this paper we are about to decompose [3, 4, 7, 8]. the zero divisor graph into paths
and cycles whose sum of the vertices in the cycle are equal . Problems of this type are not only interesting in their own
right, but also have potential applications in communication and switching networks. Sometimes it is desirable to
decompose a communication or switching network into parts of certain specified types.

Definition 1.1: Agraph G is decomposable into Hy; Hy; : @ 1 ;Hif G has subgraphs Hy; Hy; : : @ ;Hy such that
1. each edge of G belongs to one of the H;’s for some i=1;2;:::;k; and
2. Ifi=#j, then H;and H; have no edges in common.

Definition 1.2: Let G and H be two graphs. A graph G is decomposable into H’s if each of the H;’s in the definition
above is isomorphic to H.

2. DECOMPOSITION OF ZERO DIVISOR GRAPH

Theorem 2.1: For any p > 3, I'( z3,,) can be decomposed into (p — 1)/2c,.
Proof: The proof is based on induction over p.

Case-(i): When p = 5,

The vertex set of I'(z;5) = {3,5,6,9,10,12}. That is|V(['(z;5))| =6. Let u =3 and v =6 then 15 does not
divide uv. Then there is no path between u and v. Similarly, any two vertices which are multiple of 3 are non adjacent.
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Let x =5 and y = 15 then 15 divides both ux and ux. Clearly, ux and uy are adjacent. Then V(I'(z;5)) can be
partitioned into two parts v; = {5,10}. and v, = {3,6,9,12}. Clearly, I'( z;5) can be decomposed into two c,. That
is, {3, 5, 12, 10, 3} and {9, 5, 6, 10, 9}. Since, 5, 10 are the common points in both the cycles. This cycle is chosen in
such a way that the total value of each cycleis=3 + 5 + 12 + 10 =30 = 2(15) = 2(3p) . Hence the number of

=2=0G-1/2=(p-1)/2

Case-(ii): Whenp = 7,

The vertex set of T'(z,,) ={3,6,7,9,12,14,15,18} . Thatis |V(I'(z;;))| = 8. Letu = 3 and v = 12 then 21 does
not divide v . Clearly, uv are non adjacent. Let u = 18, x = 7 and y = 14, then 21 divides both ux and uy. That is 7, 14
are adjacent to all the remaining vertices. Then V(I'( z,;)) can be partitioned into two parts v; = {7,14} an v, =
{3,6,9,12,15,18}. Clearly, I'( z,;) can be decomposed into three c,. That is cycles are {3, 7, 18, 14, 3}, {6, 7, 15, 14,
6} and {9, 7, 12, 14, 9}. Since, 7, 14 are the common points in all the cycles and these cycles are chosen in such a way
that the total value of each cycleis 3+ 7 + 18 + 14 = 42 = 2(21) = 2(3p). The number of ¢, =3=(7-1)/2=(p —
1)/2. Hence, I'( z,,) can be decomposed into (p — 1)/2c,, where p = 7.

Case-(iii): whenp > 7,
In general, I'(z3p) = {3,6,..,3 p— 1,p,2p }. thatis [V(I'( (z3p))| = p + 1. Using the above two cases I'( z3,) can
be decomposed into (p — 1)/2c,. then the number of c,. in k,,_; is (p — 1)/2c,.

Theorem 2.2: For any p > 5, then I'( zg,,) can be decomposed into (p — 1)/2cg or (p — 1)c,.
Proof: The proof is based on induction over p.

Case-(i): Whenp = 7,

The vertexsetof I' z3s = 5,7,10,14,15,20,21,25,28,30 . Thatis VI z3gs = 10.Letu=5and v =20 then
35 does not divide 100. Clearly u and v are non - adjacent. Letu =10and X = 7,14,21,28 then 35 divides ux
for all xeX. Clearly ux are adjacent. Then V I' z3s can be partitioned into two parts V; = 7,14,21,28 and
V, = {5,10,15,20, 25, 30}. Clearly, I" z35 is k,¢ and this k, ¢ can be decomposed into six c,. That is, {5, 7, 30,
28, 5},{15, 7, 20, 28, 15}, {25, 7, 10, 28, 25}, {5, 14, 30, 21, 5}, {15, 14, 20, 21, 15}, {25, 14, 10, 21, 25}. Clearly, 7,
28 are the common points in three cycles and 17, 21 are the common points in the remaining three cycles. These cycles
are chosen in such a way that the total value of each cycleis= 5 + 7 + 30 + 28 = 70 = 235 = 2 7p . Then
number ofc, = 6 =%=E Similarly it can be decomposed into {5,7,30,28,5,14,30,21,5},
{15,7,20,28, 15,14, 20, 21,15}, {25,7,10,28,25,14,10, 21,25} with the total value of each cycle is =5 + 7 +
30 + 28 + 5 + 14 + 30 + 21 = 140 = 4(35) = 4(5p). Then the number of Cgis3 = (7—-1)/2 = (p—
1)/2 . Therefore, I" (Z35) can be decomposed into (p — 1)/2cg or (p — 1)c,.

