A Remark on Invariant Subspaces of Index One in p^t (µ)-Spaces

K. Hedayatian*

Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran

E-mail: hedayati@shirazu.ac.ir

(Received on: 26-06-11; Accepted on: 06-07-11)

ABSTRACT

In this paper, isometric equivalence of the multiplication operator M_z restricted to the invariant subspaces of index 1 in p^t (μ) are investigated. Also, the reducing subspaces of the operators M_z^i , $i \ge 1$ on p^2 (μ) are discussed.

¹2000 Mathematics Subject Classification: 47B38, 47A15.

Key words and Phrases: Isometric equivalence of subspaces, $p^t(\mu)$, index 1, reducing subspaces. This research was in part supported by a grant from Shiraz University Research Council.

1. INTRODUCTION:

Let μ be a finite, nonnegative measure on the closure of the open unit disc D. For $1 \le t < \infty$, let $p^t(\mu)$ denote the closure of analytic polynomials in $L^t(\mu)$. A point $z \in \mathbb{C}$ is called a bounded point evaluation for $p^t(\mu)$ if there is a positive constant c such that $\|p(z)\| \le c \|p\|_{L^t(\mu)}$ for all polynomials p; the collection of all such points is denoted bpe $(p^t(\mu))$. If $z \in \mathbb{C}$ and there are positive constants M and r such that $\|p(w)\| \le M \|p\|_{L^t(\mu)}$, whenever p is a polynomial, and $\|w-z\| < r$, then z is called an analytic bounded point evaluation for $p(\mu)$. Denote the set of all such points by abpe $(p^t(\mu))$. Observe that abpe $(p^t(\mu))$ is an open subset of bpe $(p^t(\mu))$.

We will, assume that support $(\mu)=D$, $\mu(\{\lambda\})=0$ for every $\lambda\in D$, $abpe(p^t(\mu))=D$, and $p^t(\mu)$ is irreducible, by which we mean that $p^t(\mu)$ contains no nontrivial characteristic functions. It is known that $p^t(\mu)$ has the division property at all $\lambda\in D$; that is, if $f\in p^t(\mu)$ and $\lambda\in D$ with $f(\lambda)=0$, then, $f(z)/(z-\lambda)\in p^t(\mu)$. Multiplication by z defines a bounded linear operator on $p(\mu)$ which we will denote by S. An invariant subspace of $p^t(\mu)$ is a closed linear subspace $M\subseteq p^t(\mu)$ such that $SM\subseteq M$. It is also known that $S-\lambda I$ is bounded below for every $\lambda\in D$; so if M is an invariant subspace of $p^t(\mu)$ then $(S-\lambda I)M$ is closed. Furthermore, it follows from the Fredholm theory that dim $M/(S-\lambda I)M$ does not depend on $\lambda\in D$. The index of an invariant subspace of M is the dimension of M/SM. Recall that if $\mu=\frac{1}{\pi}A$ is the normalized Lebesgue measure on D then $p^t(\mu)$ is the Bergman space L^t_a .

^{*}Corresponding author: K. Hedayatian*, *E-mail: hedayati@shirazu.ac.ir

2. ISOMETRICALLY EQUIVALENT INVARIANT SUBSPACES

Recall that an operator U is an isometry if $\|Uf\|\|=\|f\|$ for every f in dom(U). Two invariant subspaces M and N of $p^t(\mu)$ are called isometrically equivalent if there is a linear isometry $U:M\to N$ such that $US|_M=S|_NU$. It follows from Beurling's theorem that all invariant subspaces of the multiplication by z, M_z , on the Hardy space H^2 are isometrically equivalent to one another. If the underlying space is a Hilbert space and U is a linear surjective isometry then M and N are called unitarily equivalent. Richter in [3] has shown that no two invariant subspaces of the Bergman space L^2_a are unitarily equivalent to one another, unless they are equal. Also, he has proved that if M and N are invariant subspaces of M_z on the Dirichlet space D and $N \subseteq M$ then M=N.

Theorem 1: Suppose that M and N are two isometrically equivalent invariant subspaces of $p^t(\mu)$ both of indices 1. If $N \subseteq M$ then M = N.

