Volume 9, No. 4, April - 2018 (Special Issue) International Journal of Mathematical Archive-9(4), 2018, 78-82 MAAvailable online through www.ijma.info ISSN 2229 - 5046

HOMOMORPHISMS, STRONG REGULARITY, STRONG REDUCEDNESS AND RELATED CONCEPTS

S NARMADA AND SIDHARTHA SARMA S K

Department of mathematics, Sree Narayana College, Kollam, Kerala, India.

E-mail: sidharthasarmask@gmail.com

ABSTRACT

T he aim of this paper is to generalize the homomorphism from Z_m to Z_n and give the idea to construct near-rings of low order and give examples to strongly regular and strongly reduced near-rings. We also give some examples to justify the main result in the paper "Characterizations of strongly regular near-rings"

Keywords: Group, Near-Rings, Homomorphism, Strongly Regular, Strongly reduced.

1. INTRODUCTION

Throught this paper we work with right near-rings.

The concept of homomorphism on near-rings are like on rings. Z_n is an abelian group under addition modulo n. Let N, N' be near-rings, $h: N \to N'$ is called near-ring homomorphism if for every m, n in N such that h(m+n) = h(m) + h(n) and h(mn) = h(m)h(n). Mason [1] introduced the notions of strong regularity in near-rings and characterized left regular zero-symmetric unital near-rings. Reddy and Murty [5] extended the results in [1] to arbitrary near-rings and proved that the concepts of left regularity, left strong regularity and right regularity in near-rings are equivalent and these imply right strong regularity. Yong Uk Cho and YasuyukiHirano [7] showed that the strong regularity in near-rings is equivalent to the property (*) in [5]. Narmada and Anil Kumar [3] characterize the strong regularity of near-rings.

We will use the following notations:

Given a near-ring N, $N_0 = \{n \text{ in } N : n0 = 0\}$ which is called the zero-symmetric part of N, $N_c = \{n \text{ in } N : n0 = n\} = \{n \text{ in } N : nn' = n \text{ for every } n' \text{ in } N\}$ which is called the constant part of N. Clearly N_0 and N_c are sub near-ring of N. A near-ring N is called zero-symmetric if $N = N_0$ and is called a constant near-ring if $N = N_c$

For the basic concepts and notations, we shall refer to Pilz [4]

2. PRELIMINARIES

A near-ring N is called left strongly regular if for every a in N, there exist x in N such that $a = xa^2$ and left regular if for every a in N, there is an x in N such that $a = xa^2$ and a = axa. Right strong regularity and right regularity can be defined in symmetric way. N is strongly regular if it is both left and right strongly regular. We can say that N is reduced if N has no non zero nilpotent elements, that is for each a in N, $a^n = 0$, for some positive integer n implies a = 0. In ring theory Mc Coy[8] proved that N is reduced if and only if for each a in N, $a^2 = 0$ imlpies a = 0. A near-ring N is said to be strongly reduced if for a in N, a^2 in n implies a in n.

Characterization of Homomorphism on Z_n :

Suppose $f: Z_m \to Z_n$ is a group homomorphism and assume f(1) = k, then for m in N, f(m) = mk and f(-m) = -mk. Thus for x in Z, f(x) = xf(1) = xk f(0) = 0 f(1).

International Journal of Mathematical Archive-9(4), April - 2018

78

CONFERENCE PAPER

Homomorphisms, Strong Regularity, Strong Reducedness and Related Concepts / IJMA- 9(4), April-2018, (Special Issue)

Then for
$$x$$
 in Z_m , $f(x) = f(1+1+\cdots+1) = xf(1)$
= xk for some k in Z_n .

That is $f(x) = xk \pmod{n}$ is the homomorphism.

That is $f: Z_m \to Z_n$ is a homomorphism and f(1) = k, then the homomorphism has the form $f(x) = xk \pmod{n}$.

Converse of the above result is not true,

For
$$f(x) = xk \pmod{n}$$
,
 $f(x+y) \neq (xk +_n yk) \pmod{n}$.

Now assume
$$f(1) = k$$
, then $0 \equiv f(0) \equiv f(m) = f(\underbrace{1 + 1 + \dots + 1}_{m})$

$$= f(1) + f(1) + \dots + f(1) = mf(1) = mk.$$

That is, k is the solution of the system $mx \equiv 0 \pmod{n}$.

Conversely, if k is a solution of $mx \equiv 0 \pmod{n}$ then $f(x) = xk \pmod{n}$ is a homomorphism from $Z_m \to Z_n$.

For, let x, y in Z_m and suppose $mk \equiv 0 \pmod{n}$

Let
$$x +_m y = t$$
, x , y in Z_m , then $x + y = mr + t$, $0 \le t < m$.

$$f(x +_m y) = f(t)kt \pmod{n} = k(x + y - mr) \pmod{n}$$

$$= f(x) +_n f(y).$$

Therefore f is a homomorphism.

