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ABSTRACT 
In this paper, I introduce a new class of sets in generalized topological spaces called µ-α-semi generalized closed sets. 
Also I investigate some of their basic properties and obtained some interesting theorems. 
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1. INTRODUCTION 
 
The concept of generalized topological spaces was introduced and investigated by A. Csaszar [1]. Many µ-closed sets 
like µ- semi closed sets, µ- pre closed sets etc., in generalized topological spaces are introduced by him. In this paper, I 
introduce a new class of sets in generalized topological spaces called µ-α-semi generalized closed sets. Also I 
investigate some of their basic properties and produced many interesting theorems. 
 
2. PRELIMINARIES 
 
Definition 2.1: [1] Let X be a nonempty set. A collection µ of subsets of X is a generalized topology (or briefly GT) on 
X if it satisfies the following: 

1.  Ø, X ∊ µ and 
2.  If {Mi : i ∊ I} ⊆ µ, then ∪i ∊ I Mi ∊ µ. 

If µ is a GT on X, then (X, µ) is called a generalized topological space (or briefly GTS) and the elements of µ are called 
µ -open sets and their complement are called µ -closed sets. 
 
Definition 2.2: [1] Let (X, µ) be a GTS and let A ⊆ X. Then the µ-closure of A, denoted by cµ(A), is the intersection of 
all µ -closed sets containing A. 
 
Definition 2.3: [1] Let (X, µ) be a GTS and let A⊆ X.  Then the µ-interior of A, denoted by iµ(A), is the union of all      
µ -open sets contained in A. 
 
Definition 2.4: [1] Let (X, µ) be a GTS. A subset A of X is said to be 

1. µ-semi-closed set if iµ(cµ(A)) ⊆ A 
2. µ-pre-closed set if cµ(iµ(A)) ⊆ A 
3. µ-α-closed set if  cµ(iµ(cµ(A))) ⊆ A 
4. µ-β-closed set if  iµ(cµ(iµ(A))) ⊆ A 
5. µ-regular-closed set if A = cµ(iµ(A)) 

 
Definition 2.5: [3] Let (X, µ) be a GTS. A subset A of X is said to be 

1. µ-regular generalized closed set if cµ(A) ⊆ U whenever A ⊆ U, where U is µ-regular open in X 
2. µ-generalized closed set if cµ(A) ⊆ U whenever A ⊆ U, where U is µ-open in X 
3. µ-generalized-α- closed set if αcµ(A) ⊆ U whenever A ⊆ U, where U is µ-open in X 

The complement of µ -semi closed (resp., µ - pre closed, µ-α-closed, µ-β-closed, µ-regular closed, µ-generalized 
closed) is said to be µ -semi open (resp., µ -pre open, µ-α-open, µ-β-open, µ- regular open, µ-generalized open) in X. 
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3. µ-α-SEMI GENERALIZED CLOSED SETS 
 
In this section I introduce µ-α-semi generalized closed sets in generalized topological spaces and studied some of their 
basic properties. Some interesting and important theorems are also obtained. 
 
Definition 3.1: Let (X, µ) be a GTS. Then a non-empty subset A is said to be a µ-α-semi generalized closed set (briefly 
µ-α-SGCS) if scµ(A) ⊆ U whenever A ⊆ U and U is µ- α -open in X. 
 
Example 3.2: Let X = {a, b, c} and let µ = {Ø, {a}, {b}, {a, b}, X}.Then (X, µ) is a GTS. Now, 

µ-αO(X) = {Ø, {a}, {b}, {a, b}, X}. 
Then A = {a} is a µ-α - semi generalized closed set in (X, µ). 
 
Theorem 3.3: Every µ-closed set in (X, µ) is a µ- α- semi generalized closed set in (X, µ) but not conversely in 
general. 
 
Proof: Let A be a µ-closed set in (X, µ), then cµ(A) = A. Now let A⊆ U and U be µ-α-open in X. Then                    
scµ(A) = A ∪ iµ(cµ(A)) = A ∪ iµ(A) ⊆ A⊆ U, by hypothesis. Therefore  scµ(A) ⊆ U. This implies, A is a µ- α- semi 
generalized closed set in (X, µ). 
 
Example 3.4: Let X = {a, b, c, d} and let µ = {Ø, {b}, {d}, {b, d}, X}. Then (X, µ) is a GTS. Now, 

µ-αO(X) = {Ø, {b}, {d}, {b, d}, X}. 
Then A ={b} is a µ- α -semi generalized closed set in (X, µ). But, as cµ(A) = cµ({b}) = {a, b, c} ≠ A, A is not a            
µ-closed set in (X, µ). 
 
