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ABSTRACT 
Laplace expansion of rhotrix matrices has been defined and the results 1 3 1 3R R C C∆ = ∆ = ∆ = ∆    in the third order 

and in the fifth order 1 1 5 5&R C R C∆ = ∆ ∆ = ∆ have been proved. 
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1. PRELIMINARY 

 
Definition [2]1.1: 

Rhotrix is defined as : , , , ,
a

R b c d a b c d e R
e

 
 = ∈ 
 
 

 R is of dimension 3.This is a rhomboidal arrangement. 

Entry c in R is the heart of R and denoted by h(R).This is analogous to concepts in Matrix Theory. 
 
Multiplication of Rhotrix matrices [2]1.2: 
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Cardinality is  ( )21 1
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Right triangular Rhotrix1.3: 
 
All the entries to the left of the main diagonal in R are zero. 
 
Left triangular Rhotrix1.4: 
All the entries to the right of the main diagonal in R are zero. 
 
Upper triangular Rhotrix1.5: 
All the entries to the below the horizontal diagonal in R are zero. 
 
Lower triangular Rhotrix1.6: 
All the entries to the above the horizontal diagonal in R are zero 
 

Corresponding Author: Vijayabarathi.S*, Assistant professor of Mathematics,  
Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya, Enathur, Kancheepuram, India. 

 
 
 
 
 

http://www.ijma.info/�


Vijayabarathi.S* / Laplace Expansion In Rhotrix / IJMA- 9(4), April-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         46  

 
2. LAPLACE EXPANSION 

Determinants of the Rhotrix 2.1:    ( )
a

A c h A d
b

=  is called the determinant of the rhotrix of the third 

order. The diagonals from top to bottom which contains the element . ( ),a h A b  called the leading or principal 
diagonal. 
 
Cofactors: 2.2: The sign of an element in the ith row and jth column is (-1)i+j. But in Rhotrix if  i+j  is odd, null entries 
will be there. 

( )
a

A c h A d
b

=  

Co-factors of ( )a h A b= ×  
Co-factors of ( )d h A c= ×  
Co-factors of ( )c h A d= ×  
Co-factors of ( )b h A a= ×  

Co-factors of ( ) ( )( )h A a b c d= × − ×  
 
If the order of rhotrix increases then convert this into coupled ( ordinary) matrix and find the del value of that matrix. 

a
d b e

c
 

 
The elements a  and e are called as North –East elements (NE-elements) 
 
Similarly the elements e and c are called as East-South elements (ES-elements). 
 
The elements c and d are called as South-west elements (NE-elements) and the elements d and a are called as West- 
North elements (WN-elements). 
 
Laplace Expansion 2.3: 
A determinant can be expanded in terms of North –East elements (row) as follows: 
Multiply each element of the NE in terms of which we intend expanding the del, by its cofactor then add up all these 
terms. 
 
Expanding NE-Row  

[ ( ) ] [ ( ) ]a h A b d h A c∆ = × + ×  
 
Expanding by NW-column 

[ ( ) ] [ ( ) ]a h A b c h A d∆ = × + ×  
 
Thus ∆  is the sum of the products of the elements of any NE-row( or column)  by their corresponding cofactors 
 

Let the rhotrix be 

a
d b e

c
 

1NE R abc deb∆ = ∆ = − .  

1NW C abc dbe∆ = ∆ = −
 



Vijayabarathi.S* / Laplace Expansion In Rhotrix / IJMA- 9(4), April-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         47  

 

3WS R deb abc∆ = ∆ = − +  

3ES C abc deb∆ = ∆ = −  

1 1 3 3R C R C∆ = ∆ = ∆ = ∆
 

 
Let the rhotrix be  

a
m b n

f g c h l
p d q

e

 

1NE R abcde abqpd ahcge ahqgp nbmde nbqfd∆ = ∆ = − − + − +  

                       nhmge nhqfg lbmpd lbcfd lhmgp lhcfg+ − + − − +  
 

1NW C abcde abqpd ahcge ahqgp nbmde nbqfd∆ = ∆ = − − + − +  

                       nhmge nhqfg lbmpd lbcfd lhmgp lhcfg+ − + − − +  

          1 1R C⇒∆ = ∆  

5WS R fnbdq nhgqf flbcd flhgc pabdq∆ = ∆ = − − + − +                         

                       phgqa plbmd plhmg eabcd heagc enhmg+ + − + − +  
 

5SE C fnbdq nhgqf flbcd flhgc pabdq∆ = ∆ = − − + − +  

                        phgqa plbmd plhmg eabcd heagc enhmg+ + − + − +  

         5 5R C⇒∆ = ∆  

 
These results have been supported by numerical judgment. 

• The Laplace Expansion of the rhotrix   

5
3 4 8

6
A =  

Cofactors of 5=24 
Cofactors of 8=12 
Cofactors of 3=32 
Cofactors of 6=20 
Cofactors of 4=6 
NE-elements (R1) 

1 5(24) 8(12) 216R∆ = + =  
NW- elements(C1) 

1 5(24) 3(32) 216C∆ = + =  
WS-elements (R3) 

3 3(32) 6(20) 216R∆ = + =  
ES-elements (C3) 

3 8(12) 6(20) 216C∆ = + =  

           1 3 1 3R R C C∴∆ = ∆ = ∆ = ∆  
 

Note 2.4: In the third order Rhotrix, the above problems leads to the conclusion that 1 3 1 3.R R C C∆ = ∆ = ∆ = ∆    
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The Laplace expansion of 

2
3 6 4

1 4 5 25 6
7 17 3

8

 

  
Expansion of NE- elements (R1) 

1 2(38) 4( 42) 6(32) 100R∆ = + − + =  
 
Expansion of NW- elements (C1) 

1 2(38) 3(20) 1( 36) 100C∆ = + + − =  
 
Expansion of ES- elements (C5) 

5 6(32) 3( 20) 8( 4) 100C∆ = + − + − =  
 
Expansion of WS- elements (R5) 

5 1( 36) 7(24) 8( 4) 100R∆ = − + + − =  

          1 1 5 5&R C R C∴∆ = ∆ ∆ = ∆  
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