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ABSTRACT 
In this paper, we study the fractional predator-prey with Holling Type-II functional response by investigating the 
dynamic behavior of the system. Solution of the system is obtained using Trapezoidal rule base Homotopy perturbation 
method. Numerical results agree with the dynamic behavior and also establish the convenience of handling the 
Fractional differential equation with singularity.  
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1. INTRODUCTION 
 
One of the classical applications of mathematics to biology is the differential equation modeling the interactions 
between species, first introduces by Lotka-Volterra [1, 2] popularly known as predator-prey model. They had used 
simple functional response to express the interactions between predator and prey. One of the most widely studied 
predator-prey models is the model involving logistic growth [3]. Later Feller [4] did comprehensive investigation on 
this. Based on experiments, Holling [5] suggested somekinds of functional responses to model the phenomena of 
predation, which made the standard Lotka-Volterra system more realistic. There are many other types of functional 
responses such as Michaelis-Menten type [6], Beddington-DeAngelis type [7] etc. The asymptotic behavior of a 
stochastic predator-prey with Holling Type-II functional response is studied in [8]. The existence and asymptotical 
stability of equilibrium and limit cycles for predator-prey systems with Holling Type-II functional response is studied 
in [9] 
 
Recently, fractional calculus has penetrated in all branches of sciences and engineering where scientists are able to give 
a generalized flavor to all popular scientific models of fluid flow, viscoelasticity, control theory of dynamical systems, 
diffusive transport akin to diffusion, electrical networks, probability and statistics, dynamical processes in self-similar 
and porous structures, electrochemistry of corrosion, optics and signal processing, rheology etc. [10-14]. In [15] Das S 
et al. have investigated fractional Lotka equation. In [16] Deng W. et.al. have studied stability analysis of fractional 
order predator-prey and rabies models. 
 
In this paper, we are concerned about fractional predator-prey model with Holling type-II functional response. We have 
studied the stability of the equilibrium points. Numerical solution of the model is given using Trapezoidal rule based on 
Homotopy Perturbation method (TRHP). 
 
2. PRILIMINARIES 
 
In this section we give the basic definition of fractional differentiation and integration [17-18]. 
 
Definition 1: The Riemann-Liouville fractional integral operator (𝐽𝛼) of order 𝛼 ≥ 0 of a function𝑓 𝜖 𝐶𝜇 ,𝜇 ≥ −1 

𝐽𝛼𝑓(𝑡) = 1
𝛤(𝛼)∫ (𝑡 − 𝜏)𝛼−1𝑡

0 𝑓(𝜏)𝑑𝜏,       (𝛼 > 0)                                                               (1) 
𝐽0𝑓(𝑡) = 𝑓(𝑡) 

where 𝛤 is the well-known Gamma function. 
1. 𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡), 
2. 𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛽𝐽𝛼𝑓(𝑡), 
3. 𝐽𝛼𝑡𝛾 = 𝛤(𝛾+1)

𝛤(𝛼+𝛾+1)
𝑡𝛼+𝛾 
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Definition 2: The Riemann –Liouville fractional derivative of order 𝛼 > 0 for a function  𝑓 𝜖 𝐶−𝑒

𝜇    is defined as 
𝐷𝑎𝛼𝑓(𝑥) = 𝐷𝑚𝐽𝑚−𝛼𝑓(𝑥) 
𝐷𝑎𝛼𝑓(𝑥) = 𝑑𝑚

𝑑𝑥𝑚
1

𝛤(𝑚−𝛼)∫ (𝑡 − 𝜏)𝑚−𝛼−1𝑡
0 𝑓(𝜏)𝑑𝜏𝛼 > 0,  𝜏 > 0                                   (2) 

 
Definition 3: The fractional derivative 𝐷𝛼of a function 𝑓:ℝ+ → ℝ in the caputo’s sense is defined as  
𝐷𝛼𝑓(𝑡) = 1

𝛤(𝑚−𝛼)∫ (𝑡 − 𝜏)𝑚−𝛼−1𝑡
0 𝑓(𝑚)(𝜏)𝑑𝜏                   (3) 

where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 𝜖 ℕ, 𝑡 > 0, 𝑓(𝑡) has absolutely continuous derivative up to order (𝑚 − 1). Also, we need 
here two of its basic properties:  

𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 𝜖 𝑁, 𝑡 > 0, 𝑓 𝜖 𝐶𝜇𝑚, 𝜇 ≥ −1, then  
(𝐷𝛼𝐽𝛼)𝑓(𝑥) = 𝑓(𝑥) 

(𝐽𝛼𝐷𝛼)𝑓(𝑥) = 𝑓(𝑥) −∑ 𝑓(𝑘)(0+) 𝑥
𝑘

𝑘!
𝑚−1
𝑘=0  ,   𝑥 > 0 

 
3. FRACTIONAL PREDATOR-PREY MODEL WITH HOLLING TYPE-II FUNCTIONAL RESPONSE 
 
We consider the following fractional predator-prey model with Holling type-II functional response 

𝑑𝛼𝑥(𝑡) = 𝑥(𝑡) �𝑎 − 𝑏𝑥(𝑡) −
𝛾𝑦(𝑡)

1 + 𝛽𝑥(𝑡)
� 𝑑𝑡𝛼 

𝑑𝛼𝑦(𝑡) = 𝑦(𝑡) �−𝑒 + 𝑘𝛾𝑥(𝑡)
1+𝛽𝑥(𝑡)

� 𝑑𝑡𝛼                      (4) 
where 𝑥(𝑡) and 𝑦(𝑡) represent the population densities of prey and predator at time 𝑡 respectively. The parameters 𝑎, 
𝑏, 𝛾,𝛽, 𝑒, and 𝑘 are the positive constants that stand for prey intrinsic growth rate, carrying capacity, the maximum 
ingestion rate, half-saturation constant, predator death rate and is the conversion factor, respectively. 
 
4. STABILITY OF EQUILIBRIUM POINTS 
 
Consider the fractional-order systems of the form  

𝐷𝛼𝑥(𝑡) = 𝑓1(𝑥,𝑦), 𝐷𝛼𝑦(𝑡) = 𝑓2(𝑥,𝑦),  𝛼 𝜖 (0,1], 𝑥(0) = 𝑥0 ,  𝑦(0) = 𝑦0                                                     (5) 
With an equilibrium point (𝑥𝑒  ,𝑦𝑒).  
 
Lemma 1: The equilibrium point (𝑥𝑒  ,𝑦𝑒) of the fractional system (5) is locally asymptotically stable if and only if all 
eigenvalues 𝜆𝑖 , 𝑖 = 1,2 of the Jacobian matrix  

𝐽 =

⎝

⎜
⎛
𝜕𝑓1
𝜕𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

𝜕𝑓2
𝜕𝑦⎠

⎟
⎞

 

evaluated at the equilibrium point (𝑥𝑒  ,𝑦𝑒) satisfy the condition that |𝑎𝑟𝑔(𝜆𝑖)| > 𝛼𝜋
2

 [19]. 
 
We expect that “The fractional-order differential equations are, at least, as stable as their integer-order counterpart”. 
The equilibria of (4) are the points of intersections at which 𝐷𝛼𝑥(𝑡) = 0 and 𝐷𝛼𝑦(𝑡) = 0.  
 
To find point of equilibrium we consider 𝑑

𝛼𝑥(𝑡)
𝑑𝑡𝛼

= 0 and 𝑑
𝛼𝑦(𝑡)
𝑑𝑡𝛼

= 0  in equation (4) which yields 

𝑥(𝑡)[𝑎 − 𝑏𝑥(𝑡)] − 𝛾 𝑥(𝑡)𝑦(𝑡)
1+𝛽𝑥(𝑡)

= 0                       (6) 

−𝑒𝑦(𝑡) + 𝑘 𝛾 𝑥(𝑡)𝑦(𝑡)
1+𝛽𝑥(𝑡)

= 0                       (7) 
 
Solving equation (6) and (7), we get the equilibrium points   𝐸0 = (0,0),   𝐸1 = �𝑎

𝑏
, 0� and  

𝐸2 = � −
𝑒

𝑒𝛽 − 𝑘𝛾
   ,
−𝑏𝑒𝑘 − 𝑎𝑒𝑘𝛽 + 𝑎𝑘2𝛾

(𝑒𝛽 − 𝑘𝛾)2
� 

 

