≈g_α_CLOSED SETS IN TOPOLOGICAL SPACES

O. Ravi*, N. Dhanalakshmi and K. V. Tamil Selvi

Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India

E-mail: siingam@yahoo.com

Department of Computer Technology-UG, Kongu Engineering College, Perundurai, Erode District, Tamil Nadu, India

E-mail: kvtamilselvi@gmail.com

(Received on: 30-08-11; Accepted on: 16-09-11)

ABSTRACT

In this paper, we introduce a new class of sets called ≈g_α_closed sets in topological spaces. We prove that this class lies between α_closed sets and α_g-closed sets and discuss some basic properties of ≈g_α_closed sets.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05

Key words and Phrases: Topological space, sg-closed set, A-closed set, B-closed set, ≈g-closed set, ≈g_α_closed set, gp-closed set, gsp-closed set.

1. INTRODUCTION

2. PRELIMINARIES

Throughout this paper (X,τ) (or X) represents topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ), cl(A), int(A) and A^c or X \ A denote the closure of A, the interior of A and the complement of A respectively.

We recall the following definitions which are useful in the sequel.

Definition: 2.1 A subset A of a space (X,τ) is called

(i) Semi-open set [9] if A \subseteq cl(int(A));
(ii) preopen set [12] if A \subseteq int(cl(A));
(iii) α_open set [13] if A \subseteq int(cl(int(A)));
(iv) semi-preopen set [1] if A \subseteq cl(int(cl(A))).

The complements of the above mentioned open sets are called their respective closed sets.

Corresponding author: O. Ravi, E-mail: siingam@yahoo.com

International Journal of Mathematical Archive- 2 (9), Sept. – 2011
The preclosure [14] (resp. semi-closure [6], α-closure [13], semi-pre-closure [1]) of a subset A of X, denoted by $pcl(A)$ (resp. $scl(A)$, $\alpha cl(A)$, $spcl(A)$), is defined to be the intersection of all preclosed (resp. semi-closed, α-closed, semi-preclosed) sets of (X, τ) containing A. It is known that $pcl(A)$ (resp. $scl(A)$, $\alpha cl(A)$, $spcl(A)$) is a preclosed (resp. semi-closed, α-closed, semi-preclosed) set.

Definition: 2.2 A subset A of a space (X, τ) is called

(i) a generalized closed (briefly g-closed) set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of g-closed set is called g-open set;

(ii) a semi-generalized closed (briefly sg-closed) set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ). The complement of sg-closed set is called sg-open set;

(iii) a generalized semi-closed (briefly gs-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of gs-closed set is called gs-open set;

(iv) an α-generalized closed (briefly α-g-closed) set [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of α-g-closed set is called α-g-open set;

(v) a generalized semi-preclosed (briefly gsp-closed) set [7] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of gsp-closed set is called gsp-open set;

(vi) a generalized preclosed (briefly gp-closed) set [14] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ). The complement of gp-closed set is called gp-open set;

(vii) a \tilde{g}-closed set [15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ). The complement of \tilde{g}-closed set is called \tilde{g}-open set;

(viii) a A-closed set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \tilde{g}-open in (X, τ). The complement of A-closed set is called A-open set;

(ix) a B-closed set [16] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is A-open in (X, τ). The complement of B-closed set is called B-open set;

(x) a $\approx g$-closed set [16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open in (X, τ). The complement of $\approx g$-closed set is called $\approx g$-open set.

The collection of all $\approx g$-closed (resp. g-closed, gs-closed, gsp-closed, α g-closed, sg-closed, gp-closed, α-closed, semi-closed) sets in (X, τ) is denoted by $\approx GC(X)$ (resp. $GC(X)$, $GS C(X)$, $GSP C(X)$, $\alpha GC(X)$, $SG C(X)$, $GP C(X)$, $\alpha C(X)$, $S C(X)$).

We denote the power set of X by $P(X)$.

Remark: 2.3 [16] For a topological space (X, τ), the following hold.

1. Every semi-open set is B-open but not conversely.
2. Every open set is B-open but not conversely.
3. Every open set is A-open but not conversely.
4. Every closed set is $\approx g$-closed but not conversely.

3. $\approx g$ - CLOSED SETS

We introduce the following definition.

Definition: 3.1 A subset A of a space (X, τ) is called an $\approx g$-closed set if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is B-open in (X, τ).

The complement of $\approx g$-closed set is called $\approx g$-open set.

The collection of all $\approx g$-closed (resp. $\approx g$-open) sets in (X, τ) is denoted by $\approx G C(X)$ (resp. $G C(X)$, $G S C(X)$, $G P C(X)$, $\alpha G C(X)$, $S G C(X)$, $S P C(X)$).
Proposition: 3.2 Every α-closed set is $\approx g_{\alpha}$-closed.

