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ABSTRACT 
A graph G is (r, 2, (r-n)(r - 1)) - regular, for any r ≥ n if each vertex in the graph G is distance one from r vertices  and 
each vertex in the graph G is distance two from exactly (r- n) (r -1) number of vertices. In this paper, we have suggests 
a method  to construct (r, 2, (r-n)(r-1)) - regular graphs, for all r ≥ n ≥ 2. 
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1. INTRODUCTION  
 
In this paper, we consider only finite, simple, connected graphs. Notations and terminology that we do not define here 
can be found in Harary [6} and J.A. Bondy and U.S.R.Murty [4].  We denote the graph G by (V(G), E(G)). The degree 
of a vertex v is the number of edges incident at v and we denote it by d(v). A graph G is regular if all its vertices have 
the same degree. The set of all vertices at a distance one from r is denoted by N (v). 
 
In  a connected graph G, the distance  between two vertices u and v is the length of a shortest (u, v) path in G and is 
denoted by d (u, v). Consequently, we define the degree of a vertex v is the number of vertices at a distance 1 from v. 
This observation suggests a generalization of degree. That is, d d (v) is defined as the number of vertices at a distance d 
from v. Hence d1(v) = d(v) and N d (v) denote the set of all vertices that are at a distance d away from v in a graph G. 
Hence N1(v) = N (v). 
 
A graph is said to be distance d-regular [5] if every vertex of G has the same number of vertices at a distance d from it. 
A graph G is called (d, k)-regular if every vertex of G has k number of vertices at a distance d from it. The (1, k)-
regular graphs are nothing but  our usual k- regular graphs. 
 
A graph G is (2, k)-regular if d2(v)=k, for all v in G. The concept of the semiregular graph was introduced and studied 
by Alison Northup [2]. A graph G is said to be k-semiregular graph if each vertex of G is at a distance two away from 
exactly k vertices of G. We observe that (2, k)-regular graphs are k-semiregular graphs. Note that a (2, k)-regular graph 
may be regular or non-regular. Among the two (2, k)-regular graphs given in figure 1, (i) is regular whereas (ii) is non-
regular. 

 

                        
(i)                                             (ii) 

Figure-1 
 
In this paper, we call r- regular graphs which are (2, k)-regular by (r, 2, k) - regular graph. 
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2. (r, 2, k) - regular graph 
 
Definition 2.1: A graph G is called a (r, 2, k)-regular if each vertex in the graph G is at a distance one from exactly r 
vertices and at a distance two from exactly k vertices. That is, d(v) = r and d2(v) = k, for all v in G. 
 
Example 2.2: (r, 2, k ) - regular graphs.  

                                              
   (3,2,(3-3)(3-1)) -regular     (3,2,(3-2)(3-1)) -regular            (3,2,(3-1)(3-1)) -regular                  (3,2,3(3-1) -regular 

Figure-2 
 
The following facts are known from literature. 
 
Fact 1 [8] For any r > 1, a graph G is (r, 2, r(r-1)-regular if G is r-regular with girth at least five. 
 
Fact 2 [9] For any odd r ≥ 3, there is no (r, 2, 1)-regular graph. 
 
Fact 3 [9] Any (r, 2, k)-regular graph has at least k+r+1 vertices. 
 
Fact 4 [9] If r and k are odd, then (r, 2, k)-regular graph has at least k+r+2 vertices. 
 
Fact 5 [9] For any r ≥ 2 and k ≥ 1, G is a (r, 2, k)-regular graph of order r+k+1 if and only if diam (G) = 2. 
 
Fact 6 [9] For  any  r > 1, if G is a (r, 2, (r-1)(r-1))-regular graph, then G has girth four. 
 
Fact 7 [10] For any r ≥ 1, there exist a (r, 2, r-1)-regular graph of order 2r.  
 
Fact 8 [10] For any r ≥ 1, there exist a (r, 2, 2 (r-1))- regular graph of order 4r-2. 
 
Fact 9 [11] For any r  > 2, there exist a (r, 2, r+n) - regular bipartite graph of order 2 (r + n + 1), for (0 ≤  n ≤  r). 
 
Fact 11 [8] For any n ≥ 5, (n ≠ 6,8) and any r > 1, tthere exists a  (r, 2, r (r -1))-regular graph on n x 2r-2 vertices with 
girth five. 
 
Fact 12 [9] For any r ≥ 2, there is a (r, 2, (r-1)(r-1))-regular graph on 4 x 2r-2 vertices.  
 
Fact 13 [10] For any r ≥ 2 , there is a (r, 2, (r-2)(r-1)-regular graph on 3 x 2r-2  vertices. 
 
Fact 14 [11] For any r ≥ 3, there is a (r, 2, (r-3)(r-1))-regular graph on 4x2r-3 vertices.  
 