Proof: Let $U:M\to N$ be a linear isometry such that $US\mid_M=S\mid_N U$ For any $\lambda\in D$, define K^M_λ to be the element in $\ker(S\mid_M-\lambda)^*$ such that $f(\lambda)=\langle f,K^M_\lambda\rangle$ for every $f\in M$. If $Z(M)=\{\lambda\in D:f(\lambda)=0$, for each $f\in M\}$ then by Lemmas 2.1 and 3.1 of [2], for every $\lambda\in D\setminus Z(M)$, $\ker(S\mid_M-\lambda)^*=C.K^M_\lambda$. Similarly, $\ker(S\mid_N-\lambda)^*=C.K^N_\lambda$ for every $\lambda\in D\setminus Z(N)\subseteq D\setminus Z(M)$. Since U^* maps $\ker(S\mid_N-\lambda)^*$ into $\ker(S\mid_M-\lambda)^*$, we see that $U^*K^N_\lambda=\varphi(\lambda)K^M_\lambda$ for every $\lambda\in D\setminus Z(N)$. Thus,

$$\begin{split} (Uf)(\lambda) &= \langle Uf, K_{\lambda}^{N} \rangle = \langle f, U^{*}K_{\lambda}^{N} \rangle = \langle f, \varphi(\lambda)K_{\lambda}^{M} \rangle \\ &= \varphi(\lambda)\langle f, K_{\lambda}^{M} \rangle = \varphi(\lambda)f(\lambda) \end{split}$$

for each $f \in M$ and $\lambda \in D \setminus Z(N)$.

Since $N \neq \{0\}$, the set Z(N) is a countable subset of D with accumulation points only on the unit circle T. Thus, $D \setminus Z(N)$ is always a nonempty open set. Let f be a nonzero function in M. If f has a zero of order n at $z \in D \setminus (N)$ and φf has a zero of order m at z, then $(j-1)n \leq jm$ for every $j \geq 1$, because $f^{j-1}(f \varphi^j) = (f \varphi)^j$ and $f \varphi^j$ is analytic on $D \setminus Z(N)$. Therefore,

$$\frac{j-1}{j} \le \frac{m}{n}$$
 $j = 1, 2, 3, ...,$

Letting $j\to\infty$, we conclude that n \leq m which implies that $\varphi=\frac{\varphi f}{f}$ is analytic on $D\setminus Z(N)$. Feom now on, suppose that f is a fixed nonzero element in M . Since $\parallel U\parallel=1$, we have

$$|(\varphi^{n}(f)(\lambda)| = \langle U^{n}f, K_{\lambda}^{M} \rangle | \leq ||f|| ||K_{\lambda}^{M}||$$

for each $n \ge 1$ and all $\lambda \in D \setminus Z(N)$; thus

$$|\varphi(\lambda)||f(\lambda)|^{1/n} \leq (||f||.||K_{\lambda}^{M}||)^{1/n}.$$

Letting $n\to\infty$, we see that $|\varphi(\lambda)|\le 1$ for all λ such that $f(\lambda)\ne 0$. Thus, $|\varphi(\lambda)|\le 1$ on $D\setminus Z(N)$, and so can be extended to an analytic function on D . Hence, $(Ug)(\lambda)=\varphi(\lambda)g(\lambda)$ for every $g\in M$ and $\lambda\in D$. Put $\Omega=\{z: |\varphi(z)|<1\}$. Then

$$\parallel \varphi^n f \parallel_p = \parallel f \parallel_p;$$

K. Hedayatia*/ A Remark on Invariant subspaces of index one in p^t (μ)-Spaces/ IJMA- 2(9), Sept.-2011,
Page: 1742-1746

that is

$$\int_{\Omega} |\varphi|^{np} |f|^{p} d\mu = \int_{\Omega} |f|^{p} d\mu, n \ge 1.$$

Applying the dominated convergence theorem, we conclude that $\int_{\Omega} |f|^p d\mu = 0$. Consequently, if

$$\Omega_n = \{z \in \Omega : |f(z)| \ge \frac{1}{n}\}, \ n \ge 1$$

then

$$\frac{1}{n^p}\mu(\Omega_n) \le \int_{\Omega_n} |f|^p d\mu \le \int_{\Omega} |f|^p d\mu = 0.$$

Since f is a nonzero analytic function, $\Omega_0=\{z\in\Omega:f(z)=0\}$ is a countable set and so $\mu(\Omega_0)=0$. Hence,

$$\mu(\Omega) \le \mu(\bigcup_{n=0}^{\infty} \Omega_n) \le \sum_{n=0}^{\infty} \mu(\Omega_n) = 0.$$

This shows that $|\varphi(z)|=1$ a.e. $[\mu]$. The continuity of the function $|\psi(z)|=|\varphi(z)|$ on D implies that if $|\psi(z_0)|\neq 1$ for some $|z_0|$ in D then $|\psi(z)|\neq 1$ on a neighborhood of $|z_0|$, which contradicts the fact that $\sup p\mu=\overline{D}$. Therefore, $|\varphi(z)|=1$ for all $|z|\in \mathbb{C}$ and the open mapping theorem implies that $|\varphi(z)|=1$ for all $|z|\in \mathbb{C}$ and the open mapping theorem implies that $|\varphi(z)|=1$ for all |z|=1.