Case-(ii): Whenp = 11.

The vertex set of I'( zg5) = {5,10,15..,50,11,..,44}. That is |V(I'(z35))| = 14. Let u = 5 and v = 30 then 55
does not divide 150. That is, u and v are non-adjacent. Letu = 30 and X = {11, 22, 33,44} then 55 divides ux for all
x € X. Clearly ux are adjacent. Then V(I'( zs5)) can be partitioned into two parts V; = {11, 22, 33, 44} and V, =
{5,10,15,20, 25,30, 35,40, 45, 50}. Clearly, I'(Zss) is k410 and this k,,, can be decomposed into ten c,. That is,
{5, 11, 50, 44, 5}, {10, 11, 45, 44, 10}, {15, 11, 40, 44, 15}, {20, 11, 35, 44, 20}, {25, 11, 30, 44, 25}, {5, 22, 50, 33,
5}, {10, 22, 45, 33, 10}, {15, 22, 40, 33, 15}, {20, 22, 35, 33, 20},{25, 22, 30, 33, 25}. Clearly, 11, 44 are the common
points in five cycles and 22, 33 are the common points in the remaining five cycles. These cycles are choosen in such a
way that the total value of each cycle is 5+ 11 + 50 + 44 = 110 = 2(55) = 2(5p).Then number ofc, = 10 =
(11-1)/2 = (p—1)/2 or it can be decomposed into {5, 11, 50, 44, 5, 22, 50, 33, 5}, {10, 11, 45, 44, 10, 22, 45,
33, 10}, {15, 11, 40, 44, 15, 22, 40, 33, 15}, {25, 11, 30, 44, 25, 22, 30, 33, 25}, {20, 11, 35, 44, 20, 22, 35, 33, 20}
with the total value of each cycle is =5+ 11+ 50+ 44 + 5+ 22 + 50+ 33 = 220 = 4(55) = 4(5p). Then the
number of Cgis5 = (11 —1)/2 = (p — 1)/2 Therefore, I'(Zss) can be decomposed into (p — 1)/2cg or (p — 1)c,.

Case-(iii): Whenp > 11

In general, I'( zsp) = {5,10,...,5(p — 1), p, 2p, 3p, 4p}. Thatis |V(I'(zsp)) | = p + 3. Using the above two cases the
V(I'(zsp) )can be partitioned into two parts V; = {p,2p,3p,4p }and V, = {5,10,...,5(p — 1)}. Clearly, I'( zsp) is
k4 p—1 With the common points {p, 2p, 3p, 4p} Which is adjacent to all the remaing vertices. Then the number of cycles
in kyp_qis(p—1)/2cgor (p — 1)c,.

Theorem 2.3: Forany p > 7, T'(z,p) can be decomposed into (3(p — 1)/2 )csor (p — 1)cq

Proof: The proof is based on induction over p.
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Case-(i): Whenp = 11,

The vertex setof I'(z_77 )= { 7,14,21,..,70,11,..,66} . Thatis [V(I" z;; )| = 16.Letu = 7andv = 35 then 77
does not divide 245. Clearly u and v are nonadjacent. Let u = 21and X = 11,22,33,44,55,66 then 77 divides ux
for all x € X. Clearly ux are adjacent. Then V T" z,; can be partitioned into two parts V;, = 11,22,33,44,55,66
and V, = 7,14,21,28,35,42,49,56,63,70 . Clearly, I z,; is k440 and this k4, can be decomposed into fifteen
c,. That is,{7, 11, 70, 66, 7}, {14, 11, 63, 66, 14}, {21, 11, 56, 66, 21}, {28, 11, 49, 66, 28}, {35, 11, 42, 66, 35}, {7,
22,70, 55, 7},{14, 22, 63, 55, 14}, {21, 22, 56, 55, 21},{28, 22, 49, 55, 28} {35, 22, 42, 55, 35}, {7, 33, 70, 44, 7},
{14, 33, 63, 44, 14}, {21,33, 56, 44, 21} {7, 33,70, 44,7} {14, 33, 63, 44, 14} {21, 33, 56, 44, 21}{28, 33, 49, 44,
28} and {35, 33,42, 44, 35}. Clearly, V, are the common vertices in the cycles and these cycles are chosen in such a
way that the total value of each cycleis 7+ 11+ 70+ 66 = 154 = 2(77) = 2(7p). Then number of ¢, = 15 =
3(11-1)/2 = 3(p—1)/2 or k44, Can be decomposed into 10cg, That is, {7, 11, 70, 66, 7, 22, 70, 55, 7}, {14, 11,
63, 66, 14, 22, 63, 55, 14}, {21, 11, 56, 66, 21, 22, 56, 55, 21},{28, 11, 49, 66, 28,22, 49, 55, 28}{35, 11, 42, 66,
35,22, 42,55, 35}, {7, 11, 70, 66, 7, 33, 70, 44, 7}, {14, 11, 63, 66, 14, 33, 63, 44, 14}, {21, 11, 56, 66, 21, 22, 56, 55,
21}{28, 11, 49, 66, 28,33, 49, 44, 28} {35, 11, 42, 66, 35, 33, 42, 44, 35},.Then the number of ¢cgis10=11-1=p -
1 Therefore, I'( z;7) can be decomposed into (3(p —1)/2 )cs0r (p — 1)c.