Fact 10 [7] If G is (r, 2, k)-regular graph, then 0 ≤ k ≤ r(r-1) 

Is it possible  to construct the (r, 2, k )-regular graphs for all values of  k from 0 to r(r-1), for any r? . With this 
motivation, we have constructed the (r, 2, k) - regular graphs,for k = r(r-1)[8], k = (r-1)(r-1)[9], k = (r-2)(r-1)[10] and k 
= (r-3)(r-1)[11].                                          
 
The constructions given in [10] and [11], motivate us to construct (r, 2, (r-n) (r-1)-regular graph, for any r ≥ n.  
     
3. (r, 2, (r– n) (r– 1)) - regular graphs 
 
In this section, we have given a method to construct a (r, 2, (r-n) (r-1))-regular graph with (n+1) x 2r-n vertices, for any   
r ≥ n ≥ 2. 
 
Definition 3.1: A graph G is called (r, 2, (r-n)(r-1))-regular graph, for r ≥ n if each vertex in the graph G is at a distance 
one from r vertices and each vertex in the graph G is at a distance two from (r-n)(r-1) vertices. 
 
Theorem 3.2: Any r ≥ n ≥ 2, there exists a (r, 2, (r – n) (r - 1))- regular on (n+1) x 2 r- n  vertices. 
 
Proof: If r = n, Complete graph on (n+1) vertices is the required graph. 
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Let us prove this result by induction on r. 
 
Let G be a graph with vertex set V(G) ={xi

(1), xi
(2)/ (0 ≤ i ≤ n)} and edge set 

E (G) = { xi
(1) xi

(2) / (0 ≤ i ≤ n)} 


1

0

−

=

n

i
{ xi

(1) xi+j
(1) / (1 ≤ j ≤ n-i) }



1

0

−

=

n

i
{ xi

(2) xi+j
(2) / (1 ≤ j ≤ n-i)}.  

For (0 ≤  i ≤  n), (Subscripts are taken modulo n).  
N2 (xi

(1)) = {xi+1
(2), xi+2

(2) , xi+3
(2),…… xi+n

(2)} and d 2 (xi
(1)) = n. 

N2 (xi
(2)) = {xi+1

(1), xi+2
(1) , xi+3

(1) ,……xi+n
 (2)} and d2 (xi

(1)) = n. 
G is ((n+1), 2, ((n+1)-(n)) (n+1-1)) - regular graph on (n+1) x 2n+1-n = 2(n+1) vertices. 
 
Step-1: Take another copy of G as G′ . Let V( G′ ) ={xi

(3), xi
(4) /( 0 ≤ i ≤ n)} and E ( G′ ) = {xi

(3) xi
(4) / (0 ≤ i ≤ n)}  



1

0

−

=

n

i
{xi

(4) xi+j
(4) / (1 ≤ j ≤ n-i) }



1

0

−

=

n

i
{xi

(3) xi+j
(3)/ (1≤ i ≤ n-i)}  

 
The desired graph G1 has the vertex set V(G1)= V(G) U V( G′ ). edge set E(G1)= E (G)UE ( G′ )U{ xi

(1) xi+1
(4), xi

(2) xi
(3)/ 

(0 ≤i ≤ n)} (Subscripts are taken modulo (n+1).Now the resulting graph G 1 is ( n+2) regular graph having (n+1) x     
2n+2-(n)= 4(n+1) vertices. 
 
Consider the edges xi

(1) xi+1
(4)  for (0 ≤ i ≤ n). 

 
For (0 ≤ i ≤ n),  
N( xi

(1)) =  {xi+1
(1), xi+2

(1), xi+3
(1),…… xi+n

 (1), xi
(2)} in G  and │N(xi

(1))│= n+1in G. 

N(N(xi
(1))) = {xi+2

(4), xi+3
(4), xi

 (4),….. xi+n
 (4), xi

(3)} in  G′ and )N(N(x 1
i = n+1 in G′ .  

N(xi+1
(4)) =  {xi

(4), xi+2
(4), xi+3

(4) ,…… xi+n
 (4), xi+1

(3)} in G′ and │N(xi+1
(4)) │= n+1 in G′ .  

N(N(xi+1
(4))) = {xi+1

(1), xi+2
(1), xi+3

(1),… xi+n
 (1),  xi+1

(2)} in G and )N(N(x 4
1i +  = n+1 in G. 

 
d2 of each vertex in C(1), where C(1) is the cycle induced by the vertices{xi

(1)/0≤i≤n} 
N2(xi

(1)) in G1 = N2(xi
(1)) in G U N(xi+1

(4)) in G′U N(N(xi
(1)) in G′  

= N2(xi
(1)) in G U {xi

(4), xi+2
(4), xi+3

(4),…xi+n
 (4) ,xi+1

(3)} in G′U{xi+2
(4), xi+3

(4) ,xi
 (4),….. xi+n

 (4), xi
(3)} in G′ . 