Proof: Let A be an α-closed set and G be any B-open set containing A. Since A is α-closed, we have $\alpha \text{cl}(A) = A \subseteq G$. Hence A is $\approx g_{\alpha}$-closed.

The converse of Proposition 3.2 need not be true as seen from the following example.

Example: 3.3 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a, b\}, X\}$. Then $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{a, b, c\}\}$, $\alpha C(X) = \{\emptyset, \{a, c\}\}$, and $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}\}$. We have $A = \{a, c\}$ is $\approx g_{\alpha}$-closed set but not α-closed.

Proposition: 3.4 Every $\approx g_{\alpha}$-closed set is $\approx g_{\alpha}$-closed.

Proof: Let A be a $\approx g_{\alpha}$-closed set and G be any B-open set containing A. Since A is $\approx g$-closed, we have $G \supseteq \text{cl}(A) \supseteq \alpha \text{cl}(A)$. Hence A is $\approx g_{\alpha}$-closed.

The converse of Proposition 3.4 need not be true as seen from the following example.

Example: 3.5 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{c\}, X\}$. Then $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. We have $A = \{a\}$ is $\approx g_{\alpha}$-closed set but not $\approx g_{\alpha}$-closed.

Proposition: 3.6 Every $\approx g_{\alpha}$-closed set is $\approx g_{\alpha}$-closed.

Proof: Let A be an $\approx g_{\alpha}$-closed set and G be any open set containing A. Since any open set is B-open, we have $\approx \text{cl}(A) \subseteq \alpha \text{cl}(A) \subseteq G$. Hence A is $\approx g_{\alpha}$-closed.

The converse of Proposition 3.6 need not be true as seen from the following example.

Example: 3.7 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{c\}, X\}$. Then $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. We have $A = \{a\}$ is both g_{α}-closed and $\approx g_{\alpha}$-closed set but not $\approx g_{\alpha}$-closed.

Proposition: 3.8 Every $\approx g_{\alpha}$-closed set is $\approx g_{\alpha}$-closed.

Proof: Let A be an $\approx g_{\alpha}$-closed set and G be any open set containing A. Since any open set is B-open, we have $\approx \text{cl}(A) \subseteq \alpha \text{cl}(A) \subseteq G$. Hence A is $\approx g_{\alpha}$-closed.

The converse of Proposition 3.8 need not be true as seen from the following example.

Example: 3.9 Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{c\}, X\}$. Then $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$, $\approx G_{\alpha} C(X) = \{\emptyset, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. We have $A = \{a\}$ is both g_{α}-closed and $\approx g_{\alpha}$-closed set but not $\approx g_{\alpha}$-closed.

Proposition: 3.10 Every $\approx g_{\alpha}$-closed set is $\approx g_{\alpha}$-closed.

Proof: Let A be an $\approx g_{\alpha}$-closed set and G be any open set containing A. Since any open set is B-open, we have $\approx \text{cl}(A) \subseteq \alpha \text{cl}(A) \subseteq G$. Hence A is $\approx g_{\alpha}$-closed.

The converse of Proposition 3.10 need not be true as seen from the following example.

Example: 3.11 Let X and τ be as in Example 3.5. Then $G_{\alpha} C(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. We have $A = \{a\}$ is g_{α}-closed set but not $\approx g_{\alpha}$-closed.
Proof: Let A be an $\approx g_\alpha$-closed set and G be any open set containing A. Since any open set is B-open, we have $pcl\ (A) \subseteq \alpha{cl(A)} \subseteq G$. Hence A is gp-closed.

The converse of Proposition 3.12 need not be true as seen from the following example.

Example: 3.13 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, X\}$. Then $G C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $GP C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. We have $A = \{a, b\}$ is gp-closed set but not $\approx g_\alpha$-closed.

Proposition: 3.14 Every $\approx g$-closed set is g-closed.

Proof: Let A be a $\approx g$-closed set and G be any open set containing A. Since any open set is B-open, we have $G \supseteq cl(A)$. Hence A is g-closed.

The converse of Proposition 3.14 need not be true as seen from the following example.

Example: 3.15 Let X and τ be as in Example 3.13. Then $G C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$ and $GP C(X) = \{\phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. We have $A = \{a, b\}$ is g-closed set but not $\approx g$-closed.

Remark: 3.16 The following examples show that $\approx g_\alpha$-closedness is independent of semi-closedness and g-closedness.

Example: 3.17 Let X and τ be as in Example 3.9. Then $SC(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. We have $A = \{b\}$ is semi-closed set but not $\approx g_\alpha$-closed.

Example: 3.18 Let X and τ be as in Example 3.3. Then $SC(X) = \{\phi, \{c\}, X\}$. We have $A = \{b, c\}$ is $\approx g_\alpha$-closed set but not semi-closed.