We now give some direct consequences of the above theorem.

Corollary 1: Suppose that $\mu(\partial D)>0$, and M and N are two nonzero isometrically equivalent invariant subspaces of $p^t(\mu)$ such that $N\subseteq M$. Then M=N .

Proof: By Theorem A of [1], M and N have index 1, and so the result follows using Theorem 1. We remark that there are various subclasses of invariant subspaces of $p^t(\mu)$ having index 1 (see, for example, [2]). In particular, it is shown that any invariant subspace of the Bergman space L^p_a , $p \ge 1$, generated by functions in L^{2p}_a , must have index 1. Recall that for a family $\{M_{\gamma}\}_{\gamma \in \Gamma}$ of invariant subspaces of $p^t(\mu)$, $\bigvee_{\gamma \in \Gamma} \mu_{\gamma}$ is the smallest closed subspace that contains each M_{γ} .

Corollary 2: Suppose that M and N are two distinct invariant subspaces of $p^t(\mu)$ of index 1 such that $M \cap N \neq \{0\}$. Then M and N are not isometrically equivalent to $M \vee N$.

Proof: By Corollary 3.12 of [2], $M \vee N$ has index 1. So in light of Theorem 1, we get the result.

 $\begin{array}{l} \textbf{Corollary 3:} \ \text{Let} \ \{M_{\ \gamma}\}_{\gamma \in \Gamma} \ \text{ be a family of invariant subspaces of } \ p^t \ (\mu) \ \text{ of index 1, and } \ M_{\ \gamma_0} \ \text{ be a} \\ \\ \text{nonzero element of this family such that } \ M_{\ \gamma_0} \lor M_{\ \gamma} \ \text{ has index 1 for all } \ \ \gamma \in \Gamma \ . \ \text{If there is } \ \gamma_1 \in \Gamma \ \text{ so that} \\ \\ M_{\ \gamma_1} \ \text{ and } \ \bigvee_{\gamma \in \Gamma} M_{\ \gamma} \ \text{ are isometrically equivalent then } \ M_{\ \gamma_1} = \bigvee_{\gamma \in \Gamma} M_{\ \gamma} \ . \end{array}$

Proof: By Theorem 3.13 (b) of [2], $\bigvee_{\gamma \in \Gamma} M_{\gamma}$ has index 1. So using Theorem 1, the result follows.

K. Hedayatia*/ A Remark on Invariant subspaces of index one in p^t (μ)-Spaces/IJMA- 2(9), Sept.-2011, Page: 1742-1746

 $\begin{array}{l} \textbf{Corollary 4: Suppose that } \{M_{\ \gamma}\}_{\gamma \in \Gamma} \ \text{ is a family of invariant subspaces of } \ p^t(\mu) \ \text{ of index 1. If } \ M_{\ \gamma_0} \\ \text{and } \bigcap_{\gamma \in \Gamma} M_{\ \gamma} \ \text{ are isometrically equivalent then } \bigcap_{\gamma \in \Gamma} M_{\ \gamma} = M_{\ \gamma_0} \ . \end{array}$

Proof: By Theorem 3.16 of [2], $\bigcap_{\gamma \in \Gamma} M_{\gamma}$ is of index 1. Now, apply Theorem 1.

For a subspace N of $p^t(\mu)$ recall that N^\perp is the annihilator of N in $(p^t(\mu))^*$; i.e., $N^\perp = \{x \in (p^t(\mu))^* : x(g) = 0, \forall g \in N \}$. Keeping this in mind, we bring another consequence of the preceding theorem.

Corollary 5: Suppose that the spectrum of the operator S is $\sigma(S)=D$. Let M and N be two isometrically equivalent, invariant subspaces of $p^t(\mu)$ such that $N\subseteq M$ and N has index 1. Moreover, suppose that there is a unimodular complex number λ which is not in $\sigma(S*|_{N^{\perp}})$. Then M=N.

Proof: It follows from Corollary 4.8 of [2] that M has index 1, so again the result follows using Theorem 1.

3. REDUCING SUBSPACES

For $i \ge 1$, we recall that an invariant subspace M of S^i in $p^2(\mu)$ is called a reducing subspace of S^i if S^i $M^\perp \subseteq M^\perp$. Also, the operator S is irreducible if the only reducing subspaces of S are the trivial subspaces.