=N2(xi
(1)) in G U {xi+2

(4), xi+3
(4), xi

 (4),….xi+n
 (4),xi+1

(3) ,xi
(3)} in G′  

 
Here xi+2

(4), xi+3
(4) ,xi

 (4),….. ,xi+n
 (4) are the common elements in N(xi+1

(4)) in G′ and N(N(xi
(1)) in G′ . 

 d2(xi
(1)) in G1  = d2(xi

(1)) in G + (d(xi+1
(4)) in G′+ )N(N(x 1

i in G′ ) - n. 
                       = n+(n+1+n+1)-(n)=2(n+1) = [(n+2)-(n)[ (n+2-1), (0 ≤ i ≤ n). 
 
d 2- of each vertex in C(4) , where C(4) is the cycle induced by the vertices {xi

(4)/0≤i≤n} 
N2(xi+1

(4)) in G1 = N2(xi+1
(4)) in G′U N(xi

(1))) in G U N(N(xi+1
(4))) in G 

                         =N2(xi+1
(4)) in G′U{xi+1

(1), xi+2
(1), xi+3

(1),… xi+n
 (1), xi

(2)}in GU{ xi+1
(1), xi+2

(1), xi+3
(1),……xi+n

 (1),  xi+1
(2)}  

                            in G. 
                         = N2(xi+1

(4)) in G′U {xi+1
(1), xi+2

(1), xi+3
(1), ……… xi+n

 (1), xi
(2), xi+1

(2)} in G. 
 
Here, xi+2

(1), xi+1
(1), xi+3

(1), …… xi+n
 (1) are the common element in N(xi

(1))) in G and N(N(xi+1
(4))) in G. 

d2(xi+1
(4)) in G1 = (d2(xi+1

(4)) in G′+(d(xi
(1)) in G + )N(N(x 4

1i + in G) - n                 
                         = n + (n+1+n+1) - (n) = 2(n+1) = [(n+2) - (n)[ (n + 2 - 1), (0 ≤ i ≤ n). 
 
Next consider  the edges xi

(2) xi
(3), for (0 ≤ i ≤ n). 

For (0 ≤ i ≤ n). 
N(xi

(2)) = {xi+1
(2), xi+2

(2), xi+3
(2), ….. xi+n

(2), xi
(1)} in G and │N(xi

(2)) │=n+1 in G. 

N(N(xi
(2))) = {xi+1

(3), xi+2
(3), xi+3

(3) ,… xi+n
(3) , xi+1

(4)} in G′ and )N(N(x 2
i = n+1 in G′ .  

N(xi
(3)) = {xi+1

(3), xi+2
(3) , xi+3

(3) ,…… xi+n
(3), xi

(4)} in G′ and │N(xi
(3)) │= n+1 in G′ .  

N(N(xi
(3))) = {xi+1

(2), xi+2
(2), xi+3

 (2),… xi+n
(2), xi+3

 (1)} in G and ))N(N(x 3
i = n+1 in G . 
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d 2- of each vertex in C(2), whereC(2) is the cycle induced by the vertices{xi

(2)/0≤i≤n} 
N2(xi

(2)) in G1 = N2(xi
(2)) in G U N(xi

 (3)) in G′U N(N(xi
(2))in G′ . 

=N2(xi
(2)) in G U{ xi+1

(3), xi+2
(3), xi+3

(3) ,…. xi+n
(3),xi

(4) } in G′U {xi+1
(3), xi+2

(3), xi+3
(3) ,… xi+n

(3).xi+1
(4)} in G′ . 

=N2(xi
(2)) in G U { xi+1

(3), xi+2
(3), xi+3

(3) ,… xi+n
(3), xi

(4), xi+1
(4)} in G′ . 

 
Here, xi+1

(3), xi+2
(3), xi+3

(3) … xi+n
(3) are the common elements in N(xi

 (3)) in G′ and N(N(xi
(2))in G′  

d 2(xi
(2)) in G1= d2(xi

(2)) in G + (d(xi
 (3)) in G′+  )N(N(x 2

i .in G′ ) - n. 
                     = n+(n+1+n+1)-(n)=2(n+1)= [(n+2)-(n)[ (n+2-1), (0 ≤ i ≤ n). 
 
d2 of each vertex in C(3), where C(3) is the cycle induced by the vertices {xi

(3)/0≤i≤n}  
N2(xi

(3)) in G1 = N2(xi
(3)) in G′U N(xi

 (2)) in GU N(N(xi
(3)) in G 

                      = N2(xi
(3)) in G′U {xi+1

(2), xi+2
(2), xi+3

(2), …xi+n
(2),  xi

(1)} in G U{xi+1
(2), xi+2

(2), xi+3
(2), … xi+n

(2),  xi+3
 (1)} in G. 

