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ABSTRACT 
Solairaju and Nagarajan [2009] have introduced and defined a new algebraic structure called Q-fuzzy subgroups. 
Sarala and Suganya [2014] presented some properties of fuzzy soft groups. Further Sarala and Suganya [2014] 
introduced on normal fuzzy soft groups. In this paper, we study Q-fuzzy soft ring theory by using fuzzy soft sets and 
studied some of algebraic properties. In this paper, the study of Q- fuzzy soft ring by combining soft set theory. The 
notions of Q-fuzzy soft ring as defined and several related properties and structural characteristics are investigated 
some related properties. Then the definition of Q-fuzzy soft ring and the theorem of homomorphic image and 
homomorphic pre-image are given. 
 
 
INTRODUCTION 
 
The concept of soft sets was introduced by Molodtsov [1999], soft sets theory has been extensively studied by many 
authors. It is well known that the concept of fuzzy sets, introduced by Zadeh [1965], has been extensively applied to 
many scientific fields. Rosenfeld [1971] applied the concept to the theory of groupoids and groups. In Ahmat amd 
kharal [2009] have already introduced the definition of fuzzy soft set and studied some of their basic properties. 
Zhiming Zhang [2012] studied intuitionistic fuzzy soft rings. Onar et al. [2012] discussed fuzzy soft gamma ring. 
Solairaju and Nagarajan [2008] analyzed Q-fuzzy left R-subgroups of near rings with respect to T-norm. 
 
SECTION 2 – DEFINITIONS AND PRELIMINARIES 
 
In this section, we first recall the basic definitions related to fuzzy soft sets which would be used in the sequel. 
 
Definition 2.1: Suppose that 𝑈 is an initial universe set and 𝐸 is a set of parameters, let 𝑃(𝑈) denotes the power set 
of 𝑈. A pair (𝐹,𝐸) is called a soft set over 𝑈 where 𝐹 is a mapping given by 𝐹: 𝐸 →  𝑃(𝑈). Clearly, a soft set is a 
mapping from parameters to 𝑃(𝑈), and it is not a set, but a parameterized family of subsets of the Universe. 
 
Definition 2.2: Let 𝑈 be an initial Universe set and 𝐸 be the set of parameters. Let 𝐴 ⊂ 𝐸. A pair (𝐹,𝐴) is called fuzzy 
soft set over 𝑈 where 𝐹 is a mapping given by 𝐹: 𝐴 → 𝐼𝑈, where 𝐼𝑈 denotes the collection of all fuzzy subsets of 𝑈. 
 
Definition 2.3: Let X be a group and (𝐹,𝐴) be a soft set over 𝑋. Then (𝐹,𝐴) is said to be a soft group over 𝑋 iff 
𝐹(𝑎) < 𝑋, for each 𝑎 ∈ 𝐴. 
 
Definition 2.4: Let 𝑋 be a group and (𝑓,𝐴) be a fuzzy soft set over 𝑋. Then (𝑓,𝐴) is said to be a fuzzy soft group over 
𝑋 iff for each 𝑎 ∈ 𝐴 and 𝑥,𝑦 ∈ 𝑋, 

(i) 𝑓𝑎(𝑥 .𝑦) ≥ 𝑇 (𝑓𝑎(𝑥), 𝑓𝑎(𝑦) 
(ii) 𝑓𝑎(𝑥−1) ≥ 𝑓𝑎(𝑥) 

Thus 𝑓𝑎 is a fuzzy subgroup for each 𝑎 ∈ 𝐴. 
 
Definition 2.5: Let (𝑓,𝐴) be a soft set over a ring R. Then (𝑓,𝐴) is said to be a soft ring over 𝑅 if and only if 𝑓(𝑎) is 
sub ring of 𝑅 for each 𝑎 ∈ 𝐴. 
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Definition 2.6:  Let 𝑅 be a soft ring. A fuzzy set ′𝜇′ in 𝑅 is called fuzzy soft ring in 𝑅 if 

(i) 𝜇 ((𝑥 + 𝑦)) ≥ 𝑇{𝜇(𝑥), 𝜇(𝑦)} 
(ii) 𝜇 (−𝑥) ≥  𝜇 (𝑥) and 
(iii) ((𝑥𝑦)) ≥ 𝑇{𝜇(𝑥), 𝜇(𝑦)}, for all 𝑥,𝑦 ∈ 𝑅. 