From now on, we assume that support $(\mu)\subseteq \overline{D}$ and $\langle z^n,z^m\rangle=0$ for $n\neq m$, where $\langle .,.\rangle$ denotes the inner product in $p^2(\mu)$. For example, if v is a probability measure on [0, 1] and μ is the measure defined on \overline{D} by

$$d\mu(re^{i\theta}) = \frac{1}{2\pi}d\theta dv(r),$$

then a routine calculation reveals that $\langle z^n, z^m \rangle = 0, n \neq m$. Moreover, $\|1\|_{L^2(\mu)} = 1$. The next theorem is on the reducing subspaces of S^i , $i \geq 1$.

Theorem 2: Let $w_n = ||z^n||_{L^2(\mu)}^{1/2}, n \ge 1$ and

$$\underline{\lim}_{n} w_{n} = \sup_{n} \frac{w_{n+1}}{w_{n}} = 1.$$

Then S , the operator of multiplication by z on $p^2(\mu)$, is irreducible. Moreover, for i>1 one of the following results holds:

(i) If for every pair of distinct nonnegative integers m, n with $0 \le n \le i-1$ and $0 \le m \le i-1$ there exists some integer k > 0 such that

$$\frac{w_{n+ki}}{w_n} \neq \frac{w_{m+ki}}{w_m}$$

then S^{i} has exactly 2^{i} distinct reducing subspaces.

(ii) If there exist two distinct integers n, m such that $0 \le n \le i-1$ and $0 \le m \le i-1$ and $0 \le m \le i-1$ and

K. Hedayatia*/ A Remark on Invariant subspaces of index one in p^t (μ)-Spaces/ IJMA- 2(9), Sept.-2011, Page: 1742-1746

$$\frac{w_{n+ki}}{w_n} = \frac{w_{m+ki}}{w_m}$$

for all integers k > 0, then $\,S^{\,i}\,\,$ has infinitely many distinct reducing subspaces.

Proof: The elements $e_n = \frac{z^n}{w_n^2}, n \ge 0$ form an orthonormal basis for $p^2(\mu)$. So

 $Se_n=(w_{n+1}/w_n)^2e_{n+1}$; i.e., S is a weighted shift with weight sequence $V_n=(W_{n+1}/W_n)^2$. Thus, Corollary 2 of [4] implies that S is irreducible. Without loss of generality, assume that $w_0=1$. By Proposition7 of [4] the operator S is unitarily equivalent to M_Z on the space of

 H_w^2 , $(w = \{w_0, w_1, w_2, ...\})$ which is the space of all formal power series $\sum_{n=0}^{\infty} \hat{f}(n)z^n$ such that

$$\sum_{n=0}^{\infty} |\widehat{f}(n)|^2 w_n < \infty$$
 . The mentioned proposition also implies that

$$||S|| = \sup_{n \ge 0} v_n = 1,$$

and so $w \, {n \over n} \le w \, {n \over 0} = 1$, for all $\, n \ge 0$. Therefore

$$1 = \underline{\lim}_{n \to \infty} \sqrt[n]{w_n^2} \le \overline{\lim}_{n \to \infty} \sqrt[n]{w_n^2} \le 1$$

which implies that $\sqrt[n]{w_n}$ converges to 1 as $n \to +\infty$. Now, if $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in H_w^2$, then $\overline{\lim} \sqrt[n]{|\hat{f}(n)|^2} = \overline{\lim} \sqrt[n]{|\hat{f}(n)|^2 w_n} \le 1.$

Consequently, $\overline{\lim} \sqrt[n]{|\hat{f}(n)|} \le 1$. Hence, f(z) is analytic on D. Now, the result follows from Theorems B and C of [5].

Remark: It is easily seen that if $d\mu(re^{i\theta}) = \frac{1}{2\pi}d\theta dm(r)$, where m is the Lebesgue measure on [0, 1],

then condition (i) of Theorem 2 holds. Hence, for every i > 1, the operators S^i has exactly 2^i distinct reducing subspaces.

REFERENCES

- [1] Aleman A., Richter S., Sundberg C., Nontangential limits in $p^t(\mu)$ spaces and the index of invariant subspaces, Annals of Mathematics, 169 (2009), 449-490.
- [2] Richter S., Invariant subspaces in Banach spaces of analytic functions, Trans, Amer. Math. Soc. 304 (1987), 585-615.
- [3] Richter S., Unitary equivalence of invariant subspaces of Bergman and Dirichlet spaces, Pacific J. Math, 133 (1988), 151-156.
- [4] Shields A. L., Weighted shift operators and analytic function theory, Math. Surveys, Vol. 13, Amer. Math. Soc., Providence, 1974.
- [5] Stessin M., Zhu K., Reducing subspaces of weighted shift operators, Proc. Amer. Math. Soc. 130 (2002), 2631-2639.