                     = N2(xi
(3)) in G′U{xi+1

(2), xi+2
(2), xi+3

(2), … xi+n
(2),  xi

(4),  xi+1
(4)} in G′ . 

 
Here, xi+1

(2), xi+2
(2), xi+3

(2), … xi+n
(2)  are the common elements in N(xi

 (2)) in G and N(N(xi
(3)) in G. 

d2(xi
(3)) in G1= d2(xi

(3)) in G′+ (d(xi
 (2)) in G + ))N(N(x 3

i in G) - n. 
                     = n+(n+1+n+1)-(n)=2(n+1)= [(n+2)-(n)[ (n+2-1), (0 ≤ i ≤ n). 
 
In G1,, for (1 ≤ t ≤ 4), d2(xi

(t) ) =[(n+2)-(n)] (n+2-1), (0 ≤ i ≤ n). 
G1 is ((n+2),  2, ((n+2)-(n)) (n+2-1) )-regular having ( n+1) x 2n+2-(n) = 4(n+1) vertices with the vertex set  
V(G1) ={ xi

(t)/(1≤ t ≤ 2n+2),(0 ≤ i ≤ n)}and E(G1) =  

E (G)U E ( G′ )U{ xi
(1) xi+1

(4), xi
(2) xi

(3)/ ( 0 ≤ i ≤ n)}.Therefore, the result is true for r = n+2. 
 

Step-2: Take another copy of G1 as 1G′ with the vertex set V( 1G′ )={xi
(t)/( 25-3+1≤t ≤25-2), (0 ≤ i ≤ n)}and each x i

(t) ),       
( 25-3+1≤t ≤25-3), corresponds to xi

(t), (1 ≤ t  ≤ 25-3), for (0 ≤ i ≤ n).  
 

The desired graph G2 has the vertex set V(G2) = V(G1)U V( 1G′ ) and edge set  

E(G2) = E(G1)U E( 1G′ )U{xi
(1) xi+1

(8),xi
(2) xi

(7), xi
(3) xi+1

(6),xi
(4) xi

(5)/ (0 ≤ i ≤ n)}(Subscripts are taken modulo (n+1). 
 
Now the resulting graph G2 is (n+3) regular graph having (n+1)  x 2n+3-n = 8 (n+1) vertices. 
 
consider the edges xi

(1) xi+1
(8), for (0 ≤ i  ≤ n). 

 
For (0 ≤ i ≤ n). 
N(xi

(1)) = {xi+1
(1), xi+2

(1), xi+3
(1) ,…..xi+n

(1), xi
(2) , xi+1

(4) }in G1 and │N(xi
(1)) │= n+2 in G1. 

N(N(xi
(1))) = { xi

 (8) 
,xi+2

(8), xi+3
(8)),… xi+n

(8), xi
(7) ,xi+1

(5) } in 1G′ and 
1

iN(N(x )) = n+2, in 1G′ .  

N(xi+1
(8)) = {xi

 (8), xi+2
(8) , xi+3

(8) ,… xi+n
(8), xi+1

(7) , xi
 (5) } in 1G′ and │N(xi+1

(8)) │ = n+2 in 1G′ . 

N(N(xi+1
(8))) = {xi+1

(1), xi+2
(1), xi+3

(1), …xi+n
(8) , xi+1

(2) , xi
(4)} in G1 and ))N(N(x 8

1i+ = n+2 in G1.. 

 
d2- of each vertex in C(1), where C(!) is the cycle induced by the vertices {xi

(1)/ 0 ≤ i ≤ n} 

  N2(xi
(1)) in G2 = N2(xi

(1)) in G1 U N(xi+1
(8)) in 1G′U N(N(xi

(1)) in 1G′  

                        =N2(xi
(1)) in G1U {xi

 (8), xi+2
(8), xi+3

(8),… xi+n
(8), xi

(7) ,xi+1
(5)} in 1G′ U { xi

(8),xi+2
(8), xi+3

(8),…… xi+n
(8), xi

(7)   

                           , xi+1
(5) } in 1G′  

                        =N2(xi
(1)) in G1 U {xi

 (8), xi+2
(8), xi+3

(8),…… xi+n
(8), xi

(7), xi+1
(5), xi

 (5), xi+1
(7)} in 1G′ .      