 
Definition 2.7:  Let (𝜑,Ψ): 𝑋 → 𝑌 is a fuzzy soft function, if 𝜑 is a homomorphism from 𝑥 → 𝑦 then (𝜑,Ψ) is said to 
be fuzzy soft homomorphism. if 𝜑 is a isomorphism from 𝑋 → 𝑌 and Ψ is 1-1 mapping from 𝐴 on to 𝐵 then (𝜑,Ψ) is 
said to be fuzzy soft isomorphism. 
 
SECTION 3 – SOME PROPERTIES ON Q-FUZZY SOFT RINGS 
 
Definition 3.1:  Let 𝑅 be a soft ring. A fuzzy set 𝜇 in 𝑅 is called Q- fuzzy soft ring in 𝑅 if 

(i) 𝜇((𝑥 + 𝑦) , 𝑞) ≥  𝑇{𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)} 
(ii) 𝜇 (−𝑥, 𝑞) ≥ 𝜇(𝑥, 𝑞) and 
(iii) 𝜇((𝑥𝑦) , 𝑞) ≥  𝑇{𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)}, for all 𝑥,𝑦 ∈ 𝑅. & 𝑞 ∈ 𝑄 

 
Theorem 3.2: Every imaginable Q- fuzzy soft ring 𝜇 is a Q fuzzy soft ring of 𝑅. 
 
Proof: Assume that 𝜇 is imaginable Q- fuzzy soft ring of 𝑅, then we have 

𝜇 ((𝑥 + 𝑦), 𝑞) ≥ 𝑇{𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)} 
𝜇 (−𝑥, 𝑞)  ≥  𝜇 (𝑥, 𝑞) and 
𝜇((𝑥𝑦), 𝑞) ≥ 𝑇{𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)}, for all 𝑥,𝑦 ∈  𝑅. & 𝑞 ∈ 𝑄 

 
Since 𝜇 is imaginable, we have 

𝑚𝑖𝑛{𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)}  = 𝑇{𝑚𝑖𝑛{𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)}, 𝑚𝑖𝑛{𝑥, 𝑞) , 𝜇(𝑦, 𝑞) }} 
 ≤ 𝑇 {𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)} 
 ≤ 𝑚𝑖𝑛 {𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)} 

and so 
𝑇{𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)} = 𝑚𝑖𝑛 { 𝜇(𝑥, 𝑞) , 𝜇(𝑦,𝑞)} 

 
It follows that 

𝜇 ((𝑥 + 𝑦), 𝑞) ≥ 𝑇{𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)} 
                        =  𝑚𝑖𝑛 {𝜇(𝑥, 𝑞) , 𝜇(𝑦, 𝑞)} for all 𝑥,𝑦 ∈ 𝑅, 𝑞 ∈ 𝑄 

 
Hence 𝜇 is a Q-fuzzy soft ring of 𝑅. 
 
Theorem 3.3:  If 𝜇 is Q-fuzzy soft ring 𝑅 and 𝜃 is an endomorphism of 𝑅, then 𝜇[𝜃] is a Q- Fuzzy soft ring of 𝑅 
 
Proof:  For any 𝑥,𝑦 ∈ 𝑅, we have 

(FSR1) 
(i) 𝜇[𝜃]((𝑥 + 𝑦), 𝑞))  = 𝜇(𝜃((𝑥 + 𝑦), 𝑞)) 
                                   = 𝜇(𝜃(𝑥, 𝑞 ),𝜃(𝑦, 𝑞)) 
                                   ≥ 𝑇 {𝜇(𝜃(𝑥, 𝑞)), 𝜇(𝜃(𝑦, 𝑞))} 
                                   ≥ 𝑇 {𝜇[𝜃] (𝑥, 𝑞), 𝜇[𝜃](𝑦, 𝑞)} 
 
(FSR2) 
(ii) 𝜇[𝜃](−𝑥, 𝑞)  =  𝜇 (𝜃(−𝑥, 𝑞)) 
                            ≥ 𝜇 (𝜃(𝑥, 𝑞)) 
                            ≥  𝜇[𝜃](𝑥, 𝑞) 
(FSR3) 
(iii) 𝜇[𝜃]((𝑥𝑦), 𝑞)) = 𝜇(𝜃((𝑥𝑦), 𝑞)) 
                                =  𝜇 ((𝜃𝑥, 𝑞 ), ( 𝑦, 𝑞)) 
                                ≥ 𝑇 {𝜇(𝜃𝑥, 𝑞) , 𝜇 (𝜃𝑦, 𝑞 )} 
                                ≥  𝑇 {𝜇𝜃(𝑥, 𝑞) , 𝜇𝜃(𝑦, 𝑞 )} 
                                ≥ 𝑇 {𝜇 [𝜃] (𝑥, 𝑞), 𝜇[𝜃](𝑦, 𝑞)} 

 
Hence 𝜇 [𝜃] is a Q-fuzzy soft ring of 𝑅. 
 