Theorem 2.1: The function $f: Z_m \to Z_n$ given by f(x) = xk for some k in Z_n , fixed is homomorphism of groups if and only if $mk \equiv 0 \pmod{n}$

If k is the solution of the system $mk \equiv 0 \pmod{n}$ and $d = \gcd(m, n)$: and if $d \setminus 0$ the system has $\gcd(m, n)$ solutions.

Corollary 2.2: The function $f: Z_m \to Z_n$ is a homomorphism and f(x) = xk where k is the solution of the system $mk \equiv 0 \pmod{n}$ and (m, n) = 1, then f is an onto homomorphism.

Remark [6]: Suppose $f: Z_m \to Z_n$ is a ring homomorphism and assume f(1) = k, since every ring homomorphism is a group homomorphism, $f(x) = xk \pmod{n}$ is a ring homomorphism if and only if k is the solution of the system $mk \equiv 0 \pmod{n}$. Also $k = f(1) = f(1.1) = [f(1)]^2 = k^2(k)$ is idempotent). That is k is also a solution of the system $x^2 \equiv x \pmod{n}$

3. NEAR-RINGS ON GROUPS OF LOW ORDER

G Pilz, gives the description of near-rings of low order and from the above argument of homomorphism on near-rings, we give the idea to construct the near-rings of low order on Z_n , $n \le 7$.

Suppose $\phi: Z_n \to Z_n$ by $\phi(x) = kx \pmod{n}$ is a homomorphism, we list the endomorphism $\alpha_o, \alpha_1, \ldots, \alpha_{n-1}$ of Z_n and each $\phi_k(x)$ represent the homomorphism, every isomorphism class of near-rings of order n is determined by the n-tuple $(1,2,\ldots,n-1)$. The numbers following this n-tuple denote the number of those automorphisms which yield isomorphic near-rings of Z_n .

We give multiplication table of ϕ as follows:

S Narmada and Sidhartha Sarma S K /

Homomorphisms, Strong Regularity, Strong Reducedness and Related Concepts / IJMA- 9(4), April-2018, (Special Issue)

$^{\circ}\phi$	α_o	α_1	α_2	α_3	α_4	α_5	α_6
0	$\phi_o(0)$	$\phi_0(1)$	$\phi_o(2)$	$\phi_o(3)$	$\phi_o(4)$	$\phi_o(5)$	$\phi_o(6)$
1	$\phi_1(0)$	$\phi_1(1)$	$\phi_1(2)$	$\phi_1(3)$	$\phi_1(4)$	$\phi_1(5)$	$\phi_1(6)$
2	$\phi_{2}(0)$	$\phi_2(1)$	$\phi_{2}(2)$	$\phi_2(3)$	$\phi_{2}(4)$	$\phi_2(5)$	$\phi_2(6)$
3	$\phi_{3}(0)$	$\phi_{3}(1)$	$\phi_{3}(2)$	$\phi_{3}(3)$	$\phi_{3}(4)$	$\phi_{3}(5)$	$\phi_{3}(6)$
4	$\phi_{4}(0)$	$\phi_4(1)$	$\phi_4(2)$	$\phi_4(3)$	$\phi_4(4)$	$\phi_4(5)$	$\phi_4(6)$
5	$\phi_{5}(0)$	$\phi_{5}(1)$	$\phi_{5}(2)$	$\phi_{5}(3)$	$\phi_{5}(4)$	$\phi_{5}(5)$	$\phi_{5}(6)$
6	$\phi_{6}(0)$	$\phi_6(1)$	$\phi_{6}(2)$	$\phi_6(3)$	$\phi_{6}(4)$	$\phi_6(5)$	$\phi_6(6)$

Example:

- 1) $Z_1 = \{0\}$, this case is trivial 2) $Z_2 = \{0,1\}$ Define $\phi: Z_2 \to Z_2$ by $\phi(x) = kx$ is a group homomorphism and ϕ has gcd (2,2) = 2 homomorphism.

That is $\phi_o(x) = 0x$, $\phi_1(x) = 1x$ are the homomorphisms.