Jacobi matrix of the system (4) is 𝐽(𝑥,𝑦) = �
(𝑎 − 2𝑏𝑥) − 𝛾 𝑦

(1+𝛽𝑥)2
− 𝛾𝑥

1+𝛽𝑥
𝑘𝛾𝑦

(1+𝛽𝑥)2
−𝑒 + 𝑘𝛾𝑥

1+𝛽𝑥

� 

 
Case-(i): Equilibrium point 𝐸0 

At (0,0) the eigenvalues of 𝐽(𝑥,𝑦)are  𝜆1 = 𝑎 > 0 and 𝜆2 = −𝑒 < 0 
Hence, the system is unstable.  
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Case-(ii): The equilibrium point𝐸1 

The eigenvalues of 𝐽(𝑥,𝑦)at �𝑎
𝑏

, 0�are 𝜆1 = −𝑎 < 0  and 𝜆2 = −𝑒 + 𝑘𝛾𝑎
𝑏+𝛽𝑎

=  − �𝑒𝑏+𝑒𝛽𝑎−𝑘𝛾𝑎
𝑏+𝛽𝑎

� 
 
Case-(iii): Equilibrium point 𝐸2 

Real part of the Eigenvalues is    −𝑎𝑒
2𝛽2+𝑎𝑒𝑘𝛽𝛾−𝑏𝑒(𝑒𝛽+𝑘𝛾)

2𝑘𝛾(−𝑒𝛽+𝑘𝛾)
 

 
Theorem 1: The semi-trivial equilibrium point 𝐸1 of the system (4) is asymptotically stable, if 𝑟0 > 𝑎 . 
 
Theorem 2: The fixed point 𝐸3 is stable spiral, if  𝑟0 < 𝑎 < 𝑟1.  
Where 𝑟0 = 𝑒𝑏

𝑘𝛾−𝑒𝛽
  and  𝑟1 = 𝑏(𝑒𝛽+𝑘𝛾)

𝛽(𝑘𝛾−𝑒𝛽)
.  

 
5. HOMOTOPY PERTURBATION METHOD (HPM) 
 
To illustrate the basic idea of this method [20], we consider the following nonlinear differential equation:  

𝐴(𝑢) − 𝑓(𝑟) = 0,       r ∈ Ω                               (8)                
With boundary conditions  

𝐵 �u , 𝜕𝑢
𝜕𝑛
� = 0,r ∈ 𝛤,          (9) 

where 𝐴 is a general differential operator, 𝐵 is a boundary operator, r is a known analytic function, and 𝛤 is the 
boundary of the domain Ω. In general, the operator 𝐴 can be divided in to two parts 𝐿 and 𝑁,where𝐿 is linear, while 𝑁 
is nonlinear. Equation (8) therefor can be rewritten as follows:  

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑟) = 0                     (10) 
 
By the homotopy technique [21-22], we construct a homotopy V(𝑟,𝑝) : Ω × [0,1] → 𝑅 which satisfies               

𝐻(𝑣, 𝑝) = (1 − 𝑝)[𝐿(𝑣) − 𝐿(𝑢0)] + 𝑝[𝐴(𝑣) − 𝑓(𝑟)] = 0 
p ∈ [0,1], r ∈ Ω                         (11) 

 Or 
𝐻(𝑣, 𝑝) = 𝐿(𝑣) − 𝐿(𝑢0) + 𝑝𝐿(𝑢0) + 𝑝[𝑁(𝑣) − 𝑓(𝑟)] = 0                 (12) 

where p ∈ [0,1] is an embedding parameter and 𝑢0 is an initial approximation of the solution which satisfies the 
boundary conditions. 
 
From (12), we have 

𝐻(𝑣, 0) = 𝐿(𝑣) − 𝐿(𝑢0) = 0 
𝐻(𝑣, 1) = 𝐴(𝑣) − 𝑓(𝑟) = 0                    (13)  

 
The change in the process of 𝑝 from zero to unity is just that of 𝑉(𝑟, 𝑝) from 𝑢0(𝑟) to 𝑢(𝑟). In topology, this is called 
deformation and𝐿(𝑣) − 𝐿(𝑢0), and   𝐴(𝑣) − 𝑓(𝑟) are called Homotopic. 
 