Theorem 3.5: Let 𝑅 and 𝑅′ be two rings and 𝜃: 𝑅 →  𝑅′ be a soft homomorphism. If 𝜇 and 𝑓𝑎 is a Q-fuzzy soft ring 
of 𝑅 then the pre-image 𝜃−1(𝑓𝑎) Q-fuzzy soft ring of 𝑅. 
 
Proof:  Assume that 𝑓𝑎 is a Q-fuzzy soft ring of 𝑅′. Let 𝑥,𝑦 ∈  𝑅 & 𝑞 ∈ 𝑄 
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(FSR1) 
(i) 𝜇𝜃−1[𝑓𝑎]((𝑥 + 𝑦), 𝑞))  =  𝜇𝑓𝑎(𝜃(𝑥 + 𝑦), 𝑞)) 
                                         = 𝜇𝑓𝑎�(𝜃𝑥, 𝑞 ), (𝜃𝑦, 𝑞)� 
                                         = 𝑇 �𝜇𝑓𝑎 �𝜃(𝑥, 𝑞 ), 𝜇𝑓𝑎(𝜃(𝑦, 𝑞)�� 
                                         ≥ 𝑇 �𝜇𝜃−1[𝑓𝑎](𝑥, 𝑞), 𝜇𝜃−1[𝑓𝑎](𝑦, 𝑞)� 
(FSR2) 
(ii) 𝜇𝜃−1[𝑓𝑎](−𝑥, 𝑞) = 𝜇𝑓𝑎(𝜃(−𝑥, 𝑞)) 
                               ≥ 𝜇𝑓𝑎�𝜃(𝑥, 𝑞)� 
                               ≥ 𝜇𝜃−1[𝑓𝑎](𝑥, 𝑞) 
(FSR3) 
(iii) 𝜇𝜃−1[𝑓𝑎]�(𝑥𝑦), 𝑞� = 𝜇𝑓𝑎(𝜃(𝑥𝑦), 𝑞)  
                                   = 𝜇𝑓𝑎((𝜃𝑥, 𝑞), (𝜃𝑦, 𝑞)) 
                                   ≥ 𝑇 �𝜇𝑓𝑎 �𝜃(𝑥, 𝑞), 𝜇𝑓𝑎�𝜃(𝑦, 𝑞)��� 
                                   ≥ 𝑇�𝜇𝜃−1[𝑓𝑎](𝑥, 𝑞), 𝜇𝜃−1[𝑓𝑎](𝑦, 𝑞)� 

 
Hence 𝜃−1(𝑓𝑎) is a Q-fuzzy soft ring of 𝑅. 
 
SECTION 4 – OTHER PROPERTIES ON Q-FUZZY SOFT RING 
 
Theorem 4.1: Let 𝜃: 𝑅 → 𝑅′ be an epimorphism and 𝑓𝑎 be fuzzy soft set in 𝑅′. If 𝜃[𝑓𝑎]  is q-fuzzy soft ring of 𝑅′ then 
𝑓𝑎 is Q-fuzzy soft ring of 𝑅. 
 
Proof: Let 𝑥,𝑦 ∈ 𝑅, Then there exist 𝑎, 𝑏 ∈ 𝑅 such that 𝜃 (𝑎) = 𝑥,𝜃(𝑏) = 𝑦. It follows that 
(FSR1) 