                        

Here  xi
 (8), xi+2

(8) , xi+3
(8) ,… xi+n

(8) are the common elements in N(xi+1
(8)) in 1G′ and N(N(xi

(1))in 1G′ . 

d2(xi
(1)) in G1= d2(xi

(1)) in G1 + (d(xi+1
(8)) in 1G′+ ))N(N(x 1

i in 1G′ ) - n. 
                     = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 
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d2- of each vertex in C(8),where C(8) is the cycle induced by the vertices{xi

(8)/0≤i≤n} 

N2(xi+1
(8)) in G2 = N2(xi+1

(8)) in 1G′U N(xi
 (1)) in G1 U N(N(xi+1

(8))in G1. 

                         =N2(xi+1
(8)) in 1G′U {xi+1

(1), xi+2
(1), xi+3

(1) , …. xi+n
(1) ,xi

(2), xi+1
(4) }in G1 U{xi+1

(1), xi+2
(1), xi+3

(1),…. xi+n
(1) 

,xi+1
(2) , xi

(4)} in G1 . 

                 = N2(xi+1
(8)) in 1G′U { xi+1

(1), xi+2
(1), xi+3

(1) , …. xi+n
(1),xi

 (2) , xi+1
 (4) xi+1

(2), xi
 (4) } in G1 

 
Here xi+1

(1), xi+2
(1), xi+3

(1) , …. xi+n
(1) are the common elements in N(xi

 (1)) in G1and N(N(xi+1
(8))in G1. 

d2(xi+1
(8)) in G2 = (d2(xi+1

(8)) in 1G′+ (d(xi
(1)) in G1 + 

8
i 1N(N(x ))+ in G1)-n 

d2(xi+1
(8)) in G2 = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 

 
Next consider the edge xi

(2) xi
(7) , for (0 ≤i ≤ n). 

For (0 ≤ i ≤ n). 
N(xi

(2)) = {xi+1
(2), xi+2

(2), xi+3
(2,… xi+n

(2) ,xi
(1),xi

(3)}in G1and │N(xi
(2)) │ =n+2 in G1. 

N(N(xi
(2))) = {xi+1

(7),xi+2
(7), xi+3

(7),… xi+n
(7) ,xi+1

(8),xi+1
(6)}in 1G′  and ))N(N(x 2

i = n+2  in 1G′ . 

N(xi
(7)) = {xi+1

(7),) xi+2
(7) , xi+3

(7),… xi+n
(7) ,xi

(8) ,xi
(6), } in  1G′ and │N(xi

(7)) │= n+2  in 1G′ . 
N(N(xi

(7))) = {xi+1
(2),xi+2

(2), xi+3
(2),… xi+n

(7) ,xi+3
(1),xi+3

(3)} in G1 and 
7

iN(N(x )) = n+2  in G1. 

 
d2- of each vertex in C(2),where C(2) is the cycle induced by the vertices{xi

(2)/ 0≤i≤n} 

N2(xi
(2)) in G2 = N2(xi

(2)) in G1 U N(xi
 (7)) in 1G′U N(N(xi

(2))in 1G′  

                       = N2(xi
(2)) in G1 U {xi+1

(7),) xi+2
(7), xi+3

(7),… xi+n
(7) ,xi

(8) ,xi
(6)} in 1G′U{xi+1

(7),xi+2
(7), xi+3

(7),… xi+n
(7)   

                          ,xi+1
(8),xi+1

(6)}in 1G′ . 
                      = N2(xi

(2)) in G1 U {xi+1
(7),) xi+2

(7), xi+3
(7),… xi+n

(7), xi
 (6), xi

 (8), xi+1
(8), xi+1

 (6)} in 1G′ .                        
 

Here , xi+1
(7),) xi+2

(7), xi+3
(7),… ,xi+n

(7) are the common elements in N(xi
 (7)) in 1G′ and N(N(xi

(2)) in 1G′  

d2(xi
(2)) in G2= d2(xi

(2)) in G1 + (d(xi
 (7)) in 1G′+ 

2
iN(N(x )) in 1G′ ) - n. 

                     = 2(n+1)+(n+2+n+2)-(n)=3(n+2) = [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 
 
d2- of each vertex in C(7) , where C(7) is the cycle induced by the vertices{xi

(7)/ 0≤i≤n} 

N2(xi
 (7)) in G2 = N2(xi

 (7)) in 1G′U N(xi
 (2)) in G1 U N(N(xi

 (7)) in G1. 

                        = N2(xi
 (7)) in 1G′U {xi+1

(2), xi+2
(2), xi+3

(2),… xi+n
(2),xi

(1),xi
(3)}in G1U xi+1

(2),xi+2
(2),xi+3

(2),…xi+n
(2),xi+3

(1),xi+3
(3)}   

                            in G1.                                                                                                                                                                                                                                                                                                

                        = N2(xi
 (7)) in 1G′U {xi+1

(2),xi+2
(2), xi+3

(2),… xi+n
(2), xi

 (3), xi
 (1), xi+3

 (3),xi+3
(1)} in G1. 