Now, assume that the solution of (11) and (12) can be expressed as  

v = 𝑣0 +𝑝𝑣1 +𝑝2𝑣2 +⋅⋅⋅.                                                                                                                                    (14) 
 
The approximate solution of (8) can be obtained by setting 𝑝=1: 

𝑢 = limp→1 𝑣 = 𝑣0 + 𝑣1+ 𝑣2 +⋅⋅⋅                                                                                                                       (15) 
 
6. TRAPEZOIDAL RULE BASED HOMOTOPY PERTURBATION METHOD 
 
To derive a Trapezoidal rule based Homotopy Perturbation (TRHP) method we use the Caputo derivative because of its 
applicability to real world models and also it allows the traditional initial and boundary conditions to be included in the 
formulation of the problems. The definition of Riemann-Liouville fractional integral of a function 𝑦 read as  

𝐽𝛼𝑦(𝑡) = 1
𝛤(𝛼)∫ (𝑡 − 𝜏)𝛼−1𝑡

0 𝑦(𝑡)𝑑𝜏, 𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛 𝜖 𝑧+,  
And the Caputo fractional derivative of 𝑦 is defined as  

𝐷𝛼𝑦(𝑡) =   𝐽𝑛−𝛼𝑦(𝑛)(𝑡) =
1

𝛤(𝑛 − 𝛼)�
(𝑡 − 𝜏)𝑛−𝛼−1
𝑡

0
𝑦(𝑛)(𝑡)𝑑𝜏,  

𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛 𝜖 𝑧+ 
 
The nonlinear fractional differential equation with Caputo derivative is the following form  

𝐷𝛼𝑥(𝑡) = 𝑓�𝑡, 𝑥(𝑡)�, 𝑥𝑘(0) = 𝑥0
(𝑘), 

𝑛 − 1 < 𝛼 < 𝑛 𝜖 𝑧+, 𝑘 = 0,1, … ⌈𝛼⌉ − 1                                                                                                         (16) 
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where ⌈𝛼⌉ = 𝑛. It is well known that the initial value problem (16) is equivalent to a Volterra integral equation [23],  

𝑥(𝑡) = ∑ 𝑥0(𝑘) 𝑡𝑘

𝑘!
⌈𝛼⌉−1
𝑘=0 + 1

𝛤(𝛼)∫ (𝑡 − 𝜏)𝛼−1𝑡
0 𝑓�𝑡, 𝑥(𝑡)�𝑑𝜏                                                                                 (17)  

 
In the sense that a continuous function solves (17) if and only if it solves (16).  
 
In [24], Diethelm, et al., successfully constructed a Predictor-Corrector method for a fractional differential equation 
with Caputo derivative, called “Fractional Adams method” for brevity. And the error analysis for this method was 
given in [25].  
 
Firstly the product trapezoidal quadrature formula is applied to replacing the integrals of (17). Set ℎ = 𝑇

𝑁
, 𝑡𝑛 = 𝑛ℎ,  

𝑛 = 0, 1, …𝑁 𝜖 𝑧+. Then (17) can be discretized as follows,   

𝑥(𝑡𝑛+1) = ∑ 𝑥0(𝑘) 𝑡𝑘

𝑘!
⌈𝛼⌉−1
𝑘=0 + ℎ𝛼

𝛤(𝛼+2)
∑ 𝑎𝑗,𝑛+1 
𝑛+1
𝑗=0 𝑓 �𝑡𝑗, 𝑥�𝑡𝑗��,                                (18) 

where  

𝑎𝑗,𝑛+1 = �
𝑛𝛼+1 − (𝑛 − 𝛼)(𝑛 + 1)𝛼 ,                  𝑗 = 0

(𝑛 − 𝑗 + 2)𝛼+1 + (𝑛 − 𝑗)𝛼+1 − 2(𝑛 − 𝑗 + 1)𝛼+1, 1 ≤ 𝑗 ≤ 𝑛
1,                                                                                    𝑗 = 𝑛 + 1

� 

 
Eq. (18) may be rewritten as 

𝑥(𝑡𝑛+1) = ∑ 𝑥0(𝑘) 𝑡𝑘

𝑘!
⌈𝛼⌉−1
𝑘=0 + ℎ𝛼

𝛤(𝛼+2)
𝑓�𝑡𝑛+1, 𝑥(𝑡𝑛+1)� + ℎ𝛼

𝛤(𝛼+2)
∑ 𝑎𝑗,𝑛+1 
𝑛
𝑗=0 𝑓 �𝑡𝑗 , 𝑥�𝑡𝑗��                            (19) 

 
The right hand side of system (19) contains term 𝑥(𝑡𝑛+1), so it is an implicit scheme. We shall evaluate the term 
𝑥(𝑡𝑛+1) in right hand side by HPM and the new scheme is named as TRHP method. 
 