Theorem 3.5: Every µ-semi closed set in (X, µ) is a µ-α- semi generalized closed set in (X, µ). 
 
Proof: Let A be a µ-semi closed set in (X, µ). Then iµ(cµ(A)) ⊆ A. Now let A⊆ U and U be µ-α-open in X. Then scµ(A) 
= A ∪ iµ(cµ(A)) ⊆ A ∪ A= A ⊆ U, by hypothesis. Therefore A is a µ- α- semi generalized closed set in (X, µ). 
 
Remark 3.6: Every µ-α-semi generalized closed sets and µ- pre closed sets are independent in general in (X, µ). 
 
Example 3.7: Let X = {a, b, c} and let µ = {Ø, {a}, {b}, {a, b}, X}.Then (X, µ) is a GTS. Now, 

µ-αO(X) = {Ø, {a}, {b}, {a, b}, X}. 
Then A = {a} is a µ-α-semi generalized closed set but not a µ-pre closed set as cµ(iµ(A)) = cµ(iµ({a})) = {a, c} ⊈ A. 
 
Example 3.8: Let X = {a, b, c} and let µ = {Ø, {a, b}, X}. Then (X, µ) is a GTS. Now let A = {a}. Then              
cµ(iµ(A)) = cµ(iµ({a})) = Ø ⊆ A. Therefore A is a µ-pre closed set, but A is not a µ- α- semi generalized closed set as A 
⊆ U = {a, b}, where U is a µ- α-open set and now, 

µ-αO(X) = {Ø, {a, b}, X} and scµ(A) =X ⊈ {a} = U. 
 
Theorem 3.9: Every µ-α-closed set in (X, µ) is a µ- α- semi generalized closed set in (X, µ) but not conversely in 
general. 
 
Proof: Let A be a µ-α-closed set in (X, µ).Then cµ(iµ(cµ(A)))⊆ A. Now let A⊆ U and U be µ- α-open in X. Then     
scµ(A) = A ∪ iµ(cµ(A)) ⊆ A ∪ cµ(iµ(cµ(A))) ⊆ A∪A = A ⊆ U, by hypothesis. Therefore scµ(A) ⊆ U. This implies, A is a 
µ- α- semi generalized closed set in (X,µ). 
 
Example 3.10: Let X = {a, b, c} and let µ = {Ø, {a}, {b}, {c}, {a, c}, X}. Then (X, µ) is a GTS. Now, 

µ-αO(X) = {Ø, {a}, {b}, {c}, {a, c}, X}. 
Then A = {c} is a µ-α- semi generalized closed set in (X, µ). But, A is not a µ-α-closed set in X, as cµ(iµ(cµ(A))) = 
cµ(iµ(cµ ({c}))) = {a, c} ⊈ A. 
 
Remark 3.11: A µ-β-closed set is not a µ- α- semi generalized closed set in (X, µ) in general. 
 
Example 3.12: Let X = {a, b, c} and let µ = {Ø, {a, b}, X}.  Then (X, µ) is a GTS.  Let A = {a}. Then,               
iµ(cµ(iµ(A))) = iµ(cµ(iµ({a}))) = Ø ⊆ {a} = A. Therefore A is a µ-β-closed set in (X, µ), but not a µ- α- semi generalized 
closed set as A ⊆ U = {a, b}, where U is a µ-α-open set and now, 

µ-αO(X) = {Ø, {a, b}, X} and scµ(A) =X ⊈ {a} = U. 
 
Theorem 3.13: Every µ-regular closed set in (X, µ) is a µ- α- semi generalized closed set in (X, µ) but not conversely. 
Proof: Let A be a µ-regular closed set in (X, µ). Then A = cµ(iµ(A)). Now let A⊆ U and U be                                         
µ- α-open in X. Then scµ(A) = A∪ iµ(cµ(A)) = A∪ iµ(cµ(cµ(iµ(A)))) = A∪ iµ(cµ(iµ(A))) = A ∪ cµ(iµ(A)) = A∪ A = A⊆U, 
by hypothesis. Therefore A is a µ-α- semi generalized closed set in X. 
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Example 3.14: Let X = {a, b, c, d} and let µ = {Ø, {a}, {c}, {b, d}, X}.Then (X, µ) is a GTS. 
 
Now,  µ-αO(X) = {Ø, {a}, {c}, {b, d}, X}. Then A = {c} is a µ- α- semi generalized closed set but not a µ-regular 
closed set as cµ(iµ(A)) = cµ(iµ({c})) = {a, c} ≠ {c} = A. 
 