Here xi+1
(2),xi+2

(2), xi+3
(2),… xi+n

(2) are the common elements in N(xi
 (2)) in G1 and N(N(xi

 (7)) in G1. 

d 2(xi
 (7)) in G2 = (d 2 (xi

 (7)) in 1G′+ (d(xi
(2)) in G1 + 

7
iN(N(x )) in G1)-n 

d2(xi
 (7)) in G2 = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 

 
Next consider the edge xi

(3) xi+1
(6) , for (0 ≤ i ≤ n). 

N(xi
(3)) = { xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(3), xi

(4), xi
(2) }in G1 and│ N(xi

(3)) │= n+2 in G1. 

N(N(xi
(3))) = {xi

 (6),xi+2
(6) xi+3

(6),… xi+n
(6).,xi

(5), xi
(7) } in 1G′ and ))N(N(x 3

i = n+2  in 1G′ .                  

N(xi+1
(6)) = {xi

(6), xi+2
(6) , xi+3

(6),… xi+n
(6) ,xi+1

(5), xi+1
(7) } in 1G′ and │N(xi+1

(6)) │= n+2  in 1G′ . 

N(N(xi+1
(6)))= {xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(30 ,xi+1

(4), xi+1
(2)} in G1 and ))N(N(x 6

1i+ = n+2  in G1. 
 
d2- of each vertex in C(3), where C(3) is cycle induced by the vertices {xi

(3) / 0≤i≤n} 
 N2(xi

(3)) in G2 = N2(xi
(3)) in G1 U N(xi+1

(6)) in 1G′U N(N(xi
(3)) in 1G′  

     =N2(xi
(3)) in G1 U{xi

(6), xi+2
(6), xi+3

(6),… xi+n
(6),xi+1

(5), xi+1
(7)} in 1G′U { xi+2

(6) xi+3
(6), xi

 (6), …. xi+n
(6),xi

(5) ,xi
(7)} in 1G′  

                      =N2(xi
(3)) in G1 U{xi

(6), xi+2
(6), xi+3

(6),… xi+n
(6), xi+1

(5), xi+1
(7), xi

(5), xi
(7)} in 1G′ .                                                  
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Here  xi

(6), xi+2
(6) , xi+3

(6) ,… xi+n
(6) are the common elements  in N(xi+1

(8)) in 1G′ and N(N(xi
(1)) in 1G′ . 

d2(xi 
(3)) in G1= d2(xi

(3)) in G1 + (d(xi+1
(6)) in 1G′+ 

3
iN(N(x )) in 1G′ ) - n. 

                      = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 
 
d2- of each vertex in C(6), where C(6) is the cycle induced by the vertices {xi

(6)/ 0 ≤ i ≤ n} 

N2(xi+1
(6)) in G2 = N2(xi+1

(6)) in 1G′U N(xi
 (3)) in G1 U N(N(xi+1

(6)) in G1. 

                         =N2(xi+1
(6)) in 1G′U {xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(3), xi

(4), xi
(2)}in G1 U {xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(3), xi+1

(4)   
                          ,xi+1

(2)} in G1 . 

                         = N2(xi+1
(6)) in 1G′U{ xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(3), xi

(4), xi
(2)), xi+1

(4) ,xi+1
(2)} in G1                         

 
Here, xi+1

(3), xi+2
(3), xi+3

(3),… xi+n
(3) are the common elements in N(xi

 (1)) in G1 and N(N(xi+1
(8))in G1. 

d2(xi+1
(6)) in G2 = (d2(xi+1

(6)) in 1G′ + (d(xi
(3)) in G1 + 

6
i 1N(N(x ))+ in G1)-n. 

d2(xi+1
(6)) in G2 = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 

 
Next consider the edge xi

(4)  xi
(5) for (0 ≤ i ≤ n). 

For (0 ≤i ≤ n).   
N(xi

(4)) = { xi+1
(4), xi+2

(4), xi+3
(4),… xi+n

(4),xi
(3), xi+3

 (1)}  in G1  and │N (xi
(4)) │= n+2  in G1. 

N(N(xi
(4))) = {xi+1

(5), xi+2
(5), xi+3

(5)… xi+n
(5),xi+1

(6),xi
(8)} in 1G′ and ))N(N(x 4

i = n+2  in 1G′ . 

N(xi
(5)) = {xi+1

(5), xi+2
(5) , xi+3

(5),… xi+n
(5), xi

(6), xi+1
 (8)} in 1G′ and │N (xi

(5)) │= n+2  in 1G′ . 