7. FRACTIONAL PREDATOR-PREY MODEL WITH HOLLING TYPE-II FUNCTIONAL RESPONSE BY 
TRHP METHOD 

 
Applying TRHP method to model (4) yields 

𝑢(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �𝑢
(𝑡𝑛+1)�𝑎 − 𝑏𝑢(𝑡𝑛+1)�� − �𝛾𝑢(𝑡𝑛+1)𝑣(𝑡𝑛+1)

1 + 𝛽𝑢(𝑡𝑛+1) � + �
𝑢0

(𝑘)𝑡𝑛+1𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

 

                  + ℎ𝛼

𝛤(𝛼+2)
∑ �𝑎1,𝑗,𝑛+1 �𝑢�𝑡𝑗� �𝑎 − 𝑏𝑢�𝑡𝑗�� −

𝛾𝑢�𝑡𝑗�𝑣�𝑡𝑗�

𝑏+𝛽𝑢�𝑡𝑗�
��𝑛

𝑗=0                                            (20) 

 

𝑣(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �
𝑘𝛾𝑢(𝑡𝑛+1)𝑣(𝑡𝑛+1)

1 + 𝛽𝑢(𝑡𝑛+1) − 𝑒𝑣(𝑡𝑛+1)� + �
𝑣0

(𝑘)𝑡𝑛+1𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

 

                 + ℎ𝛼

𝛤(𝛼+2)
∑ �𝑎2,𝑗,𝑛+1 �

𝑘𝛾𝑢�𝑡𝑗�𝑣�𝑡𝑗�

1+𝛽𝑢�𝑡𝑗�
− 𝑒𝑣�𝑡𝑗���𝑛

𝑗=0                                                                                 (21) 

where 𝑎𝑖,𝑗,𝑛+1 = �
𝑛𝛼+1 − (𝑛 − 𝛼)(𝑛 + 1)𝛼 ,                                                   𝑗 = 0

(𝑛 − 𝑗 + 2)𝛼+1 + (𝑛 − 𝑗)𝛼+1 − 2(𝑛 − 𝑗 + 1)𝛼+1,       1 ≤ 𝑗 ≤ 𝑛
1,                                                                                             𝑗 = 𝑛 + 1

� 

where 𝑖 = 1, 2, ….. 
 
We represent the terms 𝑢(𝑡𝑛+1) and 𝑣(𝑡𝑛+1) in the right hand side by 𝑢𝑝(𝑡𝑛+1) and 𝑣𝑝(𝑡𝑛+1) and find them by 
applying the HPM. We may constructed the homotopy as 

𝑢𝑝(𝑡𝑛+1) = 𝑢10(𝑡𝑛+1) + 𝑝
ℎ𝛼

𝛤(𝛼 + 2) �𝑢𝑝
(𝑡𝑛+1) �𝑎 − 𝑏𝑢𝑝(𝑡𝑛+1)�� − �𝛾𝑢𝑝(𝑡𝑛+1)𝑣𝑝(𝑡𝑛+1)

1 + 𝛽𝑢𝑝(𝑡𝑛+1) � 

𝑣𝑝(𝑡𝑛+1) = 𝑣10(𝑡𝑛+1) + 𝑝
ℎ𝛼

𝛤(𝛼 + 2) �
𝑘𝛾𝑢𝑝(𝑡𝑛+1)𝑣𝑝(𝑡𝑛+1)

1 + 𝛽𝑢𝑝(𝑡𝑛+1) − 𝑒𝑣𝑝(𝑡𝑛+1)� 

where 

𝑢10(𝑡𝑛+1) = �
𝑢0

(𝑘)𝑡𝑛+1𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

+
ℎ𝛼

𝛤(𝛼 + 2)��𝑎1,𝑗,𝑛+1 �𝑢�𝑡𝑗� �𝑎 − 𝑏𝑢�𝑡𝑗�� −
𝑟𝛾𝑢�𝑡𝑗�𝑣�𝑡𝑗�
1 + 𝛽𝑢�𝑡𝑗�

��
𝑛

𝑗=0

 

𝑣10(𝑡𝑛+1) = �
𝑢0

(𝑘)𝑡𝑛+1𝑘

𝑘!