Remark 3.15: Every µ-α-semi generalized closed set and µ-generalized closed set in (X, µ) are independent to each 
other in general. 
 
Example 3.16: Let X = {a, b, c, d} and let µ = {Ø, {a}, {b}, {a, b}, {a, c}, {b, c},{a, b, c}, X}.Then (X, µ) is a GTS. 
Now, 

µ-αO(X) = {Ø, {a}, {b}, {a, b}, {a, c}, {b, c}, {a, b, c},X}. 
Then A = {a} is a µ-α- semi generalized closed set in (X, µ), but not a µ-generalized closed set as cµ(A) = cµ({a}) = {a, 
d} ⊈ {a, b, c} = U. 
 
Example 3.17: Let X = {a, b, c} and let µ = {Ø, {a, b}, X}.  Then (X, µ) is a GTS.  Let A = {a, b}and U = X. Then A 
⊆ U and cµ(A) = cµ({a, b}) = X ⊆ U. Therefore A is a                      µ-generalized closed set, but not a µ-α- semi 
generalized closed set as A ⊆ U = {a, b}, where U is a µ-α-open set and now, 

µ-αO(X) = {Ø, {a, b}, X} and scµ(A) =X ⊈ {a, b} = U. 
 
Remark 3.18: Every µ-α- semi generalized closed set and µ-generalized-α-closed set in (X, µ) are independent to each 
other in general. 
 
Example 3.19: Let X = {a, b, c, d} and let µ = {Ø, X, {a}, {b}, {a, b}, {a, b, c}}. Then (X, µ) is a GTS. 
 
Now, µ-αO(X) = {Ø, {a}, {b}, {a, b}, {a, b, c}, X}. Then A = {b} is a µ-α- semi generalized closed set in (X, µ), but 
not a µ-generalized-α-closed set as αcµ(A) = {b, c, d} ⊈ {a, b, c} = U and A ⊆ U. 
 
Example 3.20: Let X = {a, b, c} and let µ = {Ø, {a, b}, X}. Then (X, µ) is a GTS. Let A ={a} and U = X. Then A⊆ U 
and αcµ(A) = A ∪ cµ(iµ(cµ (A)))  = {a} ∪ X = X ⊆ U. Therefore A is a µ-generalized-α-closed set, but not a µ-α- semi 
generalized closed set as A ⊆ U = {a} where U is a µ-α-open set and now, 

µ-αO(X) = {Ø, {a, b}, X}and scµ(A) =X ⊈ {a} = U. 
 
In the following diagram, we have provided relations between various types of           µ-closed sets. 

 
 
Remark 3.21: Union of any two µ-α-semi generalized closed sets in (X, µ) need not be a µ-α- semi generalized closed 
set in X. 
 
Example 3.22: Let X = {a, b, c} and let µ = {Ø, {a}, {b}, {a, b}, X}.Then (X, µ) is a GTS. Now, 

µ-αO(X) = {Ø, {a}, {b}, {a, b}, X}. 
 
Then A = {a} and B = {b} are µ-α- semi generalized closed sets in (X, µ).  But, A ∪ B ={a, b} is not a µ-α- semi 
generalized closed set as scµ({a ,b}) = {a, b} ∪ iµ(cµ({a, b})) ={a, b} ∪ X = X ⊈ {a, b} = U and A ∪ B ⊆U. 
 
Theorem 3.23: If a subset A in X is a µ-α- semi generalized closed set in (X, µ), then scµ(A) – A contains no non-
empty µ-α -closed set in X. 
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Proof: Let A be a µ-α- semi generalized closed set in (X, µ) and let scµ(A) – A contains a non-empty µ-α -closed set 
say F. That is, F ⊆ scµ(A) – A.  This implies, F ⊆ scµ(A) ∩ Ac and hence F ⊆ scµ(A) & F⊆Ac                              (1) 
 
Now F ⊆ Ac implies A⊆ Fc. Since Fc is µ-α-open and A is a µ-α- semi generalized closed set, we have, scµ(A) ⊆ Fc. 
This implies F ⊆ (scµ(A))c                                                                                                                                                 (2) 
 
From   (1)   &   (2),   F   ⊆    scµ(A)   and   F   ⊆    (scµ(A))c.   This   implies   F ⊆ scµ(A) ∩ (scµ(A))c  = Ø. Therefore F = 
Ø. Thus scµ(A) – A contains no non-emptyµ-α -closed set in X. 
 