N(N(xi
(5))) = {xi+1

(4), xi+2
(4), xi+3

(4),… xi+n
(4),xi+2

(3), xi
 (1)} in G1  and ))N(N(x 5

i = n+2  in G1. 
 
d 2- of each vertex in C(4), where C(4) is the cycle induced by the vertices {xi

(4)/ 0 ≤ i ≤ n} 

N2(xi
(4)) in G2 = N2(xi

(4)) in G1 U N(xi
 (5)) in 1G′U N(N(xi

(4))in 1G′  

                       =N2(xi
(4)) in G1U{xi+1

(5), xi+2
(5), xi+3

(5), …xi+n
(5),xi

(6), xi+1
 (8)} in 1G′ .U{xi+1

(5), xi+2
(5), xi+3

(5) …… xi+n
(5) ,xi+1

(6)  

                         ,xi
(8)} in 1G′  

                      =N2(xi
(2)) in G1 U{xi+1

(5), xi+2
(5), xi+3

(5), …xi+n
(5), xi

(6),  xi+1
 (8), xi+1

(6), xi
(8)} in 1G′ .                                                                                    

 
Here xi+1

(5), xi+2
(5) , xi+3

(5) , ….xi+n
(5) are the common elements in N(xi

 (5)) in 1G′ and N(N(xi
(4)) in 1G′  

d2(xi
(4)) in G2 = d2(xi

(4)) in G1 + (d(xi
 (5)) in 1G′+ 

4
iN(N(x )) in 1G′ ) - n. 

                      = 2(n+1)+(n+2+n+2)-(n)=3(n+2)= [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 
 
d2- of each vertex in C(5),  where C(5) is the cycle induced by the vertices {xi

(5)/ 0 ≤ i ≤ n} 

N2(xi
 (5)) in G2 = N2(xi

 (5)) in 1G′U N(xi
 (4)) in G1 U N(N(xi

 (5)) in G1. 

                       = N2(xi
 (5)) in 1G′U{xi+1

(4), xi+2
(4), xi+3

(4),… xi+n
4 ,xi

(3) , xi+3
 (1) }in G1U { xi+1

(4), xi+2
(4), xi+3

4 ,… xi+n
4,xi+2

(3)  
                          , xi

 (1)} in G1.                   

                       = N2(xi
 (5)) in 1G′U { xi+1

(4), xi+2
(4), xi+3

(4),… xi+n
4 ,xi

(3), xi+3
 (1), xi+2

(3), xi
 (1)} in G1. 

 
Here xi+1

(4), xi+2
(4), xi+3

4 ,….. xi+n
4 are the common elements in N(xi

 (4)) in G1 and N(N(xi
 (5)) in G1. 

d 2(xi
 (5)) in G2 = (d2(xi

 (5)) in 1G′  + (d(xi
(4)) in G1 + ))N(N(x 5

i in G1) - n 
d2(xi

 (5)) in G2 =2(n+1)+(n+2+n+2)-(n) = 3(n+2) = [(n+3)-(n)[ (n+3-1), (0 ≤ i ≤ n). 
 
In G2, for (1≤ t ≤8), d2(xi

(t)) = [(n+3)-(n)[ (n+3-1), for (0 ≤ i ≤ n). 
G2 is ( n+3, 2, ((n+3)-(n)) (n+3-1))-regular on (n+1) x 2n+3-n = 8(n+1) vertices with the vertex set V(G2) ={xi

(t)/(1 ≤ t ≤ 

2n+3-n), (0 ≤ i ≤ n)}and E(G2)= E(G1)U E( 1G′ )U{xi
(1) xi+1

(8),xi
(2) xi

(7), xi
(3) xi+1

(6),xi
(4) xi

(5) /(0 ≤ i ≤ n }. 
 
Therefore, the result is true for r = n+3. 
 
Let us assume this result is true for r = m+n+1 
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That is , there exist (m+n+1, 2, (m+1)(m+n))- regular on (n+1) x 2m+1 vertices with the vertex set V(Gm)={xi

(t)/(1 ≤ t ≤ 

2m+1), (0 ≤ i ≤ n)}and E(Gm)= E(Gm-1)U E( 1mG −
′ )

1
2

( ) 2 1
(mod 2)

1

{
m

mt t
i i t

t

x x
+ − +

+
=
 / (0 ≤ i ≤ n)}. 

 
That is, for(1≤ t ≤ 2m+1), d2(xi

(t)) = (m+1)(m+n), for (0 ≤ i ≤ n) and d(xi
(t)) = m+n+1. 

 

Take another copy of Gm as mG′ with the vertex set. 

V( mG′ )={xi
(t)/(2m+ 1+1 ≤ t ≤ 2m+ 2), (0 ≤ i ≤ n)}and each xi

(t) ), (2m+ 1+1 ≤ t ≤ 2m +2), corresponds to xi
(t), (1 ≤ t ≤ 2m +1), for 

(0 ≤ i ≤ n). 
 