Example: 3.19 Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{a, b\}, X\}$. Then $G C(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ and $GP C(X) = \{\phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. We have (i) $A = \{b\}$ is $\approx g_\alpha$-closed set but not g-closed.
(ii) $B = \{a, c\}$ is g-closed set but not $\approx g_\alpha$-closed.

Remark: 3.20 From the above discussions and the known results in [7, 14, 16, 18], we obtain the following diagram, where $A \rightarrow B$ represents A implies B but not conversely.

None of the above implications is reversible as shown in the above examples and in the related papers [7, 14, 16, 18].

4. PROPERTIES OF $\approx g_\alpha$-CLOSED SETS

In this section, we discuss some basic properties of $\approx g_\alpha$-closed sets.

Definition: 4.1 [16] The intersection of all B-open subsets in (X, τ) containing A is called the B-kernel of A and denoted by $B-k(A)$.

Lemma: 4.2 A subset A of (X, τ) is $\approx g_\alpha$-closed if and only if $\alpha{cl(A)} \subseteq B-k(A)$.
Proof: Suppose that \(A \) is \(g_\alpha \)-closed. Then \(\alpha cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(B \)-open. Let \(x \in \alpha cl(A) \). If \(x \notin B-ker(A) \), then there is an \(B \)-open set \(U \) containing \(A \) such that \(x \notin U \). Since \(U \) is an \(B \)-open set containing \(A \), we have \(x \notin \alpha cl(A) \) and this is a contradiction.

Conversely, let \(\alpha cl(A) \subseteq B-ker(A) \). If \(U \) is any \(B \)-open set containing \(A \), then \(\alpha cl(A) \subseteq B-ker(A) \subseteq U \). Therefore, \(A \) is \(g_\alpha \)-closed.

Proposition: 4.3 If \(A \) and \(B \) are \(g_\alpha \)-closed sets in \((X, \tau)\), then \(A \cup B \) is \(g_\alpha \)-closed in \((X, \tau)\).

Proof: If \(A \cup B \subseteq G \) and \(G \) is \(B \)-open, then \(A \subseteq G \) and \(B \subseteq G \). Since \(A \) and \(B \) are \(g_\alpha \)-closed, \(G \supseteq \alpha cl(A) \) and \(G \supseteq \alpha cl(B) \) and hence \(G \supseteq \alpha cl(A) \cup \alpha cl(B) = \alpha cl(A \cup B) \). Thus \(A \cup B \) is \(g_\alpha \)-closed in \((X, \tau)\).

Proposition: 4.4 If a set \(A \) is \(g_\alpha \)-closed in \((X, \tau)\) and \(A \subseteq B \subseteq \alpha cl(A) \), then \(B \) is \(g_\alpha \)-closed in \((X, \tau)\).

Proof: Let \(G \) be an \(B \)-open set in \((X, \tau)\) such that \(B \subseteq G \). Then \(A \subseteq G \). Since \(A \) is an \(g_\alpha \)-closed set, \(\alpha cl(A) \subseteq G \). Also \(\alpha cl(B) = \alpha cl(A) \subseteq G \). Hence \(B \) is also an \(g_\alpha \)-closed in \((X, \tau)\).

Proposition: 4.5 If \(A \) is \(B \)-open and \(\alpha cl(A) \subseteq \alpha cl(A) \), then \(A \) is \(\alpha \)-closed in \((X, \tau)\).

Proof: Since \(A \) is \(B \)-open and \(\alpha cl(A) \subseteq A \) and hence \(A \) is \(\alpha \)-closed in \((X, \tau)\).

Definition: 4.7 A subset \(A \) of a space \((X, \tau)\) is called \(\Lambda_B \)-set if \(A = B-ker(A) \).

Definition: 4.8 A subset \(A \) of a space \((X, \tau)\) is called \(\lambda_B \)-closed if \(A = L \cap F \) where \(L \) is a \(\Lambda_B \)-set and \(F \) is \(\alpha \)-closed.

The complement of \(\lambda_B \)-closed set is called \(\lambda_B \)-open set.

The collection of all \(\lambda_B \)-closed (resp. \(\lambda_B \)-open) sets in \((X, \tau)\) is denoted by \(\lambda_B C(X) \) (resp. \(\lambda_B O(X) \)).

Lemma: 4.9 For a subset \(A \) of a topological space \((X, \tau)\), the following conditions are equivalent.

(i) \(A \) is \(\lambda_B \)-closed.
(ii) \(A = L \cap cl(A) \) where \(L \) is a \(\lambda_B \)-set.
(iii) \(A = B-ker(A) \cap cl(A) \).

Lemma: 4.10

(i) Every \(\alpha \)-closed set is \(\lambda_B \)-closed but not conversely.
(ii) Every \(\lambda_B \)-set is \(\lambda_B \)-closed but not conversely.