(i) 𝜇𝜃[𝑓𝑎]((𝑥 + 𝑦), 𝑞))  = 𝜇𝑓𝑎(𝜃(𝑥 + 𝑦), 𝑞))  
                                     = 𝜇𝑓𝑎�(𝜃𝑥, 𝑞), (𝜃𝑦, 𝑞)� 
                                     ≥ 𝑇�𝜇𝑓𝑎�𝜃(𝑥, 𝑞)�, 𝜇𝑓𝑎�𝜃(𝑦, 𝑞)�� 
                                     ≥ 𝑇{𝜇𝜃[𝑓𝑎](𝑥, 𝑞), 𝜇𝜃[𝑓𝑎](𝑦, 𝑞)} 
(FSR2) 
(ii) 𝜇𝜃[𝑓𝑎](−𝑥, 𝑞) = 𝜇[𝑓𝑎]�𝜃(−𝑥, 𝑞)� 
                            ≥ 𝜇𝑓𝑎(𝜃(𝑥, 𝑞)) 
                            ≥ 𝜇𝜃[𝑓𝑎](𝑥, 𝑞) 
 
(iii) 𝜇𝜃[𝑓𝑎]�(𝑥𝑦), 𝑞� = 𝜇𝑓𝑎(𝜃(𝑥𝑦), 𝑞) 
                                = 𝜇𝑓𝑎�(𝜃𝑥, 𝑞), (𝜃𝑦, 𝑞)� 
                                ≥ 𝑇�𝜇𝑓𝑎�𝜃(𝑥, 𝑞)�, 𝜇𝑓𝑎�𝜃(𝑦, 𝑞)�� 
                                ≥ 𝑇{𝜇𝜃[𝑓𝑎](𝑥, 𝑞), 𝜇𝜃[𝑓𝑎](𝑦, 𝑞)} 

 
Hence 𝜃[𝑓𝑎] is a Q-fuzzy soft ring of 𝑅 
 
Theorem 4.2: Onto homomorphic image of a Q-fuzzy soft ring with the sup property is Q-fuzzy soft ring of 𝑅. 
 
Proof: Let 𝑓: 𝑅 → 𝑅′ be an onto homomorphism of Q fuzzy soft rings and let 𝜇 be a sup property of Q-fuzzy soft ring 
of R. 
 
Let 𝑥1,𝑦1 ∈ 𝑅1, and 𝑥0 ∈ 𝑓1(𝑥1), 𝑦0 ∈ 𝑓1(𝑦1)be such that 

𝜇(𝑥0, 𝑞) =
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑥1)   𝜇(ℎ, 𝑞) 
and  

𝜇(𝑦0, 𝑞) =
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑦1)   𝜇(ℎ, 𝑞) 
Respectively, then we can deduce that 
(FSR1) 

(i) 𝜇𝑓�(𝑥1 + 𝑦1), 𝑞� =
𝑠𝑢𝑝

(𝑧, 𝑞) ∈ 𝑓1�(𝑥1 + 𝑦1),𝑞�  𝜇(𝑧, 𝑞) 

                                  ≥ 𝑇{𝜇(𝑥0, 𝑞), 𝜇(𝑦0 , 𝑞)} 

                                  = 𝑇 �
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑥1, 𝑞)  𝜇(ℎ, 𝑞),
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑦1, 𝑞)  𝜇(ℎ, 𝑞)� 

                                  = min {𝜇𝑓(𝑥1, 𝑞), 𝜇𝑓(𝑦1 , 𝑞)} 
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(FSR2) 

(ii) 𝜇𝑓(−𝑥1, 𝑞) =
𝑠𝑢𝑝

(𝑧, 𝑞) ∈ 𝑓1(−𝑥1, 𝑞)  𝜇(𝑧, 𝑞) 

                          ≥ 𝜇(𝑥0,𝑞) 

                          ≥
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑥1, 𝑞)  𝜇(ℎ, 𝑞) 

                          = 𝜇𝑓(𝑥1, 𝑞) 
(FSR3) 

(iii) 𝜇𝑓�(𝑥1𝑦1), 𝑞� =
𝑠𝑢𝑝

(𝑧, 𝑞) ∈ 𝑓1�(𝑥1𝑦1), 𝑞�   𝜇(𝑧, 𝑞) 

                               ≥ 𝑇{𝜇(𝑥0, 𝑞), 𝜇(𝑦0, 𝑞)} 

                               = 𝑇 �
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑥1, 𝑞)  𝜇(ℎ, 𝑞),
𝑠𝑢𝑝

(ℎ, 𝑞) ∈ 𝑓1(𝑦1, 𝑞)  𝜇(ℎ, 𝑞)� 

                               = min {𝜇𝑓(𝑥1, 𝑞), 𝜇𝑓(𝑦1, 𝑞)} 
 
Hence 𝜇𝑓 is a Q-fuzzy soft ring of 𝑅1 
 
Theorem 4.3:  Let 𝑇 be a continuous t-norm and Let 𝑓 be a soft homomorphism on R. If 𝜇 is Q-fuzzy soft of 𝑅, 
then 𝜇𝑓 is Q-fuzzy soft ring of 𝑓(𝑅). 
 