Case-(ii): Whenp = 13.

The vertex set of [1(zg; ) = {7,14,..,84,13,26,..78} Thatis [V(['(zg; ) ) |=18. Letu = 7and v = 35 then 91 does
not divide 245. Clearly u and v are non-adjacent. Letu = 21 and X = { 13,26,39,52, 65,78 } then 91 divides ux for
all x € X. Clearly ux are adjacent for all xe X. ThenV T" (zg;) can be partitioned into two parts V; = {13, 26, 39, 52,
65, 78} and V, ={7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84}. Clearly, I'(zg;) isk,1, and this ks, can be
decomposed into eighteen c,.

That is, {7, 13, 84, 78, 7}, {14,13,77,78,7}, {21,13,70,78,21}, {28,13,63,78,28}, {35,13,56,78,35} {42, 13, 49, 78, 42},
{7, 26, 84, 65, 7}, {14,26,77,65,7}, {21,26,70,65,21}, {28,26,63,65,28}, {35,26,56,65,35},{42, 26, 49, 65, 42},{7, 39,
84,52, 7}, {14,32,77,52,7}, {21,39,70,52,21},{28,39,63,52,28}, {35,39,56,52,35},{42, 39, 49, 52, 42}. Clearly, V, are
the common vertices in the cycles and these cycles are chosen in such a way that the total value of each cycle is
= 7+13+84+78 =185 = 2(91) = 2(7p). Then number of ¢, = 18 = 3(13—1)/2 = 3(p—1)/2 or k41, Can
be decomposed into 12cg, That is, {7,13,84, 78,7, 26, 84,65, 7}, {14,13,77,78,7,26,77,65,7}, {21,13,70,78,21,26,70, 65,
21}, {28,13,63,78,28,26,63,65,28}, {35,13,56,78,35,39,56,52,35}, {42,13,49,78,42,39,49,52} {7,13,84,78,7,39, 84,
52,7}, {14,13,77,78,7,39,77,52,7}, {21,13,70,78,21,39,70,52,21}, {28,13,63,78,28,39,63,52,28}, {35,13,56,78,35,39,
56,52,35} ,{42,13,49,78,42,39,49,52,42}. Then the number of ¢g is 12 = 13 —1 = p — 1 Therefore, I'( z5;) can be
decomposed into (3(p — 1)/2)c,or (p — 1)cg

Case-(iii): When p > 13.

In general, I'(z7,) = {7,14,...,7(p — 1),p, 2p,..,6p}. That is [V(I'(z7,)| = p +5. Using the above two cases the
['(z7p) can be partitioned into two parts Vi = {p,2p,3p,4p,5p,6p} and V, = {77,14,...,7(p — 1)}. Clearly,
I'(z7p) is Kgp—1 With the common points {p, 2p, 3p, 4p, 5p, 6p} which is adjacent to all the remaining vertices. Then the
number of cycles in Kgp_4is (3(p — 1)/2)c,or (p — 1)Cq

Theorem 2.4: FOR any distinct prime p and g, I'(Z,,) can be decomposable into (q — 1) Cp—1, where q > p.

Proof: The vertex set of I'(z,q) is {p,2p,3p,..(p — 1)p,q,29,.. (p — 1)q}. Thatis |V (I'(zyg))| = p + g — 2. Using
the above theorem I'( zq) is Kp_14-1 for p > 3, with the common points {g,2q,..(p — 1)q} which is adjacent to all
the remaining vertices. Therefore the number of cycles in ky_14-1 15 (@ — 1)cp_;.