The separate converses of Lemma 4.10 need not be true as seen from the following examples.

Example: 4.11 Let \(X \) and \(\tau \) be as in Example 3.13. Then \(\alpha C(X) = \{ \phi, \{ b \}, \{ c \}, \{ b, c \}, X \} \) and \(\lambda_B C(X) = P(X) \). We have \(A = \{ a \} \) is \(\lambda_B \)-closed set but not \(\alpha \)-closed.

Example: 4.12 Let \(X \) and \(\tau \) be as in Example 3.13. Then \(\Lambda_B \)-sets are \(\phi, \{ a \}, \{ a, b \}, \{ a, c \} \) and \(X \); and \(\lambda_B C(X) = P(X) \). We have \(A = \{ b \} \) is \(\lambda_B \)-closed set but not \(\lambda_B \)-set.

Theorem: 4.13 For a subset \(A \) of a topological space \((X, \tau)\), the following conditions are equivalent.
(i) A is α-closed.
(ii) A is $\approx g_\alpha$-closed and λ_B-closed.

Proof: (i) \Rightarrow (ii). Obvious.

(ii) \Rightarrow (i). Since A is $\approx g_\alpha$-closed, so by Lemma 4.2, $\alpha cl(A) \subseteq B ker(A)$. Since A is λ_B-closed, so by Lemma 4.9, $A = B ker(A) \cap \alpha cl(A) = \alpha cl(A)$. Hence A is α-closed.

Remark: 4.14 The following examples show that the concepts of $\approx g_\alpha$-closed sets and λ_B-closed sets are independent of each other.

Example: 4.15 Let X and τ be as in Example 3.13. Then $\approx G_\alpha C(X) = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $\lambda_B C(X) = P(X)$. We have $A = \{a\}$ is λ_B-closed set but not $\approx g_\alpha$-closed.

Example: 4.16 Let X and τ be as in Example 3.3. Then $\approx G_\alpha C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\lambda_B C(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, X\}$. We have $A = \{a\}$ is λ_B-closed set but not $\approx g_\alpha$-closed.

5. PROPERTIES OF $\approx g_\alpha lc^*$-SETS

Definition: 5.1 Let (X, τ) be a topological space. A subset A of X is called $\approx g_\alpha lc^*$-set if A = $M \cap N$ where M is B-open and N is λ_B-closed in (X, τ).

Example: 5.2 Let X and τ be as in Example 3.3. Then $\approx g_\alpha lc^*$-set.

Proposition: 5.3 Every B-open set is $\approx g_\alpha lc^*$-set but not conversely.

Example: 5.4 Let X and τ be as in Example 3.3. Then $\approx g_\alpha lc^*$-sets are $\emptyset, \{a\}, \{b\}, \{a, b\}$ and X; and B-open sets are $\emptyset, \{a\}, \{b\}, \{a, b\}$ and X. We have $A = \{c\}$ is $\approx g_\alpha lc^*$-set but not B-open.

Proposition: 5.5 Every α-closed set is $\approx g_\alpha lc^*$-set but not conversely.

Example: 5.6 Let X and τ be as in Example 3.3. Then $\approx g_\alpha lc^*$-sets are $\emptyset, \{a\}, \{b\}, \{a, b\}$ and X; and $\alpha C(X) = \{\emptyset, \{c\}, X\}$. We have $A = \{a\}$ is $\approx g_\alpha lc^*$-set but not α-closed.

Theorem: 5.7 Let (X, τ) be a topological space and A a subset of X. Then, A is α-closed if and only if it is $\approx g_\alpha$-closed and $\approx g_\alpha lc^*$-set.

Proof: Let A be an α-closed. By Propositions 3.2 and 5.5, A is $\approx g_\alpha$-closed and $\approx g_\alpha lc^*$-set.

Conversely, let A = M \cap N. Then M is B-open and N is α-closed. Since A is $\approx g_\alpha$-closed, $\alpha cl(A) \subseteq M$. Also $\alpha cl(A) \subseteq \alpha cl(N) = N$. We have $\alpha cl(A) \subseteq M \cap N = A$. Hence A is α-closed.

Remark: 5.8 The following example shows that the concepts of $\approx g_\alpha$-closed sets and $\approx g_\alpha lc^*$-sets are independent of each other.

Example: 5.9 Let X and τ be as in Example 3.3. Then $\approx g_\alpha lc^*$-sets are $\emptyset, \{a\}, \{b\}, \{a, b\}$ and X; and $\approx G_\alpha C(X) = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}$. We have

(i) $A = \{a\}$ is $\approx g_\alpha lc^*$-set but not $\approx g_\alpha$-closed.

(ii) $A = \{a, c\}$ is $\approx g_\alpha$-closed set but not $\approx g_\alpha lc^*$-set.
REFERENCES