The desired graph Gm+1 has the vertex set V(Gm+1) = V(Gm)U V( mG′ ) and  

edge set E(Gm+1) = E(Gm)U E( mG′ )
12

)2(mod

2

1

)( 2
1

{ +−
+

=

+
+

t
ti

t

t
i

m
m

xx


/(0 ≤ i ≤ n)}. 

 
Now the resulting graph Gm+1 is (m+n+2) regular graph having (n+1) x 2m +2 vertices. 
 

Consider the edges 
12

)2(mod

2

1

)( 2
1

{ +−
+

=

+
+

t
ti

t

t
i

m
m

xx
 /(0 ≤ i ≤ n)}. 

 
For ( 1 ≤ t ≤2m+1), d2- of each vertex in C(t), where C(t) is the cycle induced by the vertices{xi

(t)/ 0≤i≤n}. 

N2(xi
 (t)) in Gm+1 = N2(xi

 (t)) in Gm U N(
22 1

(mod 2)

m t
i tx

+ − +
+ ) in mG′ U N(N(xi

 (t)) in mG′ .                           

d2(xi
(t)) in Gm+1 = d2(xi

(t)) in Gm + d(
12

)2(mod

2 +−
+

+ t
ti

m

x
) in mG′ + ))N(N(x t

i in mG′ . 
                         = (m+1) (m+n) + ((m+n+1)+(m+n+1))-n, for ( 0 ≤ i ≤ n).                       
                         = (m+2) (m+n+1), for (0 ≤ i ≤ n). 
d2 of each vertex in  C(2m+2-t+1), where C(2m+2-t+1) is the cycle induced by the vertices{xi  (2m+2-t+1)/0≤i≤n}. 

N2(
12

)2(mod

2 +−
+

+ t
ti

m

x
) in Gm+1=N2(

12
)2(mod

2 +−
+

+ t
ti

m

x
) in mG′ +N(xi

(t)) in Gm +│N(N(
12

)2(mod

2 +−
+

+ t
ti

m

x
) )│ in Gm. 

d 2 (
12

)2(mod

2 +−
+

+ t
ti

m

x
) in Gm+1 = (m+1)(m+n) +((m+n+1)+(m+n+1))-n, for(0 ≤ i ≤ n).                                                                       

                                                 = (m+2) (m+n+1), for (0 ≤ i ≤ n). 
 
In Gm+1, for( 1 ≤ t ≤ 2m+2), deg2(xi

(t))=(m+2)(m+n+1), for (0 ≤ i ≤ n). 
 
That is ,there exist (m+n+2, 2, (m+2)(m+n+1)) regular on (n+1) x 2m+2 vertices with the vertex set V(Gm+1) = {xi

(t)/(1 ≤ 

t ≤ 2m+2), (0 ≤i ≤ n)}and E(Gm+1) = E(Gm) U E( mG′ )
12

)2(mod

2

1

)( 2
1

{ +−
+

=

+
+

t
ti

t

t
i

m
m

xx
 / (0 ≤ i ≤ n)}. 

That is, for(1≤t ≤2m+2), d2(xi
(t)) =(m+2)(m+n+1), for (0 ≤ i ≤ n) and d(xi

(t))=m+n+2. 
 
If the result is true for r=m+n+1, then it is true for r=m+n+2. 
 
Therefore, the result is true for all r ≥ n. 
 
That is, for any r ≥ n ≥ 2, there is a (r, 2, (r – n) (r - 1)) - regular on (n+1) x 2 r- n vertices.  
 
Corollary 3.4:  For any r ≥ 2, there is a (r, 2, (r-2) (r-1)) - regular graph on 3 x 2r-2 vertices [10]. 
 
Corollary.3.5: For any r ≥ 3, there is a (r, 2, (r-3) (r-1)) - regular graph on 4 x 2r-3 vertices. [11]. 
 
Corollary 3.6:  For any r ≥ 4, there is a (r, 2, (r-4) (r-1)-regular graph on 5 x 2r-4 vertices 
 
Summary 3.7: In theorem  3.3, if we put n = 2, 3, 4, ….  r, then we get (r, 2, (r-2)(r-1))-regular graph, (r, 2, (r-3)(r-1)) – 
regular graph, (r, 2,(r-4)(r-1) – regular graph , (r, 2, (r-5)(r-1)) – regcular graph …..(r, 2, 4(r-1))-regular graph, (r,2,3(r-
1))-regular graph, (r,2,2(r-1))-regular  graph, (r, 2, (r-1))-regular graph, (r, 2, 0)-regular graph.             ….. 
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