Theorem 2.5: For any prime p > 4, T'(Z4,) can be decomposable into  Kj5,-1) and kpp_3 or (p —1)/2c,.

Proof: The proof is based on induction over p.

Case-(i): Whenp = 5,

The vertex set of I'( zy9) = {2, 4, 6, ..18, 5, 10, 15}. That is |V (['( Zyg))| = 11. Let u =4 and v = 10 then 20 divides uv.
Clearly u and v are adjacent. Let X = {5,15} and v = 10 then 20 divides vxfor all x € X. Clearly ux are non-adjacent.
Then first T'( zy)is decomposed into k; g. Consider u = 4and v = 5 then 20 divides uv. That is u and v are adjacent.
Then the remaining vertices can be partitioned into two parts V; = {4, 8, 12, 16} and V2 = {5, 15} which are adjacent
to each other. Secondly, I'( zy)is further decomposed into k,, Futher it can be decomposed into two cycles of c,, that
is {4, 5, 16, 15, 4} and {8, 5, 12, 15, 8}. These cycles are chosen in such a way that the total value of each cycle is
40 = 2(20) = 2(5p). Finally, this implies I'( z,p)can be completely decomposed into k; g and kj4 or 2c,.
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Case-(ii): Whenp = 7.

The vertex set of ['( z,g) = {2, 4, 6, .26, 7, 14, 21} . That is |[V(I'(z,g)| = 15Let u = 6 and v = 14 then 28 divides
uv. Clearly u and v are adjacent. Let X = {7,21} and v = 14 then 24 divides vx. Clearly ux are non-adjacent for all
x € X. Then first I'( zg)is decomposed into k; 1, . Consider u = 8 and v = 7 then 24 divides uv. That is u and v are
adjacent. Then the remaining vertices can be partitioned into two parts V; = {4, 8, 12, 16, 20, 24} and V,= {7, 21}
which are adjacent to each other. Secondly, I'( zyg) is further decomposed into kyg which is further decomposed into
three cycles of ¢y, that is {4, 7, 24, 14, 4} {8, 7, 20, 14, 8} and {12, 7, 16, 14, 12}. These cycles are chosen in such a
way that the total value of each cycle is 56 = 2(28) = 2(4p). Finally, this implies T' z,3 can be completely
decomposed into k; 3, and Ky 0r 3c,.

Case-(iii): Whenp > 7.

In general, V ((z4)) = {2,4,6..2(p — 1),p,2p,3p}. That is|V(I'(z4,)| = 2p + 1. Using the above cases I'( z4,)can
be decomposed into K;5,—1) and ky,_; which can be further decomposed into (p — 1)/ 2 cycles of length 4 that is
(P—1)/2¢y.

Theorem 2.6: For any prime p > 6, I'( zg,)can be decomposed into Ky zp-1y, Ko p—1 and Ky ¢,—1) O 3(p — 1) /2 ¢4.
Proof: The proof is based on induction over p.

Case-(i): Whenp = 7.

The vertex set of I'(z45) ={2, 3, 4, ...40, 7, 14, 21, 28, 30} . That is |[V(I'(z42)| = 29 Let u = 21 and let X be the set
consisting of multiple of 2 other than multiple of 3. Then ux is divided by the 42.That is ux is adjacent. Then, I'( z,,) is
first decomposed into K; 5, From the remaining vertices consider the set V, = {14, 28} and V, = {3,9,....,39,6,12,...
36}. Clearly any vertex of V, is adjacent to any vertex of V,. Then, T'(z4,) is decomposed into kj 1, . Further it can
be decomposed into six cycles of c,. That is {14,3,28,39,14}, {14,9,28,33,14}, {14,15,28,27,14}, {14,6,28,36,14},
{14,12,28,30,14},{14,18,28,24,14}. These cycles are chosen in such a way that the sum of the vertices is 98 .Finally
the remaining vertices can be partitioned into V5 = {7, 35} and V, = {6,12,...36}. Clearly any vertex of Vj is adjacent
to any vertex of V,. Then, T'(z4,) is decomposed into k,¢ . Further it can be decomposed into three cycles of ¢,. That
is {7,6,35,36,7},{7,12,35,30,7},{7,18,35,24,7}. These vertices is chosen in such a way that the sum of the vertices is
91. Finally, this impliesI" z,, can be completely decomposed into k; 9, 6¢,4 and 3c,. That is Ky 59, 9C4.

Case-(ii): Whenp = 11.