⌈𝛼⌉−1

𝑘=0

+ +
ℎ𝛼

𝛤(𝛼 + 2)��𝑎2,𝑗,𝑛+1 �
𝑘𝛾𝑢�𝑡𝑗�𝑣�𝑡𝑗�

1 + 𝛽𝑢�𝑡𝑗�
− 𝑒𝑣�𝑡𝑗���

𝑛

𝑗=0
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According to HPM substitute in the above equations  

𝑢𝑝(𝑡𝑛+1) = �𝑝𝑟𝑢𝑟(𝑡𝑛+1)
∞

𝑟=0

 

𝑣𝑝(𝑡𝑛+1) = �𝑝𝑟𝑣𝑟(𝑡𝑛+1)
∞

𝑟=0

 

 
We obtain the following equations: 

𝑢1(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �𝑢0
(𝑡𝑛+1)�𝑎 − 𝑏𝑢0(𝑡𝑛+1)�� − �𝛾𝑢0(𝑡𝑛+1)𝑣0(𝑡𝑛+1)

1 + 𝛽𝑢0(𝑡𝑛+1) � 

𝑣1(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �
𝑘𝛾𝜆𝑢0(𝑡𝑛+1)𝑣0(𝑡𝑛+1)

1 + 𝛽𝑢0(𝑡𝑛+1) − 𝑒𝑣0(𝑡𝑛+1)� 

𝑢2(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �𝑢1
(𝑡𝑛+1)�𝑎 − 𝑏𝑢1(𝑡𝑛+1)�� − �𝛾𝑢1(𝑡𝑛+1)𝑣1(𝑡𝑛+1)

1 + 𝛽𝑢1(𝑡𝑛+1) � 

𝑣2(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �
𝑘𝛾𝑢1(𝑡𝑛+1)𝑣1(𝑡𝑛+1)

1 + 𝛽𝑢1(𝑡𝑛+1) − 𝑒𝑣1(𝑡𝑛+1)� 

𝑢3(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �𝑢2
(𝑡𝑛+1)�𝑎 − 𝑏𝑢2(𝑡𝑛+1)�� − �𝛾𝑢2(𝑡𝑛+1)𝑣2(𝑡𝑛+1)

1 + 𝛽𝑢2(𝑡𝑛+1) � 

𝑣3(𝑡𝑛+1) =
ℎ𝛼

𝛤(𝛼 + 2) �
𝑘𝛾𝑢2(𝑡𝑛+1)𝑣2(𝑡𝑛+1)

1 + 𝛽𝑢2(𝑡𝑛+1) − 𝑒𝑣2(𝑡𝑛+1)� 

and so on 
 
8. NUMERICAL SIMULATION 

 
In Fig. 1-7 we displayed the solution of the model (1) for step size 0.02 and different 0 < 𝛼 ≤ 1. We take 
 
Case-(i): let us consider the parameters of the system (4) as ℎ = 0.02,    𝑎 = 2, 𝑏 = 0.2, 𝑒 = 0.3  𝛽 = 0.2,   𝑘 = 0.5     
𝑎𝑛𝑑   𝛾 = 0.2 in appropriate units for different  values of fractional derivative such as 𝛼 = 1, 𝛼 = 0.98 and 𝛼 = 0.85.  
 

 
Figure-1 

 

 
Figure-2 

𝛼 = 0.85 

𝛼 = 1 
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Figure-3 

 
Case-(ii): let us consider the parameters of the system (4) asℎ = 0.02,    𝑎 = 0.8, 𝑏 = 0.16, 𝑒 = 0.3  𝛽 = 0.01,   𝑘 =
0.5, 𝛾 = 0.5 in appropriate units for different  values of fractional derivative such as 𝛼 = 1, 𝛼 = 0.98 and 𝛼 = 0.85. 
 

 
Figure-4 

 

 
Figure-5 

 
 

 

 

 

𝛼 = 0.85 

𝛼 = 0.98 



Chandrali Baishya* and Jaipala /  
Numerical Solution of Fractional Predator-Prey Model by Trapezoidal Based Homotopy Perturbation… / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       258  

  

 
Figure-6 

 

 
Figure—7 

 

 
Figure-8 

 
For the above values of the parameters, fixed point are 𝐸0 = (0,0),  𝐸1 = (5,0) and 𝐸2 =(1.215, 1.226). The phase 
portrait in Fig-8 represents the same behavior  that is shown by the solutions graphs in Fig-7 for various values of 𝛼.  
 
From the graphical analysis it is clear that the numerical solution obtained by the proposed method agrees with the 
dynamical behavior of the solution.  
 
 

𝛼 = 1 
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