Proof: Let 𝐴1 = 𝑓−1(𝑦1, 𝑞),𝐴2 = 𝑓−1(𝑦2 , 𝑞) and 𝐴12 = 𝑓−1((𝑦1 + 𝑦2), 𝑞) where 𝑦1,𝑦2 ∈ 𝑓(𝑅), 𝑞 ∈ 𝑄 
 
Consider the set 

𝐴1 + 𝐴2 = {𝑥 ∈ 𝑅/(𝑥. 𝑞) = (𝑎1, 𝑞) + (𝑎2, 𝑞)} for some (𝑎1, 𝑞) ∈ 𝐴1 and (𝑎2, 𝑞) ∈ 𝐴2 
 
If (𝑥, 𝑞) ∈ 𝐴1 + 𝐴2 , then (𝑥, 𝑞) = (𝑥1, 𝑞) + (𝑥2, 𝑞) for some (𝑥1, 𝑞) ∈ 𝐴1 and (𝑥2, 𝑞) ∈ 𝐴2 so that we have 

𝑓(𝑥, 𝑞)  =  𝑓(𝑥1, 𝑞) + 𝑓(𝑥2, 𝑞) 
              = 𝑦1 + 𝑦2 

 
Since (𝑥, 𝑞) ∈ 𝑓−1�(𝑦1 , 𝑞) + (𝑦2, 𝑞)� = 𝐴12.  Thus 𝐴1 + 𝐴2 ∈ 𝐴12 
 
It follows that 
(FSR1) 

(i) 𝜇𝑓((𝑦1 + 𝑦2), 𝑞 )  = 𝑠𝑢𝑝{𝜇(𝑥, 𝑞)/(𝑥, 𝑞) ∈ 𝑓−1(𝑦1 + 𝑦2, 𝑞)}  
                                   = 𝑠𝑢𝑝 {𝜇(𝑥, 𝑞) / (𝑥, 𝑞) ∈ 𝐴12} 
                                   ≥ 𝑠𝑢𝑝 {𝜇(𝑥, 𝑞)/ (𝑥, 𝑞) ∈ 𝐴1 + 𝐴2} 
                                   ≥ 𝑠𝑢𝑝 {𝜇((𝑥1, 𝑞) + (𝑥2, 𝑞))/(𝑥1, 𝑞) ∈ 𝐴1 and (𝑥2, 𝑞) ∈ 𝐴2} 
                                   ≥ 𝑠𝑢𝑝 {𝑆(𝜇(𝑥1, 𝑞), 𝜇(𝑥2, 𝑞))/(𝑥1, 𝑞) ∈ 𝐴1 and (𝑥2, 𝑞) ∈ 𝐴2} 

 
Since 𝑇 is continuous. For every 𝜀 > 0 , we see that if 

𝑠𝑢𝑝 {𝜇(𝑥1, 𝑞) / (𝑥1, 𝑞) ∈ 𝐴1} + (𝑥1∗, 𝑞) } ≤ 𝛿  and 
𝑠𝑢𝑝 {𝜇(𝑥2, 𝑞) / (𝑥2, 𝑞) ∈ 𝐴2} + (𝑥2∗, 𝑞) } ≤ 𝛿  
𝑇{𝑠𝑢𝑝{𝜇(𝑥1, 𝑞)/ (𝑥1, 𝑞) ∈ 𝐴1} , 
𝑠𝑢𝑝 { 𝜇(𝑥2, 𝑞) / (𝑥2, 𝑞) ∈ 𝐴2} + 𝑇((𝑥1∗, 𝑞), (𝑥2∗, 𝑞) ≤ 𝜀 

 
Choose (𝑎1, 𝑞) ∈ 𝐴1 and (𝑎2, 𝑞) ∈ 𝐴2 such that 

𝑠𝑢𝑝{𝜇(𝑥1, 𝑞) / (𝑥1, 𝑞) ∈ 𝐴1} + 𝜇(𝑎1, 𝑞) ≤ 𝛿 and 
𝑠𝑢𝑝{𝜇(𝑥2, 𝑞) / (𝑥2, 𝑞) ∈ 𝐴2} + 𝜇(𝑎2, 𝑞) ≤ 𝛿 