The vertex set of I'(z77) =42, 3, 4, ...60, 11,22,33,44,55} . That is [V(I'(z77)| = 45. Let u = 33 and let X be the set
consisting of multiple of 2 other than multiple of 3. Then ux is divided by the 77. That is ux is adjacent.Then , I'( z4,) is
first decomposed into k; 3, From the remaining vertices consider the set V,={22, 44} and V,={3, 9,....,63,6,12,...
60}. Clearly any vertex of V, is adjacent to any vertex of V,. Then, I'( z,,) is decomposed into kj o . Further it can be
decomposed into ten cycles of c,. That is {22,3,44,63,22}, {22,9,44,57,22}, {22,15,44,51,22}, {22,21,44,45,22},
{22,27,44,39,22},{22,6,44,60,22},{22,12,44,54,22},{22,18,44,48,22} {22,24,44,42,22} {22,30,44,46,22}.These cycles
are chosen in such a way that the sum of the vertices is 154 = 2(77) = 2(6p).Finally the remaining vertices can be
partitioned into V5 = {11, 55} and V, = {6,12,...60}. Clearly any vertex of Vj is adjacent to any vertex of V,. Then,
I'( z4,) is decomposed into kpg. Further it can be decomposed into three cycles of c,. That is {11,6,55,60,11},
{11,12,55,54,11},{11,18,55,48,11},{11,24,55,42,11},{11,30,55,36,11}. These vertices are chosen in such a way that
the sum of the vertices is 143. Finally, this impliesI" z,, can be completely decomposed into k; 3,,10c, and 5c4. That
is Ky 32,15¢C,.

Case-(iii): Whenp > 11.
In general, V ((zg5)) = {2,4,6...2(3p —1),3,6....3(2p — 1),p, 2p, 3p, 4p, 5p}. That is [V(I"( z4p)| = 4p + 1. Using the
above cases I'( zgy)can be decomposed into  kyz,_1  Kyop-1) and kpp_; which can be further decomposed into

(p — 1)/ 2 cycles and (p — 1) cycles of length 4 that is % +p—1of c,.Thatis 3(p—1)/2c¢,.
Theorem 2.7: For any prime p, T’ Z2 is not decomposable into Hamilton cycles.

Proof: The vertex set of I' z2 is {p,2p,3p,..(p — 1)p}. Clearly pis adjacent to all the vertices in V (I'( z,2)). Also
note that any two vertices in I'( Z,2) is adjacent and hence T'( sz)is a complete graph. Clearly each vertices of
I'( zpz)has degree p — 2. Let g be the number of edges of I'( Z,2) then g = (p—1)(p—2)/2. Suppose I'( sz)iS
decomposable into Hamilton cycles C,;. Since each C,; hasp —1 edges. So the number of such cycles in the
decomposition must be q(p—1)= (p—D(P—-2)/2(p—1) = (p—2)/2 = p/2 — 1, which is not an integer for
any prime p. Hence this is impossible so I'( z,2)is not decomposable into Hamilton cycles.
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Theorem 2.8: For any prime p > 2, I'( sz)is decomposable into (p — 1)/2 Hamilton paths Py,

Proof: Using the above theorem, T'( sz)is a complete graph, where p is any prime and |V (I'( zp)| =p—-1 Since, for
any n = 1, kpn,q- is decomposable into Hamilton cycles. Consider I'( z,2), the vertices set of I'( z,2), is {7, 14, 21,
28, 35, 42} that is {p,2p,3p,..(p — 1)p} where p = 7. Label the vertices x;, Xz, Xs, X4, X5, Xg and form the Hamilton
path as follows

Path 1: X; , X5 ,X3,Xg, X4, X2 (Ps)

Path 2: X3 ,X; , Xz, X, X5, X4 (Pg)

Path 3: Xg , X , X4 ,Xg,X2, X5 (Pg)

Hence I'( z,2) is decomposable into (p — 1)/2 Hamilton path P ,_;
For example in T'( z;2), the number of vertices are {5, 10, 15, 20}.
Forp =5 p—-1/2=5-1/2 = 4/2 = 2 Hamilton path P,

3. CONCLUSION

In the zero divisor graph I z, where n is any positive integer, the number of cycles of ¢, that has been decomposed for
n=3p,4p,5p,6p,7p forms an inequality o(D(T'(Zz3y))) < 0(D(I'(Z4p))) <0(D(T(2Z5p))) <0o(D(I'(Zgp))) <
o(D(I'(z7p))) where o(D(I'(z,))) is known as the number of cycles of c,, while the complete graph I'( z2) is only
decomposable into Hamilton path P,.; but not has Hamilton cycles.
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