Theorem 3.24: Let (X, µ) be a GTS. Then for every A ∈ scµ(X) and for every set B ⊆ X, A ⊆ B⊆ scµ(A) implies B ∈ 
scµ(X). 
 
Proof: Let B ⊆ U and U be a µ-α -open set in (X, µ). Then since A ⊆ B and A ⊆ U. By hypothesis B ⊆ scµ(A). 
Therefore scµ(B) ⊆ scµ(scµ(A)) = scµ(A) ⊆ U as A is a µ-α- semi generalized closed set of X. Hence B ∈ scµ(X). 
 
Theorem 3.25: In a GTS X, for each x ∈ X, {x} is a µ-α-closed set or its complement X–{x} is a µ-α- semi generalized 
closed set in (X, µ). 
 
Proof: Suppose that {x} is not a µ-α closed set in (X, µ).  Then X – {x} is not a µ-α -open set in (X, µ). The only µ-α -
open set containing X – {x} is X. Thus X – {x}⊆  X and so scµ(X-{x}) ⊆  scµ(X) = X. Therefore scµ(X-{x}) ⊆ X and 
so X – {x} is a µ-α- semi generalized closed set in (X, µ). 
 
Theorem 3.26: If A is both a µ-α -open set and a µ-α- semi generalized closed set in (X, µ), then A is a µ-semi closed 
set in (X, µ). 
 
Proof: Let A be µ-α -open and µ-α- semi generalized closed set in (X, µ). Then, scµ(A) ⊆ A as A ⊆ A. But always       
A ⊆ scµ(A). Therefore, A = scµ(A). Hence A is a µ-semi closed set in (X, µ). 
 
Theorem 3.27: If A ⊆ Y ⊆ X and A is a µ-α- semi generalized closed set in X then A is a µ-α- semi generalized closed 
set relative to Y. 
 
Proof: Given that A ⊆ Y ⊆ X and A is a µ-α- semi generalized closed set in X. Let A ⊆ Y ∩ U, where U is a µ-α -open 
set in X. Since A is a µ-α- semi generalized closed set,  A ⊆ U implies scµ(A) ⊆ U. This implies Y ∩ sc µ(A) ⊆ Y ∩ U 
and scµ(A) ⊆ Y ∩ U. That is  A is a µ-α- semi generalized closed set relative to Y. 
 
Theorem 3.28: Let A be any µ-α- semi generalized closed set in (X, µ). Then A is a µ-semi closed set in (X, µ) iff 
scµ(A) – A is a µ-α closed set in X. 
 
Proof: Necessity: Let A be a µ-semi closed set in (X, µ). Then scµ(A) = A and so, scµ(A) ∩ Ac =  A ∩ Ac = Ø. 
Therefore, scµ(A) ∩ Ac = Ø and scµ(A) – A = Ø, Therefore scµ(A) – A is a µ-α -closed set in (X,µ). 
 
Sufficiency: Let scµ(A) – A be a µ-α- closed set and A be a µ-α -semi generalized closed set in X. Then by Theorem 
3.23, scµ(A) – A does not contain any non-empty µ-α -closed set and hence scµ(A) – A = Ø. That is scµ(A) =A.  Hence  
A is  a µ-semi  closed set  in (X,µ). 
 
Theorem 3.29: Every subset of X is a µ-α- semi generalized closed set in X iff every µ-α -open set is a µ-semi closed 
set in X. 
 
Proof: Necessity: Let A be µ-α - open in X, and by hypothesis, A is a µ-α- semi generalized closed set in X. Hence by 
Theorem 3.26, A is a µ-semi closed set in X. 
 
Sufficiency: Let A⊆ U where U is a µ-α -open set in X. Then by hypothesis, U is a µ-semi closed set. This implies 
scµ(U) = U and scµ(A) ⊆ scµ(U) = U. Hence scµ(A) ⊆ U. Thus A is a µ-α- semi generalized closed set in X. 
 
Theorem 3.30: Let A and B be µ-α- semi generalized closed set in (X, µ) such that cµ(A) = scµ(A) and cµ(B) = scµ(B) , 
then A ∪ B is a µ-α- semi generalized closed set in X. 
 
Proof: Let A∪B ⊆ U, where U is a µ-α -open set. Then A⊆ U and B ⊆ U. Since A and B are µ-α- semi generalized 
closed sets, scµ(A) ⊆ U and scµ(B) ⊆ U. Now scµ(A ∪B)⊆ cµ(A ∪ B) = cµ(A) ∪ cµ(B) = scµ(A) ∪ scµ(B) ⊆ U ∪ U = U. 
Hence A ∪ B is aµ-β- semi generalized closed set in X. 
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