 
Then we have 

𝑇{𝑠𝑢𝑝{𝜇(𝑥1, 𝑞)/(𝑥1, 𝑞) ∈ 𝐴1}, 𝑠𝑢𝑝{𝜇(𝑥2, 𝑞)/(𝑥2, 𝑞)  ∈ 𝐴2} + 𝑇(𝜇(𝑎1, 𝑞), 𝜇(𝑚𝑎2, 𝑞)  ≤ 𝜀 
 
Consequently, we have 

𝜇𝑓((𝑦1 + 𝑦2), 𝑞 ) ≥ 𝑠𝑢𝑝{ 𝑇�𝜇(𝑥1, 𝑞), 𝜇(𝑥2, 𝑞)� / (𝑥1, 𝑞) ∈ 𝐴1, (𝑥2, 𝑞) ∈ 𝐴2} 
                             ≥ 𝑇(𝑠𝑢𝑝{𝜇(𝑥1, 𝑞) / (𝑥1, 𝑞) ∈ 𝐴1}, 𝑠𝑢𝑝{𝜇(𝑥2, 𝑞) / (𝑥2, 𝑞) ∈ 𝐴2} 

 
Similarly we can show 𝜇𝑓(−𝑥, 𝑞 ) ≥  𝜇𝑓(𝑥, 𝑞) and 𝜇𝑓(𝑥𝑦, 𝑞) ≥ 𝑇 {(𝜇𝑓(𝑥, 𝑞) , 𝜇𝑓(𝑦, 𝑞)} 
 
Hence 𝜇𝑓 is Q-fuzzy soft ring of 𝑓(𝑅). 
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Theorem 4.4: Let 𝜇 be a Q-fuzzy soft ring 𝑅 and let 𝜇∗ be a Q fuzzy set in 𝑁 defined by 𝜇∗(𝑥, 𝑞) = 𝜇(𝑥, 𝑞) + 1 −
𝜇(0, 𝑞) for all 𝑥 ∈ 𝑁. Then 𝜇∗ is a normal Q-fuzzy subgroup of 𝑅 
 
Proof:  For any 𝑥,𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄 we have 

(FSR1) 
𝜇∗ ((𝑥 + 𝑦), 𝑞)  = 𝜇((𝑥 + 𝑦), 𝑞) + 1 –  𝜇(0, 𝑞) 
                          ≥ 𝑇(𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)) + 1 −  𝜇(0, 𝑞)) 
                          ≥ 𝑇(𝜇(𝑥, 𝑞) + 1 − 𝜇(0, 𝑞), (𝜇(𝑦, 𝑞) + 1 − 𝜇(0, 𝑞)) 
                          = 𝑇 (𝜇∗(𝑚𝑥, 𝑞), 𝜇∗(𝑚𝑦, 𝑞)). 
(FSR2) 
𝜇∗(−𝑥, 𝑞)  = 𝜇(−𝑥, 𝑞)  + 1 –  𝜇(0, 𝑞) 
                  ≥ 𝜇(𝑥, 𝑞)  + 1 −  𝜇(0, 𝑞) 
                  = 𝜇(𝑥, 𝑞) 
(FSR3) 
𝜇∗((𝑥𝑦), 𝑞)  = 𝜇((𝑥𝑦), 𝑞) + 1 –  𝜇(0, 𝑞) 
                    ≥ 𝑇(𝜇(𝑥, 𝑞), 𝜇(𝑦, 𝑞)) + 1 −  𝜇(0, 𝑞)) 
                    ≥ 𝑇(𝜇(𝑥, 𝑞) + 1 −  𝜇(0, 𝑞), (𝜇(𝑦, 𝑞) + 1 − 𝜇(0, 𝑞)) 
                    =  𝑇 (𝜇∗(𝑚𝑥, 𝑞), 𝜇∗(𝑚𝑦, 𝑞)). 

 
CONCLUSION 
 
In this chapter, we investigate the notion of Q-fuzzy soft ring. This work focused on Q-fuzzy soft rings of fuzzy soft 
rings. To extend this work one could study the properties of fuzzy soft sets in other algebraic structure. 
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