The multiplication table is given by

+	0	1
0	0	1
1	1	0

$^{\circ}\phi$	α_o	α_1
0	$\phi_o(0)$	$\phi_0(1)$
1	$\phi_1(0)$	$\phi_1(1)$

°ф	α_o	α_1
0	0	0
1	0	1

3)
$$Z_3 = \{0,1,2\}$$

$^{\circ}\phi$	α_o	α_1	α_2
0	$\phi_o(0)$	$\phi_0(1)$	$\phi_o(2)$
1	$\phi_1(0)$	$\phi_1(1)$	$\phi_1(2)$
2	$\phi_{2}(0)$	$\phi_2(1)$	$\phi_{2}(2)$

$^{\circ}\phi$	α_o	α_1	α_2
0	0	0	0
1	0	1	2
2	0	2	1

4)
$$Z_4 = \{0,1,2,3\}$$

$^{\circ}\phi$	α_o	α_1	α_2	α_3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

5)
$$Z_5 = \{0,1,2,3,4\}$$

$^{\circ}\phi$	α_o	α_1	α_2	α_3	α_4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

6)
$$Z_6 = \{0,1,2,3,4,5\}$$

$^{\circ}\phi$	α_o	α_1	α_2	α_3	α_4	α_5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

7) $Z_7 = \{0,1,2,3,4,5,6\}$

0	þ	α_o	α_1	α_2	α_3	α_4	α_5	α_6
0)	0	0	0	0	0	0	0
1	-	0	1	2	3	4	5	6
2		0	2	4	6	1	3	5
3	;	0	3	6	2	5	1	4
4		0	4	1	5	2	6	3
5	;	0	5	3	1	6	4	2
6)	0	6	5	4	3	2	1

We observe that N is zero-symmetric if and only if n-tuple starts with entry 0.N is constant if and only if n-tuple is (1,1,...,1). The n-tuple (0,0,...,0) is the zero near-ring on Z_n .

4. STRONGLY REGULAR NEAR-RINGS

We know that every strongly regular near-ring is strongly reduced (Proposition 1 of [7]).But the following example shows that this result is not true in general.

Example: Let N = Z, the set of all integers with usual addition and multiplication given by a.b = ab, for a,b in $N, a, b \neq 0, 1, -1$. Then N is strongly reduced near-ring, but is not strongly regular, since a in N with $a \neq 0, 1, -1$, there exist no x in N such that $a = xa^2$.

The following theorem shows that if N is strongly reduced and regular, then it becomes strongly regular.

Theorem 4.1 [3]: Let *N* be a near-ring. Then *N* is strongly regular if and only if it is strongly reduced and regular.

Now we give some examples to justify this result.

Example 1: Let $N = \{0,1,2,3,4,5\}$ be an additive group of integers modulo 6 and multiplication as follows (see Pilz [4] for near-rings of low order Z_6 , no: 24, (3,5,5,3,1,1)).

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	3	5	5	3	1	1
2	0	4	4	0	2	2
3	3	3	3	3	3	3
4	0	2	2	0	4	4
5	3	1	1	3	5	5

Clearly, this near-ring N is non zero-symmetric and reduced and regular. The constant part of N is $\{0,3\}$. We see that this near-ring N is strongly reduced. From the above theorem, N is strongly regular.

Example 2: Z₇, no: 19, (1,1,1,1,1,1) of Pilz [4]

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	1	1	1	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	4	4	4
5	5	5	5	5	5	5
6	6	6	6	6	6	6

From observation, N is strongly regular.

Homomorphisms, Strong Regularity, Strong Reducedness and Related Concepts / IJMA- 9(4), April-2018, (Special Issue)

Now we classify reduced and regular near-rings of order ≤ 7 , which are strongly regular and strongly reduced near-rings. To do this we use Clay's [2] table.

Groups	Zerosymmetric,	Non zerosymmetric,
	reduced and regular	reduced and regular
Z_2		3
Z_3	3	4
Z_4	8	9
Z_5	7,8,10	9
Z_6	27,47	24,35,48,49,52,53
Z_7	18,20,21,22,23,24	19

REFERENCES

- 1. G Mason, Strongly regular near-rings, Proc.EdinburghMath.Soc. 23(1983), 27-35.
- 2. J.R.Clay, The near-rings on groups of low order, Math.Z. 104(1968), 364-371.
- 3. S.Narmada and S.Anil Kumar, Characterizations of strongly regular near-rings, FJMS, 48(2),(2011), 211-216.
- 4. G.Pilz, Near-Rings, North-Holand Publishing company, Amsterdam, NewYork, Oxford (1983).
- 5. Javier Diaz-Vargas and Gustavo Vargas de los Santos, The number of homomorphismsfrom Z_n to Z_m , Abstraction and application 13(2015), 1-3.
- 6. Y.V.Reddy and C.V.L.N Murty, On strongly regular near-rings, Proc.EdinburghMath.Soc.27 (1984), 61-64.
- 7. Yong Uk Cho and Yasuyuki Hirano, Strong reducedness and strong regularity for near-rings, Kyangpook Math. J 43(2003), 587-592.
- 8. Neal Henry Mc Coy, The theory of rings, Chelsea Pub. Co. (1973).

Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.